Skip to main content
Top
Published in: Neuroscience Bulletin 5/2024

24-01-2024 | Epilepsy | Review

Interleukins in Epilepsy: Friend or Foe

Authors: Yuan Dong, Xia Zhang, Ying Wang

Published in: Neuroscience Bulletin | Issue 5/2024

Login to get access

Abstract

Epilepsy is a chronic neurological disorder with recurrent unprovoked seizures, affecting ~ 65 million worldwide. Evidence in patients with epilepsy and animal models suggests a contribution of neuroinflammation to epileptogenesis and the development of epilepsy. Interleukins (ILs), as one of the major contributors to neuroinflammation, are intensively studied for their association and modulatory effects on ictogenesis and epileptogenesis. ILs are commonly divided into pro- and anti-inflammatory cytokines and therefore are expected to be pathogenic or neuroprotective in epilepsy. However, both protective and destructive effects have been reported for many ILs. This may be due to the complex nature of ILs, and also possibly due to the different disease courses that those ILs are involved in. In this review, we summarize the contributions of different ILs in those processes and provide a current overview of recent research advances, as well as preclinical and clinical studies targeting ILs in the treatment of epilepsy.
Literature
1.
go back to reference Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 2019, 15: 459–472.PubMedCrossRef Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 2019, 15: 459–472.PubMedCrossRef
2.
go back to reference Pitkanen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 2011, 10: 173–186.PubMedCrossRef Pitkanen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 2011, 10: 173–186.PubMedCrossRef
4.
go back to reference Galovic M, Ferreira-Atuesta C, Abraira L, Döhler N, Sinka L, Brigo F. Seizures and epilepsy after stroke: Epidemiology, biomarkers and management. Drugs Aging 2021, 38: 285–299.PubMedPubMedCentralCrossRef Galovic M, Ferreira-Atuesta C, Abraira L, Döhler N, Sinka L, Brigo F. Seizures and epilepsy after stroke: Epidemiology, biomarkers and management. Drugs Aging 2021, 38: 285–299.PubMedPubMedCentralCrossRef
5.
go back to reference Zilberter Y, Popova I, Zilberter M. Unifying mechanism behind the onset of acquired epilepsy. Trends Pharmacol Sci 2022, 43: 87–96.PubMedCrossRef Zilberter Y, Popova I, Zilberter M. Unifying mechanism behind the onset of acquired epilepsy. Trends Pharmacol Sci 2022, 43: 87–96.PubMedCrossRef
6.
go back to reference Devinsky O, Vezzani A, O’Brien TJ, Jette N, Scheffer IE, de Curtis M, et al. Epilepsy. Nat Rev Dis Primers 2018, 4: 18024.PubMedCrossRef Devinsky O, Vezzani A, O’Brien TJ, Jette N, Scheffer IE, de Curtis M, et al. Epilepsy. Nat Rev Dis Primers 2018, 4: 18024.PubMedCrossRef
7.
go back to reference Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol 2011, 7: 31–40.PubMedCrossRef Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol 2011, 7: 31–40.PubMedCrossRef
8.
go back to reference Zhao J, Wang Y, Xu C, Liu K, Wang Y, Chen L, et al. Therapeutic potential of an anti-high mobility group box-1 monoclonal antibody in epilepsy. Brain Behav Immun 2017, 64: 308–319.PubMedCrossRef Zhao J, Wang Y, Xu C, Liu K, Wang Y, Chen L, et al. Therapeutic potential of an anti-high mobility group box-1 monoclonal antibody in epilepsy. Brain Behav Immun 2017, 64: 308–319.PubMedCrossRef
9.
go back to reference Zhao J, Zheng Y, Liu K, Chen J, Lai N, Fei F, et al. HMGB1 is a therapeutic target and biomarker in diazepam-refractory status epilepticus with wide time window. Neurotherapeutics 2020, 17: 710–721.PubMedCrossRef Zhao J, Zheng Y, Liu K, Chen J, Lai N, Fei F, et al. HMGB1 is a therapeutic target and biomarker in diazepam-refractory status epilepticus with wide time window. Neurotherapeutics 2020, 17: 710–721.PubMedCrossRef
10.
go back to reference Jiang GT, Shao L, Kong S, Zeng ML, Cheng JJ, Chen TX, et al. Complement C3 aggravates post-epileptic neuronal injury Via activation of TRPV1. Neurosci Bull 2021, 37: 1427–1440.PubMedPubMedCentralCrossRef Jiang GT, Shao L, Kong S, Zeng ML, Cheng JJ, Chen TX, et al. Complement C3 aggravates post-epileptic neuronal injury Via activation of TRPV1. Neurosci Bull 2021, 37: 1427–1440.PubMedPubMedCentralCrossRef
11.
go back to reference Vezzani A, Lang B, Aronica E. Immunity and inflammation in epilepsy. Cold Spring Harb Perspect Med 2015, 6: a022699.PubMedCrossRef Vezzani A, Lang B, Aronica E. Immunity and inflammation in epilepsy. Cold Spring Harb Perspect Med 2015, 6: a022699.PubMedCrossRef
12.
go back to reference Vezzani A, Maroso M, Balosso S, Sanchez MA, Bartfai T. IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behav Immun 2011, 25: 1281–1289.PubMedCrossRef Vezzani A, Maroso M, Balosso S, Sanchez MA, Bartfai T. IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behav Immun 2011, 25: 1281–1289.PubMedCrossRef
13.
go back to reference Aledo-Serrano A, Hariramani R, Gonzalez-Martinez A, Álvarez-Troncoso J, Toledano R, Bayat A, et al. Anakinra and tocilizumab in the chronic phase of febrile infection-related epilepsy syndrome (FIRES): Effectiveness and safety from a case-series. Seizure 2022, 100: 51–55.PubMedCrossRef Aledo-Serrano A, Hariramani R, Gonzalez-Martinez A, Álvarez-Troncoso J, Toledano R, Bayat A, et al. Anakinra and tocilizumab in the chronic phase of febrile infection-related epilepsy syndrome (FIRES): Effectiveness and safety from a case-series. Seizure 2022, 100: 51–55.PubMedCrossRef
14.
go back to reference Gilhus NE, Deuschl G. Neuroinflammation—a common thread in neurological disorders. Nat Rev Neurol 2019, 15: 429–430.PubMedCrossRef Gilhus NE, Deuschl G. Neuroinflammation—a common thread in neurological disorders. Nat Rev Neurol 2019, 15: 429–430.PubMedCrossRef
16.
go back to reference Ravizza T, Vezzani A. Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type I in the rat limbic system. Neuroscience 2006, 137: 301–308.PubMedCrossRef Ravizza T, Vezzani A. Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type I in the rat limbic system. Neuroscience 2006, 137: 301–308.PubMedCrossRef
17.
go back to reference Jo EK, Kim JK, Shin DM, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol 2016, 13: 148–159.PubMedCrossRef Jo EK, Kim JK, Shin DM, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol 2016, 13: 148–159.PubMedCrossRef
18.
go back to reference Vezzani A, Balosso S, Ravizza T. The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 2008, 22: 797–803.PubMedCrossRef Vezzani A, Balosso S, Ravizza T. The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 2008, 22: 797–803.PubMedCrossRef
19.
go back to reference Plata-Salamán CR, Ilyin SE, Turrin NP, Gayle D, Flynn MC, Romanovitch AE, et al. Kindling modulates the IL-1beta system, TNF-alpha, TGF-beta1, and neuropeptide mRNAs in specific brain regions. Brain Res Mol Brain Res 2000, 75: 248–258.PubMedCrossRef Plata-Salamán CR, Ilyin SE, Turrin NP, Gayle D, Flynn MC, Romanovitch AE, et al. Kindling modulates the IL-1beta system, TNF-alpha, TGF-beta1, and neuropeptide mRNAs in specific brain regions. Brain Res Mol Brain Res 2000, 75: 248–258.PubMedCrossRef
20.
go back to reference Feng B, Tang Y, Chen B, Xu C, Wang Y, Dai Y, et al. Transient increase of interleukin-1β after prolonged febrile seizures promotes adult epileptogenesis through long-lasting upregulating endocannabinoid signaling. Sci Rep 2016, 6: 21931.PubMedPubMedCentralCrossRef Feng B, Tang Y, Chen B, Xu C, Wang Y, Dai Y, et al. Transient increase of interleukin-1β after prolonged febrile seizures promotes adult epileptogenesis through long-lasting upregulating endocannabinoid signaling. Sci Rep 2016, 6: 21931.PubMedPubMedCentralCrossRef
21.
go back to reference Vezzani A, Conti M, De Luigi A, Ravizza T, Moneta D, Marchesi F, et al. Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: Functional evidence for enhancement of electrographic seizures. J Neurosci 1999, 19: 5054–5065.PubMedPubMedCentralCrossRef Vezzani A, Conti M, De Luigi A, Ravizza T, Moneta D, Marchesi F, et al. Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: Functional evidence for enhancement of electrographic seizures. J Neurosci 1999, 19: 5054–5065.PubMedPubMedCentralCrossRef
22.
go back to reference De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, et al. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 2000, 12: 2623–2633.PubMedCrossRef De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, et al. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 2000, 12: 2623–2633.PubMedCrossRef
23.
go back to reference Tan THL, Perucca P, O’Brien TJ, Kwan P, Monif M. Inflammation, ictogenesis, and epileptogenesis: An exploration through human disease. Epilepsia 2021, 62: 303–324.PubMedCrossRef Tan THL, Perucca P, O’Brien TJ, Kwan P, Monif M. Inflammation, ictogenesis, and epileptogenesis: An exploration through human disease. Epilepsia 2021, 62: 303–324.PubMedCrossRef
24.
go back to reference Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 2008, 29: 142–160.PubMedCrossRef Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 2008, 29: 142–160.PubMedCrossRef
25.
go back to reference Shi LM, Chen RJ, Zhang H, Jiang CM, Gong J. Cerebrospinal fluid neuron specific enolase, interleukin-1β and erythropoietin concentrations in children after seizures. Childs Nerv Syst 2017, 33: 805–811.PubMedCrossRef Shi LM, Chen RJ, Zhang H, Jiang CM, Gong J. Cerebrospinal fluid neuron specific enolase, interleukin-1β and erythropoietin concentrations in children after seizures. Childs Nerv Syst 2017, 33: 805–811.PubMedCrossRef
26.
go back to reference Peltola J, Palmio J, Korhonen L, Suhonen J, Miettinen A, Hurme M, et al. Interleukin-6 and interleukin-1 receptor antagonist in cerebrospinal fluid from patients with recent tonic-clonic seizures. Epilepsy Res 2000, 41: 205–211.PubMedCrossRef Peltola J, Palmio J, Korhonen L, Suhonen J, Miettinen A, Hurme M, et al. Interleukin-6 and interleukin-1 receptor antagonist in cerebrospinal fluid from patients with recent tonic-clonic seizures. Epilepsy Res 2000, 41: 205–211.PubMedCrossRef
27.
go back to reference Alapirtti T, Rinta S, Hulkkonen J, Mäkinen R, Keränen T, Peltola J. Interleukin-6, interleukin-1 receptor antagonist and interleukin-1beta production in patients with focal epilepsy: A video-EEG study. J Neurol Sci 2009, 280: 94–97.PubMedCrossRef Alapirtti T, Rinta S, Hulkkonen J, Mäkinen R, Keränen T, Peltola J. Interleukin-6, interleukin-1 receptor antagonist and interleukin-1beta production in patients with focal epilepsy: A video-EEG study. J Neurol Sci 2009, 280: 94–97.PubMedCrossRef
28.
go back to reference Bauer S, Cepok S, Todorova-Rudolph A, Nowak M, Köller M, Lorenz R, et al. Etiology and site of temporal lobe epilepsy influence postictal cytokine release. Epilepsy Res 2009, 86: 82–88.PubMedCrossRef Bauer S, Cepok S, Todorova-Rudolph A, Nowak M, Köller M, Lorenz R, et al. Etiology and site of temporal lobe epilepsy influence postictal cytokine release. Epilepsy Res 2009, 86: 82–88.PubMedCrossRef
29.
go back to reference Lehtimäki KA, Keränen T, Palmio J, Mäkinen R, Hurme M, Honkaniemi J, et al. Increased plasma levels of cytokines after seizures in localization-related epilepsy. Acta Neurol Scand 2007, 116: 226–230.PubMedCrossRef Lehtimäki KA, Keränen T, Palmio J, Mäkinen R, Hurme M, Honkaniemi J, et al. Increased plasma levels of cytokines after seizures in localization-related epilepsy. Acta Neurol Scand 2007, 116: 226–230.PubMedCrossRef
30.
go back to reference Virta M, Hurme M, Helminen M. Increased plasma levels of pro- and anti-inflammatory cytokines in patients with febrile seizures. Epilepsia 2002, 43: 920–923.PubMedCrossRef Virta M, Hurme M, Helminen M. Increased plasma levels of pro- and anti-inflammatory cytokines in patients with febrile seizures. Epilepsia 2002, 43: 920–923.PubMedCrossRef
31.
go back to reference Heida JG, Pittman QJ. Causal links between brain cytokines and experimental febrile convulsions in the rat. Epilepsia 2005, 46: 1906–1913.PubMedCrossRef Heida JG, Pittman QJ. Causal links between brain cytokines and experimental febrile convulsions in the rat. Epilepsia 2005, 46: 1906–1913.PubMedCrossRef
32.
go back to reference Dubé C, Vezzani A, Behrens M, Bartfai T, Baram TZ. Interleukin-1beta contributes to the generation of experimental febrile seizures. Ann Neurol 2005, 57: 152–155.PubMedPubMedCentralCrossRef Dubé C, Vezzani A, Behrens M, Bartfai T, Baram TZ. Interleukin-1beta contributes to the generation of experimental febrile seizures. Ann Neurol 2005, 57: 152–155.PubMedPubMedCentralCrossRef
33.
go back to reference Vezzani A, Moneta D, Conti M, Richichi C, Ravizza T, De Luigi A, et al. Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc Natl Acad Sci U S A 2000, 97: 11534–11539.PubMedPubMedCentralCrossRef Vezzani A, Moneta D, Conti M, Richichi C, Ravizza T, De Luigi A, et al. Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc Natl Acad Sci U S A 2000, 97: 11534–11539.PubMedPubMedCentralCrossRef
34.
go back to reference Auvin S, Shin D, Mazarati A, Sankar R. Inflammation induced by LPS enhances epileptogenesis in immature rat and may be partially reversed by IL1RA. Epilepsia 2010, 51: 34–38.PubMedPubMedCentralCrossRef Auvin S, Shin D, Mazarati A, Sankar R. Inflammation induced by LPS enhances epileptogenesis in immature rat and may be partially reversed by IL1RA. Epilepsia 2010, 51: 34–38.PubMedPubMedCentralCrossRef
35.
go back to reference Xu C, Zhang S, Gong Y, Nao J, Shen Y, Tan B, et al. Subicular caspase-1 contributes to pharmacoresistance in temporal lobe epilepsy. Ann Neurol 2021, 90: 377–390.PubMedCrossRef Xu C, Zhang S, Gong Y, Nao J, Shen Y, Tan B, et al. Subicular caspase-1 contributes to pharmacoresistance in temporal lobe epilepsy. Ann Neurol 2021, 90: 377–390.PubMedCrossRef
36.
go back to reference Tang Y, Feng B, Wang Y, Sun H, You Y, Yu J, et al. Structure-based discovery of CZL80, a caspase-1 inhibitor with therapeutic potential for febrile seizures and later enhanced epileptogenic susceptibility. Br J Pharmacol 2020, 177: 3519–3534.PubMedPubMedCentralCrossRef Tang Y, Feng B, Wang Y, Sun H, You Y, Yu J, et al. Structure-based discovery of CZL80, a caspase-1 inhibitor with therapeutic potential for febrile seizures and later enhanced epileptogenic susceptibility. Br J Pharmacol 2020, 177: 3519–3534.PubMedPubMedCentralCrossRef
37.
go back to reference Diamond ML, Ritter AC, Failla MD, Boles JA, Conley YP, Kochanek PM, et al. IL-1β associations with posttraumatic epilepsy development: A genetics and biomarker cohort study. Epilepsia 2014, 55: 1109–1119.PubMedPubMedCentralCrossRef Diamond ML, Ritter AC, Failla MD, Boles JA, Conley YP, Kochanek PM, et al. IL-1β associations with posttraumatic epilepsy development: A genetics and biomarker cohort study. Epilepsia 2014, 55: 1109–1119.PubMedPubMedCentralCrossRef
38.
go back to reference Zhang Q, Li G, Zhao D, Yang P, Shabier T, Tuerxun T. Association between IL-1β and recurrence after the first epileptic seizure in ischemic stroke patients. Sci Rep 2020, 10: 13505.PubMedPubMedCentralCrossRef Zhang Q, Li G, Zhao D, Yang P, Shabier T, Tuerxun T. Association between IL-1β and recurrence after the first epileptic seizure in ischemic stroke patients. Sci Rep 2020, 10: 13505.PubMedPubMedCentralCrossRef
39.
40.
go back to reference Ma X, Sun L, Li X, Xu Y, Zhang Q. Polymorphism of IL-1B rs16944 (T/C) associated with serum levels of IL-1β affects seizure susceptibility in ischemic stroke patients. Adv Clin Exp Med 2023, 32: 23–29.PubMedCrossRef Ma X, Sun L, Li X, Xu Y, Zhang Q. Polymorphism of IL-1B rs16944 (T/C) associated with serum levels of IL-1β affects seizure susceptibility in ischemic stroke patients. Adv Clin Exp Med 2023, 32: 23–29.PubMedCrossRef
41.
go back to reference Kanemoto K, Kawasaki J, Miyamoto T, Obayashi H, Nishimura M. Interleukin (IL)1beta, IL-1alpha, and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy. Ann Neurol 2000, 47: 571–574.PubMedCrossRef Kanemoto K, Kawasaki J, Miyamoto T, Obayashi H, Nishimura M. Interleukin (IL)1beta, IL-1alpha, and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy. Ann Neurol 2000, 47: 571–574.PubMedCrossRef
42.
go back to reference Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: Contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr 2017, 29: 1–16.PubMedCrossRef Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: Contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr 2017, 29: 1–16.PubMedCrossRef
43.
go back to reference Hu S, Sheng WS, Ehrlich LC, Peterson PK, Chao CC. Cytokine effects on glutamate uptake by human astrocytes. Neuroimmunomodulation 2000, 7: 153–159.PubMedCrossRef Hu S, Sheng WS, Ehrlich LC, Peterson PK, Chao CC. Cytokine effects on glutamate uptake by human astrocytes. Neuroimmunomodulation 2000, 7: 153–159.PubMedCrossRef
44.
go back to reference Roseti C, van Vliet EA, Cifelli P, Ruffolo G, Baayen JC, Di Castro MA, et al. GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: Implications for ictogenesis. Neurobiol Dis 2015, 82: 311–320.PubMedCrossRef Roseti C, van Vliet EA, Cifelli P, Ruffolo G, Baayen JC, Di Castro MA, et al. GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: Implications for ictogenesis. Neurobiol Dis 2015, 82: 311–320.PubMedCrossRef
45.
go back to reference Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 2003, 23: 8692–8700.PubMedPubMedCentralCrossRef Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 2003, 23: 8692–8700.PubMedPubMedCentralCrossRef
46.
go back to reference Postnikova TY, Zubareva OE, Kovalenko AA, Kim KK, Magazanik LG, Zaitsev AV. Status epilepticus impairs synaptic plasticity in rat hippocampus and is followed by changes in expression of NMDA receptors. Biochemistry Moscow 2017, 82: 282–290.PubMedCrossRef Postnikova TY, Zubareva OE, Kovalenko AA, Kim KK, Magazanik LG, Zaitsev AV. Status epilepticus impairs synaptic plasticity in rat hippocampus and is followed by changes in expression of NMDA receptors. Biochemistry Moscow 2017, 82: 282–290.PubMedCrossRef
47.
go back to reference Han T, Qin Y, Mou C, Wang M, Jiang M, Liu B. Seizure induced synaptic plasticity alteration in hippocampus is mediated by IL-1β receptor through PI3K/Akt pathway. Am J Transl Res 2016, 8: 4499–4509.PubMedPubMedCentral Han T, Qin Y, Mou C, Wang M, Jiang M, Liu B. Seizure induced synaptic plasticity alteration in hippocampus is mediated by IL-1β receptor through PI3K/Akt pathway. Am J Transl Res 2016, 8: 4499–4509.PubMedPubMedCentral
48.
go back to reference Prieto GA, Smith ED, Tong L, Nguyen M, Cotman CW. Inhibition of LTP-induced translation by IL-1β reduces the level of newly synthesized proteins in hippocampal dendrites. ACS Chem Neurosci 2019, 10: 1197–1203.PubMedCrossRef Prieto GA, Smith ED, Tong L, Nguyen M, Cotman CW. Inhibition of LTP-induced translation by IL-1β reduces the level of newly synthesized proteins in hippocampal dendrites. ACS Chem Neurosci 2019, 10: 1197–1203.PubMedCrossRef
49.
go back to reference Tao AF, Xu ZH, Chen B, Wang Y, Wu XH, Zhang J, et al. The pro-inflammatory cytokine interleukin-1β is a key regulatory factor for the postictal suppression in mice. CNS Neurosci Ther 2015, 21: 642–650.PubMedPubMedCentralCrossRef Tao AF, Xu ZH, Chen B, Wang Y, Wu XH, Zhang J, et al. The pro-inflammatory cytokine interleukin-1β is a key regulatory factor for the postictal suppression in mice. CNS Neurosci Ther 2015, 21: 642–650.PubMedPubMedCentralCrossRef
50.
go back to reference Yamanaka G, Ishida Y, Kanou K, Suzuki S, Watanabe Y, Takamatsu T, et al. Towards a treatment for neuroinflammation in epilepsy: Interleukin-1 receptor antagonist, anakinra, as a potential treatment in intractable epilepsy. Int J Mol Sci 2021, 22: 6282.PubMedPubMedCentralCrossRef Yamanaka G, Ishida Y, Kanou K, Suzuki S, Watanabe Y, Takamatsu T, et al. Towards a treatment for neuroinflammation in epilepsy: Interleukin-1 receptor antagonist, anakinra, as a potential treatment in intractable epilepsy. Int J Mol Sci 2021, 22: 6282.PubMedPubMedCentralCrossRef
51.
go back to reference Lai YC, Muscal E, Wells E, Shukla N, Eschbach K, Lee KH, et al. Anakinra usage in febrile infection related epilepsy syndrome: An international cohort. Ann Clin Transl Neurol 2020, 7: 2467–2474.PubMedPubMedCentralCrossRef Lai YC, Muscal E, Wells E, Shukla N, Eschbach K, Lee KH, et al. Anakinra usage in febrile infection related epilepsy syndrome: An international cohort. Ann Clin Transl Neurol 2020, 7: 2467–2474.PubMedPubMedCentralCrossRef
52.
go back to reference Kenney-Jung DL, Vezzani A, Kahoud RJ, LaFrance-Corey RG, Ho ML, Muskardin TW, et al. Febrile infection-related epilepsy syndrome treated with anakinra. Ann Neurol 2016, 80: 939–945.PubMedPubMedCentralCrossRef Kenney-Jung DL, Vezzani A, Kahoud RJ, LaFrance-Corey RG, Ho ML, Muskardin TW, et al. Febrile infection-related epilepsy syndrome treated with anakinra. Ann Neurol 2016, 80: 939–945.PubMedPubMedCentralCrossRef
53.
go back to reference Westbrook C, Subramaniam T, Seagren RM, Tarula E, Co D, Furstenberg-Knauff M, et al. Febrile infection-related epilepsy syndrome treated successfully with anakinra in a 21-year-old woman. WMJ 2019, 118: 135–139.PubMedPubMedCentral Westbrook C, Subramaniam T, Seagren RM, Tarula E, Co D, Furstenberg-Knauff M, et al. Febrile infection-related epilepsy syndrome treated successfully with anakinra in a 21-year-old woman. WMJ 2019, 118: 135–139.PubMedPubMedCentral
54.
go back to reference Mochol M, Taubøll E, Sveberg L, Tennøe B, Berg Olsen K, Heuser K, et al. Seizure control after late introduction of anakinra in a patient with adult onset Rasmussen’s encephalitis. Epilepsy Behav Rep 2021, 16: 100462.PubMedPubMedCentralCrossRef Mochol M, Taubøll E, Sveberg L, Tennøe B, Berg Olsen K, Heuser K, et al. Seizure control after late introduction of anakinra in a patient with adult onset Rasmussen’s encephalitis. Epilepsy Behav Rep 2021, 16: 100462.PubMedPubMedCentralCrossRef
55.
go back to reference Abcouwer SF. Angiogenic factors and cytokines in diabetic retinopathy. J Clin Cell Immunol 2013, Suppl 1: 1–12. Abcouwer SF. Angiogenic factors and cytokines in diabetic retinopathy. J Clin Cell Immunol 2013, Suppl 1: 1–12.
56.
go back to reference DeSena AD, Do T, Schulert GS. Systemic autoinflammation with intractable epilepsy managed with interleukin-1 blockade. J Neuroinflammation 2018, 15: 38.PubMedPubMedCentralCrossRef DeSena AD, Do T, Schulert GS. Systemic autoinflammation with intractable epilepsy managed with interleukin-1 blockade. J Neuroinflammation 2018, 15: 38.PubMedPubMedCentralCrossRef
57.
go back to reference Jyonouchi H, Geng L. Resolution of EEG findings and clinical improvement in a patient with encephalopathy and ESES with a combination of immunomodulating agents other than corticosteroids: A case report. Epilepsy Behav Rep 2020, 14: 100379.PubMedPubMedCentralCrossRef Jyonouchi H, Geng L. Resolution of EEG findings and clinical improvement in a patient with encephalopathy and ESES with a combination of immunomodulating agents other than corticosteroids: A case report. Epilepsy Behav Rep 2020, 14: 100379.PubMedPubMedCentralCrossRef
58.
go back to reference Cavalli G, Colafrancesco S, Emmi G, Imazio M, Lopalco G, Maggio MC, et al. Interleukin 1α: A comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun Rev 2021, 20: 102763.PubMedCrossRef Cavalli G, Colafrancesco S, Emmi G, Imazio M, Lopalco G, Maggio MC, et al. Interleukin 1α: A comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun Rev 2021, 20: 102763.PubMedCrossRef
59.
go back to reference McDowell TL, Symons JA, Ploski R, Førre O, Duff GW. A genetic association between juvenile rheumatoid arthritis and a novel interleukin-1 alpha polymorphism. Arthritis Rheum 1995, 38: 221–228.PubMedCrossRef McDowell TL, Symons JA, Ploski R, Førre O, Duff GW. A genetic association between juvenile rheumatoid arthritis and a novel interleukin-1 alpha polymorphism. Arthritis Rheum 1995, 38: 221–228.PubMedCrossRef
60.
go back to reference Kan AA, de Jager W, de Wit M, Heijnen C, van Zuiden M, Ferrier C, et al. Protein expression profiling of inflammatory mediators in human temporal lobe epilepsy reveals co-activation of multiple chemokines and cytokines. J Neuroinflammation 2012, 9: 207.PubMedPubMedCentralCrossRef Kan AA, de Jager W, de Wit M, Heijnen C, van Zuiden M, Ferrier C, et al. Protein expression profiling of inflammatory mediators in human temporal lobe epilepsy reveals co-activation of multiple chemokines and cytokines. J Neuroinflammation 2012, 9: 207.PubMedPubMedCentralCrossRef
61.
go back to reference Sheng JG, Boop FA, Mrak RE, Griffin WS. Increased neuronal beta-amyloid precursor protein expression in human temporal lobe epilepsy: Association with interleukin-1 alpha immunoreactivity. J Neurochem 1994, 63: 1872–1879.PubMedPubMedCentralCrossRef Sheng JG, Boop FA, Mrak RE, Griffin WS. Increased neuronal beta-amyloid precursor protein expression in human temporal lobe epilepsy: Association with interleukin-1 alpha immunoreactivity. J Neurochem 1994, 63: 1872–1879.PubMedPubMedCentralCrossRef
62.
go back to reference Gahring LC, White HS, Skradski SL, Carlson NG, Rogers SW. Interleukin-1alpha in the brain is induced by audiogenic seizure. Neurobiol Dis 1997, 3: 263–269.PubMedCrossRef Gahring LC, White HS, Skradski SL, Carlson NG, Rogers SW. Interleukin-1alpha in the brain is induced by audiogenic seizure. Neurobiol Dis 1997, 3: 263–269.PubMedCrossRef
63.
go back to reference Saghazadeh A, Gharedaghi M, Meysamie A, Bauer S, Rezaei N. Proinflammatory and anti-inflammatory cytokines in febrile seizures and epilepsy: Systematic review and meta-analysis. Rev Neurosci 2014, 25: 281–305.PubMedCrossRef Saghazadeh A, Gharedaghi M, Meysamie A, Bauer S, Rezaei N. Proinflammatory and anti-inflammatory cytokines in febrile seizures and epilepsy: Systematic review and meta-analysis. Rev Neurosci 2014, 25: 281–305.PubMedCrossRef
64.
go back to reference Helmy A, Carpenter KLH, Menon DK, Pickard JD, Hutchinson PJA. The cytokine response to human traumatic brain injury: Temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab 2011, 31: 658–670.PubMedCrossRef Helmy A, Carpenter KLH, Menon DK, Pickard JD, Hutchinson PJA. The cytokine response to human traumatic brain injury: Temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab 2011, 31: 658–670.PubMedCrossRef
65.
go back to reference Luheshi NM, Kovács KJ, Lopez-Castejon G, Brough D, Denes A. Interleukin-1α expression precedes IL-1β after ischemic brain injury and is localised to areas of focal neuronal loss and penumbral tissues. J Neuroinflammation 2011, 8: 186.PubMedPubMedCentralCrossRef Luheshi NM, Kovács KJ, Lopez-Castejon G, Brough D, Denes A. Interleukin-1α expression precedes IL-1β after ischemic brain injury and is localised to areas of focal neuronal loss and penumbral tissues. J Neuroinflammation 2011, 8: 186.PubMedPubMedCentralCrossRef
66.
go back to reference Lu KT, Wang YW, Yang JT, Yang YL, Chen HI. Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons. J Neurotrauma 2005, 22: 885–895.PubMedCrossRef Lu KT, Wang YW, Yang JT, Yang YL, Chen HI. Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons. J Neurotrauma 2005, 22: 885–895.PubMedCrossRef
67.
go back to reference Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, Rothwell NJ. Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci 2001, 21: 5528–5534.PubMedPubMedCentralCrossRef Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, Rothwell NJ. Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci 2001, 21: 5528–5534.PubMedPubMedCentralCrossRef
68.
go back to reference Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005, 23: 479–490.PubMedCrossRef Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005, 23: 479–490.PubMedCrossRef
69.
go back to reference Andoh A, Nishida A. Pro- and anti-inflammatory roles of interleukin (IL)-33, IL-36, and IL-38 in inflammatory bowel disease. J Gastroenterol 2023, 58: 69–78.PubMedCrossRef Andoh A, Nishida A. Pro- and anti-inflammatory roles of interleukin (IL)-33, IL-36, and IL-38 in inflammatory bowel disease. J Gastroenterol 2023, 58: 69–78.PubMedCrossRef
70.
go back to reference Cayrol C, Girard JP. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev 2018, 281: 154–168.PubMedCrossRef Cayrol C, Girard JP. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev 2018, 281: 154–168.PubMedCrossRef
71.
go back to reference Sun Y, Wen Y, Wang L, Wen L, You W, Wei S, et al. Therapeutic opportunities of interleukin-33 in the central nervous system. Front Immunol 2021, 12: 654626.PubMedPubMedCentralCrossRef Sun Y, Wen Y, Wang L, Wen L, You W, Wei S, et al. Therapeutic opportunities of interleukin-33 in the central nervous system. Front Immunol 2021, 12: 654626.PubMedPubMedCentralCrossRef
72.
go back to reference Ethemoglu O, Calık M, Koyuncu I, Ethemoglu KB, Göcmen A, Güzelcicek A, et al. Interleukin-33 and oxidative stress in epilepsy patients. Epilepsy Res 2021, 176: 106738.PubMedCrossRef Ethemoglu O, Calık M, Koyuncu I, Ethemoglu KB, Göcmen A, Güzelcicek A, et al. Interleukin-33 and oxidative stress in epilepsy patients. Epilepsy Res 2021, 176: 106738.PubMedCrossRef
73.
go back to reference Lissak IA, Zafar SF, Westover MB, Schleicher RL, Kim JA, Leslie-Mazwi T, et al. Soluble ST2 is associated with new epileptiform abnormalities following nontraumatic subarachnoid hemorrhage. Stroke 2020, 51: 1128–1134.PubMedPubMedCentralCrossRef Lissak IA, Zafar SF, Westover MB, Schleicher RL, Kim JA, Leslie-Mazwi T, et al. Soluble ST2 is associated with new epileptiform abnormalities following nontraumatic subarachnoid hemorrhage. Stroke 2020, 51: 1128–1134.PubMedPubMedCentralCrossRef
74.
go back to reference Gao Y, Luo CL, Li LL, Ye GH, Gao C, Wang HC, et al. IL-33 provides neuroprotection through suppressing apoptotic, autophagic and NF-κB-mediated inflammatory pathways in a rat model of recurrent neonatal seizure. Front Mol Neurosci 2017, 10: 423.PubMedPubMedCentralCrossRef Gao Y, Luo CL, Li LL, Ye GH, Gao C, Wang HC, et al. IL-33 provides neuroprotection through suppressing apoptotic, autophagic and NF-κB-mediated inflammatory pathways in a rat model of recurrent neonatal seizure. Front Mol Neurosci 2017, 10: 423.PubMedPubMedCentralCrossRef
75.
go back to reference Gao Y, Luo C, Yao Y, Huang J, Fu H, Xia C, et al. IL-33 alleviated brain damage via anti-apoptosis, endoplasmic reticulum stress, and inflammation after epilepsy. Front Neurosci 2020, 14: 898.PubMedPubMedCentralCrossRef Gao Y, Luo C, Yao Y, Huang J, Fu H, Xia C, et al. IL-33 alleviated brain damage via anti-apoptosis, endoplasmic reticulum stress, and inflammation after epilepsy. Front Neurosci 2020, 14: 898.PubMedPubMedCentralCrossRef
76.
go back to reference Han RT, Vainchtein ID, Schlachetzki JCM, Cho FS, Dorman LC, Ahn E, et al. Microglial pattern recognition via IL-33 promotes synaptic refinement in developing corticothalamic circuits in mice. J Exp Med 2023, 220: e20220605.PubMedCrossRef Han RT, Vainchtein ID, Schlachetzki JCM, Cho FS, Dorman LC, Ahn E, et al. Microglial pattern recognition via IL-33 promotes synaptic refinement in developing corticothalamic circuits in mice. J Exp Med 2023, 220: e20220605.PubMedCrossRef
77.
go back to reference He D, Xu H, Zhang H, Tang R, Lan Y, Xing R, et al. Disruption of the IL-33-ST2-AKT signaling axis impairs neurodevelopment by inhibiting microglial metabolic adaptation and phagocytic function. Immunity 2022, 55: 159-173.e9.PubMedPubMedCentralCrossRef He D, Xu H, Zhang H, Tang R, Lan Y, Xing R, et al. Disruption of the IL-33-ST2-AKT signaling axis impairs neurodevelopment by inhibiting microglial metabolic adaptation and phagocytic function. Immunity 2022, 55: 159-173.e9.PubMedPubMedCentralCrossRef
78.
go back to reference Kaplanski G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol Rev 2018, 281: 138–153.PubMedCrossRef Kaplanski G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol Rev 2018, 281: 138–153.PubMedCrossRef
79.
go back to reference Nold-Petry CA, Lo CY, Rudloff I, Elgass KD, Li S, Gantier MP, et al. IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat Immunol 2015, 16: 354–365.PubMedCrossRef Nold-Petry CA, Lo CY, Rudloff I, Elgass KD, Li S, Gantier MP, et al. IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat Immunol 2015, 16: 354–365.PubMedCrossRef
80.
go back to reference Nold MF, Nold-Petry CA, Zepp JA, Palmer BE, Bufler P, Dinarello CA. IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol 2010, 11: 1014–1022.PubMedPubMedCentralCrossRef Nold MF, Nold-Petry CA, Zepp JA, Palmer BE, Bufler P, Dinarello CA. IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol 2010, 11: 1014–1022.PubMedPubMedCentralCrossRef
82.
go back to reference Jeon GS, Park SK, Park SW, Kim DW, Chung CK, Cho SS. Glial expression of interleukin-18 and its receptor after excitotoxic damage in the mouse Hippocampus. Neurochem Res 2008, 33: 179–184.PubMedCrossRef Jeon GS, Park SK, Park SW, Kim DW, Chung CK, Cho SS. Glial expression of interleukin-18 and its receptor after excitotoxic damage in the mouse Hippocampus. Neurochem Res 2008, 33: 179–184.PubMedCrossRef
83.
go back to reference Jung HK, Ryu HJ, Kim MJ, Kim WI, Choi HK, Choi HC, et al. Interleukin-18 attenuates disruption of brain-blood barrier induced by status epilepticus within the rat piriform cortex in interferon-γ independent pathway. Brain Res 2012, 1447: 126–134.PubMedCrossRef Jung HK, Ryu HJ, Kim MJ, Kim WI, Choi HK, Choi HC, et al. Interleukin-18 attenuates disruption of brain-blood barrier induced by status epilepticus within the rat piriform cortex in interferon-γ independent pathway. Brain Res 2012, 1447: 126–134.PubMedCrossRef
84.
go back to reference Ryu HJ, Kim JE, Kim MJ, Kwon HJ, Suh SW, Song HK, et al. The protective effects of interleukin-18 and interferon-γ on neuronal damages in the rat hippocampus following status epilepticus. Neuroscience 2010, 170: 711–721.PubMedCrossRef Ryu HJ, Kim JE, Kim MJ, Kwon HJ, Suh SW, Song HK, et al. The protective effects of interleukin-18 and interferon-γ on neuronal damages in the rat hippocampus following status epilepticus. Neuroscience 2010, 170: 711–721.PubMedCrossRef
85.
go back to reference Mochol M, Taubøll E, Aukrust P, Ueland T, Andreassen OA, Svalheim S. Interleukin 18 (IL-18) and its binding protein (IL-18BP) are increased in patients with epilepsy suggesting low-grade systemic inflammation. Seizure 2020, 80: 221–225.PubMedCrossRef Mochol M, Taubøll E, Aukrust P, Ueland T, Andreassen OA, Svalheim S. Interleukin 18 (IL-18) and its binding protein (IL-18BP) are increased in patients with epilepsy suggesting low-grade systemic inflammation. Seizure 2020, 80: 221–225.PubMedCrossRef
86.
go back to reference Liang R, Zheng L, Ji T, Zheng J, Liu J, Yuan C, et al. Elevated serum free IL-18 in neuropsychiatric systemic lupus erythematosus patients with seizure disorders. Lupus 2022, 31: 187–193.PubMedCrossRef Liang R, Zheng L, Ji T, Zheng J, Liu J, Yuan C, et al. Elevated serum free IL-18 in neuropsychiatric systemic lupus erythematosus patients with seizure disorders. Lupus 2022, 31: 187–193.PubMedCrossRef
87.
go back to reference Zafar A, Ikram A, Jillella DV, Kempuraj D, Khan MM, Bushnaq S, et al. Measurement of elevated IL-37 levels in acute ischemic brain injury: A cross-sectional pilot study. Cureus 2017, 9: e1767.PubMedPubMedCentral Zafar A, Ikram A, Jillella DV, Kempuraj D, Khan MM, Bushnaq S, et al. Measurement of elevated IL-37 levels in acute ischemic brain injury: A cross-sectional pilot study. Cureus 2017, 9: e1767.PubMedPubMedCentral
88.
go back to reference Zhang F, Zhu T, Li H, He Y, Zhang Y, Huang N, et al. Plasma interleukin-37 is elevated in acute ischemic stroke patients and probably associated with 3-month functional prognosis. Clin Interv Aging 2020, 15: 1285–1294.PubMedPubMedCentralCrossRef Zhang F, Zhu T, Li H, He Y, Zhang Y, Huang N, et al. Plasma interleukin-37 is elevated in acute ischemic stroke patients and probably associated with 3-month functional prognosis. Clin Interv Aging 2020, 15: 1285–1294.PubMedPubMedCentralCrossRef
89.
go back to reference Zhang Y, Xu C, Wang H, Nan S. Serum interleukin-37 increases in patients after ischemic stroke and is associated with stroke recurrence. Oxid Med Cell Longev 2021, 2021: 5546991.PubMedPubMedCentral Zhang Y, Xu C, Wang H, Nan S. Serum interleukin-37 increases in patients after ischemic stroke and is associated with stroke recurrence. Oxid Med Cell Longev 2021, 2021: 5546991.PubMedPubMedCentral
90.
go back to reference Yuan ZC, Xu WD, Liu XY, Liu XY, Huang AF, Su LC. Biology of IL-36 signaling and its role in systemic inflammatory diseases. Front Immunol 2019, 10: 2532.PubMedPubMedCentralCrossRef Yuan ZC, Xu WD, Liu XY, Liu XY, Huang AF, Su LC. Biology of IL-36 signaling and its role in systemic inflammatory diseases. Front Immunol 2019, 10: 2532.PubMedPubMedCentralCrossRef
91.
go back to reference Zare Rafie M, Esmaeilzadeh A, Ghoreishi A, Tahmasebi S, Faghihzadeh E, Elahi R. IL-38 as an early predictor of the ischemic stroke prognosis. Cytokine 2021, 146: 155626.PubMedCrossRef Zare Rafie M, Esmaeilzadeh A, Ghoreishi A, Tahmasebi S, Faghihzadeh E, Elahi R. IL-38 as an early predictor of the ischemic stroke prognosis. Cytokine 2021, 146: 155626.PubMedCrossRef
92.
go back to reference Leonard WJ, Lin JX, O’Shea JJ. The γc family of cytokines: Basic biology to therapeutic ramifications. Immunity 2019, 50: 832–850.PubMedCrossRef Leonard WJ, Lin JX, O’Shea JJ. The γc family of cytokines: Basic biology to therapeutic ramifications. Immunity 2019, 50: 832–850.PubMedCrossRef
93.
go back to reference Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 2012, 12: 180–190.PubMedCrossRef Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 2012, 12: 180–190.PubMedCrossRef
94.
go back to reference Littman DR, Rudensky AY. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 2010, 140: 845–858.PubMedCrossRef Littman DR, Rudensky AY. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 2010, 140: 845–858.PubMedCrossRef
95.
go back to reference Mazumder AG, Patial V, Singh D. Mycophenolate mofetil contributes to downregulation of the hippocampal interleukin type 2 and 1β mediated PI3K/AKT/mTOR pathway hyperactivation and attenuates neurobehavioral comorbidities in a rat model of temporal lobe epilepsy. Brain Behav Immun 2019, 75: 84–93.PubMedCrossRef Mazumder AG, Patial V, Singh D. Mycophenolate mofetil contributes to downregulation of the hippocampal interleukin type 2 and 1β mediated PI3K/AKT/mTOR pathway hyperactivation and attenuates neurobehavioral comorbidities in a rat model of temporal lobe epilepsy. Brain Behav Immun 2019, 75: 84–93.PubMedCrossRef
96.
go back to reference Surina NM, Fedotova IB, Nikolaev GM, Grechenko VV, Gankovskaya LV, Ogurtsova AD, et al. Neuroinflammation in pathogenesis of audiogenic epilepsy: Altered proinflammatory cytokine levels in the rats of krushinsky-molodkina seizure-prone strain. Biochemistry (Mosc) 2023, 88: 481–490.PubMedCrossRef Surina NM, Fedotova IB, Nikolaev GM, Grechenko VV, Gankovskaya LV, Ogurtsova AD, et al. Neuroinflammation in pathogenesis of audiogenic epilepsy: Altered proinflammatory cytokine levels in the rats of krushinsky-molodkina seizure-prone strain. Biochemistry (Mosc) 2023, 88: 481–490.PubMedCrossRef
97.
go back to reference Liu ZS, Wang QW, Wang FL, Yang LZ. Serum cytokine levels are altered in patients with West syndrome. Brain Dev 2001, 23: 548–551.PubMedCrossRef Liu ZS, Wang QW, Wang FL, Yang LZ. Serum cytokine levels are altered in patients with West syndrome. Brain Dev 2001, 23: 548–551.PubMedCrossRef
98.
go back to reference Sinha S, Patil SA, Jayalekshmy V, Satishchandra P. Do cytokines have any role in epilepsy? Epilepsy Res 2008, 82: 171–176.PubMedCrossRef Sinha S, Patil SA, Jayalekshmy V, Satishchandra P. Do cytokines have any role in epilepsy? Epilepsy Res 2008, 82: 171–176.PubMedCrossRef
99.
go back to reference Guo W, Zheng DH, Sun FJ, Yang JY, Zang ZL, Liu SY, et al. Expression and cellular distribution of the interleukin 2 signaling system in cortical lesions from patients with focal cortical dysplasia. J Neuropathol Exp Neurol 2014, 73: 206–222.PubMedCrossRef Guo W, Zheng DH, Sun FJ, Yang JY, Zang ZL, Liu SY, et al. Expression and cellular distribution of the interleukin 2 signaling system in cortical lesions from patients with focal cortical dysplasia. J Neuropathol Exp Neurol 2014, 73: 206–222.PubMedCrossRef
100.
go back to reference Shin HR, Chu K, Lee WJ, Lee HS, Kim EY, Son H, et al. Neuropsychiatric symptoms and seizure related with serum cytokine in epilepsy patients. Sci Rep 2022, 12: 7138.PubMedPubMedCentralCrossRef Shin HR, Chu K, Lee WJ, Lee HS, Kim EY, Son H, et al. Neuropsychiatric symptoms and seizure related with serum cytokine in epilepsy patients. Sci Rep 2022, 12: 7138.PubMedPubMedCentralCrossRef
101.
go back to reference Alvim MKM, Morita-Sherman ME, Yasuda CL, Rocha NP, Vieira ÉL, Pimentel-Silva LR, et al. Inflammatory and neurotrophic factor plasma levels are related to epilepsy independently of etiology. Epilepsia 2021, 62: 2385–2394.PubMedCrossRef Alvim MKM, Morita-Sherman ME, Yasuda CL, Rocha NP, Vieira ÉL, Pimentel-Silva LR, et al. Inflammatory and neurotrophic factor plasma levels are related to epilepsy independently of etiology. Epilepsia 2021, 62: 2385–2394.PubMedCrossRef
102.
go back to reference De Sarro G, Rotiroti D, Audino MG, Gratteri S, Nisticó G. Effects of interleukin-2 on various models of experimental epilepsy in DBA/2 mice. Neuroimmunomodulation 1994, 1: 361–369.PubMedCrossRef De Sarro G, Rotiroti D, Audino MG, Gratteri S, Nisticó G. Effects of interleukin-2 on various models of experimental epilepsy in DBA/2 mice. Neuroimmunomodulation 1994, 1: 361–369.PubMedCrossRef
103.
go back to reference Zhou H, Wang N, Xu L, Huang H, Yu C. The efficacy of gastrodin in combination with folate and vitamin B12 on patients with epilepsy after stroke and its effect on HMGB-1, IL-2 and IL-6 serum levels. Exp Ther Med 2017, 14: 4801–4806.PubMedPubMedCentral Zhou H, Wang N, Xu L, Huang H, Yu C. The efficacy of gastrodin in combination with folate and vitamin B12 on patients with epilepsy after stroke and its effect on HMGB-1, IL-2 and IL-6 serum levels. Exp Ther Med 2017, 14: 4801–4806.PubMedPubMedCentral
104.
go back to reference M Taalab Y, Mohammed WF, Helmy MA, Othman AAA, Darwish M, Hassan I, et al. Cannabis influences the putative cytokines-related pathway of epilepsy among Egyptian epileptic patients. Brain Sci 2019, 9: 332. M Taalab Y, Mohammed WF, Helmy MA, Othman AAA, Darwish M, Hassan I, et al. Cannabis influences the putative cytokines-related pathway of epilepsy among Egyptian epileptic patients. Brain Sci 2019, 9: 332.
105.
go back to reference Gadani SP, Cronk JC, Norris GT, Kipnis J. IL-4 in the brain: A cytokine to remember. J Immunol 2012, 189: 4213–4219.PubMedCrossRef Gadani SP, Cronk JC, Norris GT, Kipnis J. IL-4 in the brain: A cytokine to remember. J Immunol 2012, 189: 4213–4219.PubMedCrossRef
106.
go back to reference Rosa DV, Rezende VB, Costa BS, Mudado F, Schütze M, Torres KC, et al. Circulating CD4 and CD8 T cells expressing pro-inflammatory cytokines in a cohort of mesial temporal lobe epilepsy patients with hippocampal sclerosis. Epilepsy Res 2016, 120: 1–6.PubMedCrossRef Rosa DV, Rezende VB, Costa BS, Mudado F, Schütze M, Torres KC, et al. Circulating CD4 and CD8 T cells expressing pro-inflammatory cytokines in a cohort of mesial temporal lobe epilepsy patients with hippocampal sclerosis. Epilepsy Res 2016, 120: 1–6.PubMedCrossRef
107.
go back to reference Sun FJ, Zhang CQ, Chen X, Wei YJ, Li S, Liu SY, et al. Downregulation of CD47 and CD200 in patients with focal cortical dysplasia type IIb and tuberous sclerosis complex. J Neuroinflammation 2016, 13: 85.PubMedPubMedCentralCrossRef Sun FJ, Zhang CQ, Chen X, Wei YJ, Li S, Liu SY, et al. Downregulation of CD47 and CD200 in patients with focal cortical dysplasia type IIb and tuberous sclerosis complex. J Neuroinflammation 2016, 13: 85.PubMedPubMedCentralCrossRef
108.
go back to reference Ahras-Sifi N, Laraba-Djebari F. Immunomodulatory and protective effects of interleukin-4 on the neuropathological alterations induced by a potassium channel blocker. J Neuroimmunol 2021, 355: 577549.PubMedCrossRef Ahras-Sifi N, Laraba-Djebari F. Immunomodulatory and protective effects of interleukin-4 on the neuropathological alterations induced by a potassium channel blocker. J Neuroimmunol 2021, 355: 577549.PubMedCrossRef
109.
go back to reference Li T, Zhai X, Jiang J, Song X, Han W, Ma J, et al. Intraperitoneal injection of IL-4/IFN-γ modulates the proportions of microglial phenotypes and improves epilepsy outcomes in a pilocarpine model of acquired epilepsy. Brain Res 2017, 1657: 120–129.PubMedCrossRef Li T, Zhai X, Jiang J, Song X, Han W, Ma J, et al. Intraperitoneal injection of IL-4/IFN-γ modulates the proportions of microglial phenotypes and improves epilepsy outcomes in a pilocarpine model of acquired epilepsy. Brain Res 2017, 1657: 120–129.PubMedCrossRef
110.
go back to reference Chen X, Zhang J, Song Y, Yang P, Yang Y, Huang Z, et al. Deficiency of anti-inflammatory cytokine IL-4 leads to neural hyperexcitability and aggravates cerebral ischemia-reperfusion injury. Acta Pharm Sin B 2020, 10: 1634–1645.PubMedPubMedCentralCrossRef Chen X, Zhang J, Song Y, Yang P, Yang Y, Huang Z, et al. Deficiency of anti-inflammatory cytokine IL-4 leads to neural hyperexcitability and aggravates cerebral ischemia-reperfusion injury. Acta Pharm Sin B 2020, 10: 1634–1645.PubMedPubMedCentralCrossRef
111.
go back to reference Radpour M, Khoshkroodian B, Asgari T, Pourbadie HG, Sayyah M. Interleukin 4 reduces brain hyperexcitability after traumatic injury by downregulating TNF-α, upregulating IL-10/TGF-β, and potential directing macrophage/microglia to the M2 anti-inflammatory phenotype. Inflammation 2023, 46: 1810–1831.PubMedCrossRef Radpour M, Khoshkroodian B, Asgari T, Pourbadie HG, Sayyah M. Interleukin 4 reduces brain hyperexcitability after traumatic injury by downregulating TNF-α, upregulating IL-10/TGF-β, and potential directing macrophage/microglia to the M2 anti-inflammatory phenotype. Inflammation 2023, 46: 1810–1831.PubMedCrossRef
112.
go back to reference Chen D, Tang TX, Deng H, Yang XP, Tang ZH. Interleukin-7 biology and its effects on immune cells: Mediator of generation, differentiation, survival, and homeostasis. Front Immunol 2021, 12: 747324.PubMedPubMedCentralCrossRef Chen D, Tang TX, Deng H, Yang XP, Tang ZH. Interleukin-7 biology and its effects on immune cells: Mediator of generation, differentiation, survival, and homeostasis. Front Immunol 2021, 12: 747324.PubMedPubMedCentralCrossRef
113.
go back to reference Corfe SA, Paige CJ. The many roles of IL-7 in B cell development; Mediator of survival, proliferation and differentiation. Semin Immunol 2012, 24: 198–208.PubMedCrossRef Corfe SA, Paige CJ. The many roles of IL-7 in B cell development; Mediator of survival, proliferation and differentiation. Semin Immunol 2012, 24: 198–208.PubMedCrossRef
114.
go back to reference Li S, Wang Z, Zhang G, Fu J, Zhang X. Interleukin-7 promotes lung-resident CD14+ monocytes activity in patients with lung squamous carcinoma. Int Immunopharmacol 2019, 67: 202–210.PubMedCrossRef Li S, Wang Z, Zhang G, Fu J, Zhang X. Interleukin-7 promotes lung-resident CD14+ monocytes activity in patients with lung squamous carcinoma. Int Immunopharmacol 2019, 67: 202–210.PubMedCrossRef
115.
go back to reference Wang JQ, Yang HY, Shao X, Jiang XY, Li JM. Latent, early or late human Herpes virus-6B expression in adult mesial temporal lobe epilepsy: Association of virus life cycle with inflammatory cytokines in brain tissue and cerebral spinal fluid. Neuroscience 2022, 504: 21–32.PubMedCrossRef Wang JQ, Yang HY, Shao X, Jiang XY, Li JM. Latent, early or late human Herpes virus-6B expression in adult mesial temporal lobe epilepsy: Association of virus life cycle with inflammatory cytokines in brain tissue and cerebral spinal fluid. Neuroscience 2022, 504: 21–32.PubMedCrossRef
116.
go back to reference Wei J, Nie Q, Li F. Lamotrigine decreases MRP8 and IL-7 in rat models of intractable epilepsy secondary to focal cortical dysplasia. Exp Ther Med 2016, 12: 3694–3698.PubMedPubMedCentralCrossRef Wei J, Nie Q, Li F. Lamotrigine decreases MRP8 and IL-7 in rat models of intractable epilepsy secondary to focal cortical dysplasia. Exp Ther Med 2016, 12: 3694–3698.PubMedPubMedCentralCrossRef
117.
go back to reference Noelle RJ, Nowak EC. Cellular sources and immune functions of interleukin-9. Nat Rev Immunol 2010, 10: 683–687.PubMedCrossRef Noelle RJ, Nowak EC. Cellular sources and immune functions of interleukin-9. Nat Rev Immunol 2010, 10: 683–687.PubMedCrossRef
118.
go back to reference Donninelli G, Saraf-Sinik I, Mazziotti V, Capone A, Grasso MG, Battistini L, et al. Interleukin-9 regulates macrophage activation in the progressive multiple sclerosis brain. J Neuroinflammation 2020, 17: 149.PubMedPubMedCentralCrossRef Donninelli G, Saraf-Sinik I, Mazziotti V, Capone A, Grasso MG, Battistini L, et al. Interleukin-9 regulates macrophage activation in the progressive multiple sclerosis brain. J Neuroinflammation 2020, 17: 149.PubMedPubMedCentralCrossRef
119.
go back to reference Tan S, Shan Y, Lin Y, Liao S, Zhang B, Zeng Q, et al. Neutralization of interleukin-9 ameliorates experimental stroke by repairing the blood-brain barrier via down-regulation of astrocyte-derived vascular endothelial growth factor-A. FASEB J 2019, 33: 4376–4387.PubMedCrossRef Tan S, Shan Y, Lin Y, Liao S, Zhang B, Zeng Q, et al. Neutralization of interleukin-9 ameliorates experimental stroke by repairing the blood-brain barrier via down-regulation of astrocyte-derived vascular endothelial growth factor-A. FASEB J 2019, 33: 4376–4387.PubMedCrossRef
120.
go back to reference Wang H, Wang X, Wang W, Chai W, Song W, Zhang H, et al. Interleukin-15 enhanced the survival of human γδT cells by regulating the expression of Mcl-1 in neuroblastoma. Cell Death Discov 2022, 8: 139.PubMedPubMedCentralCrossRef Wang H, Wang X, Wang W, Chai W, Song W, Zhang H, et al. Interleukin-15 enhanced the survival of human γδT cells by regulating the expression of Mcl-1 in neuroblastoma. Cell Death Discov 2022, 8: 139.PubMedPubMedCentralCrossRef
121.
go back to reference Patidar M, Yadav N, Dalai SK. Interleukin 15: A key cytokine for immunotherapy. Cytokine Growth Factor Rev 2016, 31: 49–59.PubMedCrossRef Patidar M, Yadav N, Dalai SK. Interleukin 15: A key cytokine for immunotherapy. Cytokine Growth Factor Rev 2016, 31: 49–59.PubMedCrossRef
122.
go back to reference Guo J, Liang Y, Xue D, Shen J, Cai Y, Zhu J, et al. Tumor-conditional IL-15 pro-cytokine reactivates anti-tumor immunity with limited toxicity. Cell Res 2021, 31: 1190–1198.PubMedPubMedCentralCrossRef Guo J, Liang Y, Xue D, Shen J, Cai Y, Zhu J, et al. Tumor-conditional IL-15 pro-cytokine reactivates anti-tumor immunity with limited toxicity. Cell Res 2021, 31: 1190–1198.PubMedPubMedCentralCrossRef
123.
go back to reference Li M, Li Z, Yao Y, Jin WN, Wood K, Liu Q, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A 2017, 114: E396–E405.PubMed Li M, Li Z, Yao Y, Jin WN, Wood K, Liu Q, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A 2017, 114: E396–E405.PubMed
124.
go back to reference Lee GA, Lin TN, Chen CY, Mau SY, Huang WZ, Kao YC, et al. Interleukin 15 blockade protects the brain from cerebral ischemia-reperfusion injury. Brain Behav Immun 2018, 73: 562–570.PubMedCrossRef Lee GA, Lin TN, Chen CY, Mau SY, Huang WZ, Kao YC, et al. Interleukin 15 blockade protects the brain from cerebral ischemia-reperfusion injury. Brain Behav Immun 2018, 73: 562–570.PubMedCrossRef
125.
go back to reference Quast I, Dvorscek AR, Pattaroni C, Steiner TM, McKenzie CI, Pitt C, et al. Interleukin-21, acting beyond the immunological synapse, independently controls T follicular helper and germinal center B cells. Immunity 2022, 55: 1414-1430.e5.PubMedCrossRef Quast I, Dvorscek AR, Pattaroni C, Steiner TM, McKenzie CI, Pitt C, et al. Interleukin-21, acting beyond the immunological synapse, independently controls T follicular helper and germinal center B cells. Immunity 2022, 55: 1414-1430.e5.PubMedCrossRef
126.
go back to reference Long D, Chen Y, Wu H, Zhao M, Lu Q. Clinical significance and immunobiology of IL-21 in autoimmunity. J Autoimmun 2019, 99: 1–14.PubMedCrossRef Long D, Chen Y, Wu H, Zhao M, Lu Q. Clinical significance and immunobiology of IL-21 in autoimmunity. J Autoimmun 2019, 99: 1–14.PubMedCrossRef
127.
go back to reference Spolski R, Leonard WJ. Interleukin-21: A double-edged sword with therapeutic potential. Nat Rev Drug Discov 2014, 13: 379–395.PubMedCrossRef Spolski R, Leonard WJ. Interleukin-21: A double-edged sword with therapeutic potential. Nat Rev Drug Discov 2014, 13: 379–395.PubMedCrossRef
128.
go back to reference Xiong XY, Wang TG, Yang MH, Meng ZY, Yang QW, Wang FX. Interleukin-21 expression in hippocampal astrocytes is enhanced following kainic acid-induced seizures. Neurol Res 2016, 38: 151–157.PubMedCrossRef Xiong XY, Wang TG, Yang MH, Meng ZY, Yang QW, Wang FX. Interleukin-21 expression in hippocampal astrocytes is enhanced following kainic acid-induced seizures. Neurol Res 2016, 38: 151–157.PubMedCrossRef
129.
go back to reference Rayasam A, Kijak JA, Kissel L, Choi YH, Kim T, Hsu M, et al. CXCL13 expressed on inflamed cerebral blood vessels recruit IL-21 producing TFH cells to damage neurons following stroke. J Neuroinflammation 2022, 19: 125.PubMedPubMedCentralCrossRef Rayasam A, Kijak JA, Kissel L, Choi YH, Kim T, Hsu M, et al. CXCL13 expressed on inflamed cerebral blood vessels recruit IL-21 producing TFH cells to damage neurons following stroke. J Neuroinflammation 2022, 19: 125.PubMedPubMedCentralCrossRef
130.
go back to reference Metcalfe RD, Putoczki TL, Griffin MDW. Structural understanding of interleukin 6 family cytokine signaling and targeted therapies: Focus on interleukin 11. Front Immunol 2020, 11: 1424.PubMedPubMedCentralCrossRef Metcalfe RD, Putoczki TL, Griffin MDW. Structural understanding of interleukin 6 family cytokine signaling and targeted therapies: Focus on interleukin 11. Front Immunol 2020, 11: 1424.PubMedPubMedCentralCrossRef
131.
go back to reference Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol 2018, 18: 773–789.PubMedCrossRef Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol 2018, 18: 773–789.PubMedCrossRef
133.
135.
go back to reference Uludag IF, Bilgin S, Zorlu Y, Tuna G, Kirkali G. Interleukin-6, interleukin-1 beta and interleukin-1 receptor antagonist levels in epileptic seizures. Seizure 2013, 22: 457–461.PubMedCrossRef Uludag IF, Bilgin S, Zorlu Y, Tuna G, Kirkali G. Interleukin-6, interleukin-1 beta and interleukin-1 receptor antagonist levels in epileptic seizures. Seizure 2013, 22: 457–461.PubMedCrossRef
136.
go back to reference Uludag IF, Duksal T, Tiftikcioglu BI, Zorlu Y, Ozkaya F, Kirkali G. IL-1β, IL-6 and IL1Ra levels in temporal lobe epilepsy. Seizure 2015, 26: 22–25.PubMedCrossRef Uludag IF, Duksal T, Tiftikcioglu BI, Zorlu Y, Ozkaya F, Kirkali G. IL-1β, IL-6 and IL1Ra levels in temporal lobe epilepsy. Seizure 2015, 26: 22–25.PubMedCrossRef
137.
go back to reference Numis AL, Foster-Barber A, Deng X, Rogers EE, Barkovich AJ, Ferriero DM, et al. Early changes in pro-inflammatory cytokine levels in neonates with encephalopathy are associated with remote epilepsy. Pediatr Res 2019, 86: 616–621.PubMedPubMedCentralCrossRef Numis AL, Foster-Barber A, Deng X, Rogers EE, Barkovich AJ, Ferriero DM, et al. Early changes in pro-inflammatory cytokine levels in neonates with encephalopathy are associated with remote epilepsy. Pediatr Res 2019, 86: 616–621.PubMedPubMedCentralCrossRef
138.
go back to reference Basnyat P, Peltola M, Raitanen J, Liimatainen S, Rainesalo S, Pesu M, et al. Elevated IL-6 plasma levels are associated with GAD antibodies-associated autoimmune epilepsy. Front Cell Neurosci 2023, 17: 1129907.PubMedPubMedCentralCrossRef Basnyat P, Peltola M, Raitanen J, Liimatainen S, Rainesalo S, Pesu M, et al. Elevated IL-6 plasma levels are associated with GAD antibodies-associated autoimmune epilepsy. Front Cell Neurosci 2023, 17: 1129907.PubMedPubMedCentralCrossRef
139.
go back to reference Minami M, Kuraishi Y, Satoh M. Effects of kainic acid on messenger RNA levels of IL-1 beta, IL-6, TNF alpha and LIF in the rat brain. Biochem Biophys Res Commun 1991, 176: 593–598.PubMedCrossRef Minami M, Kuraishi Y, Satoh M. Effects of kainic acid on messenger RNA levels of IL-1 beta, IL-6, TNF alpha and LIF in the rat brain. Biochem Biophys Res Commun 1991, 176: 593–598.PubMedCrossRef
140.
go back to reference Fisher J, Mizrahi T, Schori H, Yoles E, Levkovitch-Verbin H, Haggiag S, et al. Increased post-traumatic survival of neurons in IL-6-knockout mice on a background of EAE susceptibility. J Neuroimmunol 2001, 119: 1–9.PubMedCrossRef Fisher J, Mizrahi T, Schori H, Yoles E, Levkovitch-Verbin H, Haggiag S, et al. Increased post-traumatic survival of neurons in IL-6-knockout mice on a background of EAE susceptibility. J Neuroimmunol 2001, 119: 1–9.PubMedCrossRef
141.
go back to reference De Sarro G, Russo E, Ferreri G, Giuseppe B, Flocco MA, Di Paola ED, et al. Seizure susceptibility to various convulsant stimuli of knockout interleukin-6 mice. Pharmacol Biochem Behav 2004, 77: 761–766.PubMedCrossRef De Sarro G, Russo E, Ferreri G, Giuseppe B, Flocco MA, Di Paola ED, et al. Seizure susceptibility to various convulsant stimuli of knockout interleukin-6 mice. Pharmacol Biochem Behav 2004, 77: 761–766.PubMedCrossRef
142.
go back to reference Penkowa M, Molinero A, Carrasco J, Hidalgo J. Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures. Neuroscience 2001, 102: 805–818.PubMedCrossRef Penkowa M, Molinero A, Carrasco J, Hidalgo J. Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures. Neuroscience 2001, 102: 805–818.PubMedCrossRef
143.
go back to reference Kalueff AV, Lehtimaki KA, Ylinen A, Honkaniemi J, Peltola J. Intranasal administration of human IL-6 increases the severity of chemically induced seizures in rats. Neurosci Lett 2004, 365: 106–110.PubMedCrossRef Kalueff AV, Lehtimaki KA, Ylinen A, Honkaniemi J, Peltola J. Intranasal administration of human IL-6 increases the severity of chemically induced seizures in rats. Neurosci Lett 2004, 365: 106–110.PubMedCrossRef
144.
go back to reference Samland H, Huitron-Resendiz S, Masliah E, Criado J, Henriksen SJ, Campbell IL. Profound increase in sensitivity to glutamatergic- but not cholinergic agonist-induced seizures in transgenic mice with astrocyte production of IL-6. J Neurosci Res 2003, 73: 176–187.PubMedCrossRef Samland H, Huitron-Resendiz S, Masliah E, Criado J, Henriksen SJ, Campbell IL. Profound increase in sensitivity to glutamatergic- but not cholinergic agonist-induced seizures in transgenic mice with astrocyte production of IL-6. J Neurosci Res 2003, 73: 176–187.PubMedCrossRef
145.
go back to reference Levin SG, Godukhin OV. Modulating effect of cytokines on mechanisms of synaptic plasticity in the brain. Biochemistry Moscow 2017, 82: 264–274.PubMedCrossRef Levin SG, Godukhin OV. Modulating effect of cytokines on mechanisms of synaptic plasticity in the brain. Biochemistry Moscow 2017, 82: 264–274.PubMedCrossRef
146.
go back to reference Samuelsson AM, Jennische E, Hansson HA, Holmäng A. Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA(A) dysregulation and impaired spatial learning. Am J Physiol Regul Integr Comp Physiol 2006, 290: R1345–R1356.PubMedCrossRef Samuelsson AM, Jennische E, Hansson HA, Holmäng A. Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA(A) dysregulation and impaired spatial learning. Am J Physiol Regul Integr Comp Physiol 2006, 290: R1345–R1356.PubMedCrossRef
147.
go back to reference Pineda E, Shin D, You SJ, Auvin S, Sankar R, Mazarati A. Maternal immune activation promotes hippocampal kindling epileptogenesis in mice. Ann Neurol 2013, 74: 11–19.PubMedPubMedCentralCrossRef Pineda E, Shin D, You SJ, Auvin S, Sankar R, Mazarati A. Maternal immune activation promotes hippocampal kindling epileptogenesis in mice. Ann Neurol 2013, 74: 11–19.PubMedPubMedCentralCrossRef
148.
go back to reference Cook SA, Schafer S. Hiding in plain sight: Interleukin-11 emerges as a master regulator of fibrosis, tissue integrity, and stromal inflammation. Annu Rev Med 2020, 71: 263–276.PubMedCrossRef Cook SA, Schafer S. Hiding in plain sight: Interleukin-11 emerges as a master regulator of fibrosis, tissue integrity, and stromal inflammation. Annu Rev Med 2020, 71: 263–276.PubMedCrossRef
149.
go back to reference Maheshwari A, Janssens K, Bogie J, van Den Haute C, Struys T, Lambrichts I, et al. Local overexpression of interleukin-11 in the central nervous system limits demyelination and enhances remyelination. Mediators Inflamm 2013, 2013: 685317.PubMedPubMedCentralCrossRef Maheshwari A, Janssens K, Bogie J, van Den Haute C, Struys T, Lambrichts I, et al. Local overexpression of interleukin-11 in the central nervous system limits demyelination and enhances remyelination. Mediators Inflamm 2013, 2013: 685317.PubMedPubMedCentralCrossRef
150.
go back to reference Rosell DR, Nacher J, Akama KT, McEwen BS. Spatiotemporal distribution of gp130 cytokines and their receptors after status epilepticus: Comparison with neuronal degeneration and microglial activation. Neuroscience 2003, 122: 329–348.PubMedCrossRef Rosell DR, Nacher J, Akama KT, McEwen BS. Spatiotemporal distribution of gp130 cytokines and their receptors after status epilepticus: Comparison with neuronal degeneration and microglial activation. Neuroscience 2003, 122: 329–348.PubMedCrossRef
151.
go back to reference Anderson KD, Panayotatos N, Corcoran TL, Lindsay RM, Wiegand SJ. Ciliary neurotrophic factor protects striatal output neurons in an animal model of Huntington disease. Proc Natl Acad Sci U S A 1996, 93: 7346–7351.PubMedPubMedCentralCrossRef Anderson KD, Panayotatos N, Corcoran TL, Lindsay RM, Wiegand SJ. Ciliary neurotrophic factor protects striatal output neurons in an animal model of Huntington disease. Proc Natl Acad Sci U S A 1996, 93: 7346–7351.PubMedPubMedCentralCrossRef
152.
go back to reference Kazim SF, Iqbal K. Neurotrophic factor small-molecule mimetics mediated neuroregeneration and synaptic repair: Emerging therapeutic modality for Alzheimer’s disease. Mol Neurodegener 2016, 11: 50.PubMedPubMedCentralCrossRef Kazim SF, Iqbal K. Neurotrophic factor small-molecule mimetics mediated neuroregeneration and synaptic repair: Emerging therapeutic modality for Alzheimer’s disease. Mol Neurodegener 2016, 11: 50.PubMedPubMedCentralCrossRef
153.
go back to reference Di Marco A, Gloaguen I, Graziani R, Paonessa G, Saggio I, Hudson KR, et al. Identification of ciliary neurotrophic factor (CNTF) residues essential for leukemia inhibitory factor receptor binding and generation of CNTF receptor antagonists. Proc Natl Acad Sci U S A 1996, 93: 9247–9252.PubMedPubMedCentralCrossRef Di Marco A, Gloaguen I, Graziani R, Paonessa G, Saggio I, Hudson KR, et al. Identification of ciliary neurotrophic factor (CNTF) residues essential for leukemia inhibitory factor receptor binding and generation of CNTF receptor antagonists. Proc Natl Acad Sci U S A 1996, 93: 9247–9252.PubMedPubMedCentralCrossRef
154.
go back to reference Meazza C, Di Marco A, Fruscella P, Gloaguen I, Laufer R, Sironi M, et al. Centrally mediated inhibition of local inflammation by ciliary neurotrophic factor. Neuroimmunomodulation 1997, 4: 271–276.PubMedCrossRef Meazza C, Di Marco A, Fruscella P, Gloaguen I, Laufer R, Sironi M, et al. Centrally mediated inhibition of local inflammation by ciliary neurotrophic factor. Neuroimmunomodulation 1997, 4: 271–276.PubMedCrossRef
155.
go back to reference Shpak A, Guekht A, Druzhkova T, Rider F, Gudkova A, Gulyaeva N. Increased ciliary neurotrophic factor in blood serum and lacrimal fluid as a potential biomarkers of focal epilepsy. Neurol Sci 2022, 43: 493–498.PubMedCrossRef Shpak A, Guekht A, Druzhkova T, Rider F, Gudkova A, Gulyaeva N. Increased ciliary neurotrophic factor in blood serum and lacrimal fluid as a potential biomarkers of focal epilepsy. Neurol Sci 2022, 43: 493–498.PubMedCrossRef
156.
go back to reference Jankowsky JL, Patterson PH. Differential regulation of cytokine expression following pilocarpine-induced seizure. Exp Neurol 1999, 159: 333–346.PubMedCrossRef Jankowsky JL, Patterson PH. Differential regulation of cytokine expression following pilocarpine-induced seizure. Exp Neurol 1999, 159: 333–346.PubMedCrossRef
157.
go back to reference Talbott JF, Cao Q, Bertram J, Nkansah M, Benton RL, Lavik E, et al. CNTF promotes the survival and differentiation of adult spinal cord-derived oligodendrocyte precursor cells in vitro but fails to promote remyelination in vivo. Exp Neurol 2007, 204: 485–489.PubMedCrossRef Talbott JF, Cao Q, Bertram J, Nkansah M, Benton RL, Lavik E, et al. CNTF promotes the survival and differentiation of adult spinal cord-derived oligodendrocyte precursor cells in vitro but fails to promote remyelination in vivo. Exp Neurol 2007, 204: 485–489.PubMedCrossRef
158.
go back to reference Bechstein M, Häussler U, Neef M, Hofmann HD, Kirsch M, Haas CA. CNTF-mediated preactivation of astrocytes attenuates neuronal damage and epileptiform activity in experimental epilepsy. Exp Neurol 2012, 236: 141–150.PubMedCrossRef Bechstein M, Häussler U, Neef M, Hofmann HD, Kirsch M, Haas CA. CNTF-mediated preactivation of astrocytes attenuates neuronal damage and epileptiform activity in experimental epilepsy. Exp Neurol 2012, 236: 141–150.PubMedCrossRef
159.
go back to reference Plun-Favreau H, Perret D, Diveu C, Froger J, Chevalier S, Lelièvre E, et al. Leukemia inhibitory factor (LIF), cardiotrophin-1, and oncostatin M share structural binding determinants in the immunoglobulin-like domain of LIF receptor. J Biol Chem 2003, 278: 27169–27179.PubMedCrossRef Plun-Favreau H, Perret D, Diveu C, Froger J, Chevalier S, Lelièvre E, et al. Leukemia inhibitory factor (LIF), cardiotrophin-1, and oncostatin M share structural binding determinants in the immunoglobulin-like domain of LIF receptor. J Biol Chem 2003, 278: 27169–27179.PubMedCrossRef
160.
go back to reference Abdul-Ghani M, Suen C, Jiang B, Deng Y, Weldrick JJ, Putinski C, et al. Cardiotrophin 1 stimulates beneficial myogenic and vascular remodeling of the heart. Cell Res 2017, 27: 1195–1215.PubMedPubMedCentralCrossRef Abdul-Ghani M, Suen C, Jiang B, Deng Y, Weldrick JJ, Putinski C, et al. Cardiotrophin 1 stimulates beneficial myogenic and vascular remodeling of the heart. Cell Res 2017, 27: 1195–1215.PubMedPubMedCentralCrossRef
161.
go back to reference Carneros D, Santamaría EM, Larequi E, Vélez-Ortiz JM, Reboredo M, Mancheño U, et al. Cardiotrophin-1 is an anti-inflammatory cytokine and promotes IL-4-induced M2 macrophage polarization. FASEB J 2019, 33: 7578–7587.PubMedCrossRef Carneros D, Santamaría EM, Larequi E, Vélez-Ortiz JM, Reboredo M, Mancheño U, et al. Cardiotrophin-1 is an anti-inflammatory cytokine and promotes IL-4-induced M2 macrophage polarization. FASEB J 2019, 33: 7578–7587.PubMedCrossRef
162.
go back to reference Zhang C, Liu J, Wang J, Hu W, Feng Z. The emerging role of leukemia inhibitory factor in cancer and therapy. Pharmacol Ther 2021, 221: 107754.PubMedCrossRef Zhang C, Liu J, Wang J, Hu W, Feng Z. The emerging role of leukemia inhibitory factor in cancer and therapy. Pharmacol Ther 2021, 221: 107754.PubMedCrossRef
164.
go back to reference Wahl AF, Wallace PM. Oncostatin M in the anti-inflammatory response. Ann Rheum Dis 2001, 60: iii75–iii80. Wahl AF, Wallace PM. Oncostatin M in the anti-inflammatory response. Ann Rheum Dis 2001, 60: iii75–iii80.
165.
go back to reference West NR, Hegazy AN, Owens BMJ, Bullers SJ, Linggi B, Buonocore S, et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat Med 2017, 23: 579–589.PubMedPubMedCentralCrossRef West NR, Hegazy AN, Owens BMJ, Bullers SJ, Linggi B, Buonocore S, et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat Med 2017, 23: 579–589.PubMedPubMedCentralCrossRef
166.
go back to reference Lehtimäki KA, Peltola J, Koskikallio E, Keränen T, Honkaniemi J. Expression of cytokines and cytokine receptors in the rat brain after kainic acid-induced seizures. Brain Res Mol Brain Res 2003, 110: 253–260.PubMedCrossRef Lehtimäki KA, Peltola J, Koskikallio E, Keränen T, Honkaniemi J. Expression of cytokines and cytokine receptors in the rat brain after kainic acid-induced seizures. Brain Res Mol Brain Res 2003, 110: 253–260.PubMedCrossRef
167.
go back to reference Minami M, Maekawa K, Yamakuni H, Katayama T, Nakamura J, Satoh M. Kainic acid induces leukemia inhibitory factor mRNA expression in the rat brain: Differences in the time course of mRNA expression between the dentate gyrus and hippocampal CA1/CA3 subfields. Brain Res Mol Brain Res 2002, 107: 39–46.PubMedCrossRef Minami M, Maekawa K, Yamakuni H, Katayama T, Nakamura J, Satoh M. Kainic acid induces leukemia inhibitory factor mRNA expression in the rat brain: Differences in the time course of mRNA expression between the dentate gyrus and hippocampal CA1/CA3 subfields. Brain Res Mol Brain Res 2002, 107: 39–46.PubMedCrossRef
168.
go back to reference Holmberg KH, Patterson PH. Leukemia inhibitory factor is a key regulator of astrocytic, microglial and neuronal responses in a low-dose pilocarpine injury model. Brain Res 2006, 1075: 26–35.PubMedCrossRef Holmberg KH, Patterson PH. Leukemia inhibitory factor is a key regulator of astrocytic, microglial and neuronal responses in a low-dose pilocarpine injury model. Brain Res 2006, 1075: 26–35.PubMedCrossRef
169.
go back to reference Shu X, Du S, Chen X, Li Z. Transplantation of neural stem cells overexpressing cardiotrophin-1 inhibits sprouting of hippocampal mossy fiber in a rat model of status epilepticus. Cell Biochem Biophys 2011, 61: 367–370.PubMedCrossRef Shu X, Du S, Chen X, Li Z. Transplantation of neural stem cells overexpressing cardiotrophin-1 inhibits sprouting of hippocampal mossy fiber in a rat model of status epilepticus. Cell Biochem Biophys 2011, 61: 367–370.PubMedCrossRef
170.
go back to reference Moidunny S, Dias RB, Wesseling E, Sekino Y, Boddeke HW, Sebastião AM, et al. Interleukin-6-type cytokines in neuroprotection and neuromodulation: Oncostatin M, but not leukemia inhibitory factor, requires neuronal adenosine A1 receptor function. J Neurochem 2010, 114: 1667–1677.PubMedCrossRef Moidunny S, Dias RB, Wesseling E, Sekino Y, Boddeke HW, Sebastião AM, et al. Interleukin-6-type cytokines in neuroprotection and neuromodulation: Oncostatin M, but not leukemia inhibitory factor, requires neuronal adenosine A1 receptor function. J Neurochem 2010, 114: 1667–1677.PubMedCrossRef
171.
go back to reference Slaets H, Nelissen S, Janssens K, Vidal PM, Lemmens E, Stinissen P, et al. Oncostatin M reduces lesion size and promotes functional recovery and neurite outgrowth after spinal cord injury. Mol Neurobiol 2014, 50: 1142–1151.PubMedCrossRef Slaets H, Nelissen S, Janssens K, Vidal PM, Lemmens E, Stinissen P, et al. Oncostatin M reduces lesion size and promotes functional recovery and neurite outgrowth after spinal cord injury. Mol Neurobiol 2014, 50: 1142–1151.PubMedCrossRef
172.
go back to reference Weiss TW, Samson AL, Niego B, Daniel PB, Medcalf RL. Oncostatin M is a neuroprotective cytokine that inhibits excitotoxic injury in vitro and in vivo. FASEB J 2006, 20: 2369–2371.PubMedCrossRef Weiss TW, Samson AL, Niego B, Daniel PB, Medcalf RL. Oncostatin M is a neuroprotective cytokine that inhibits excitotoxic injury in vitro and in vivo. FASEB J 2006, 20: 2369–2371.PubMedCrossRef
173.
go back to reference Datsi A, Steinhoff M, Ahmad F, Alam M, Buddenkotte J. Interleukin-31: The itchy cytokine in inflammation and therapy. Allergy 2021, 76: 2982–2997.PubMedCrossRef Datsi A, Steinhoff M, Ahmad F, Alam M, Buddenkotte J. Interleukin-31: The itchy cytokine in inflammation and therapy. Allergy 2021, 76: 2982–2997.PubMedCrossRef
174.
go back to reference Stott B, Lavender P, Lehmann S, Pennino D, Durham S, Schmidt-Weber CB. Human IL-31 is induced by IL-4 and promotes TH2-driven inflammation. J Allergy Clin Immunol 2013, 132: 446–54.e5.PubMedCrossRef Stott B, Lavender P, Lehmann S, Pennino D, Durham S, Schmidt-Weber CB. Human IL-31 is induced by IL-4 and promotes TH2-driven inflammation. J Allergy Clin Immunol 2013, 132: 446–54.e5.PubMedCrossRef
175.
go back to reference Zhang Q, Putheti P, Zhou Q, Liu Q, Gao W. Structures and biological functions of IL-31 and IL-31 receptors. Cytokine Growth Factor Rev 2008, 19: 347–356.PubMedPubMedCentralCrossRef Zhang Q, Putheti P, Zhou Q, Liu Q, Gao W. Structures and biological functions of IL-31 and IL-31 receptors. Cytokine Growth Factor Rev 2008, 19: 347–356.PubMedPubMedCentralCrossRef
176.
go back to reference Ouyang W, O’Garra A. IL-10 family cytokines IL-10 and IL-22: From basic science to clinical translation. Immunity 2019, 50: 871–891.PubMedCrossRef Ouyang W, O’Garra A. IL-10 family cytokines IL-10 and IL-22: From basic science to clinical translation. Immunity 2019, 50: 871–891.PubMedCrossRef
177.
go back to reference Alsharafi WA, Xiao B, Abuhamed MM, Bi FF, Luo ZH. Correlation between IL-10 and microRNA-187 expression in epileptic rat Hippocampus and patients with temporal lobe epilepsy. Front Cell Neurosci 2015, 9: 466.PubMedPubMedCentralCrossRef Alsharafi WA, Xiao B, Abuhamed MM, Bi FF, Luo ZH. Correlation between IL-10 and microRNA-187 expression in epileptic rat Hippocampus and patients with temporal lobe epilepsy. Front Cell Neurosci 2015, 9: 466.PubMedPubMedCentralCrossRef
178.
go back to reference Sun Y, Ma J, Li D, Li P, Zhou X, Li Y, et al. Interleukin-10 inhibits interleukin-1β production and inflammasome activation of microglia in epileptic seizures. J Neuroinflammation 2019, 16: 66.PubMedPubMedCentralCrossRef Sun Y, Ma J, Li D, Li P, Zhou X, Li Y, et al. Interleukin-10 inhibits interleukin-1β production and inflammasome activation of microglia in epileptic seizures. J Neuroinflammation 2019, 16: 66.PubMedPubMedCentralCrossRef
179.
go back to reference Kocatürk M, Kirmit A. Evaluation of IL-10, IFN-γ, and thiol-disulfide homeostasis in patients with drug-resistant epilepsy. Neurol Sci 2022, 43: 485–492.PubMedCrossRef Kocatürk M, Kirmit A. Evaluation of IL-10, IFN-γ, and thiol-disulfide homeostasis in patients with drug-resistant epilepsy. Neurol Sci 2022, 43: 485–492.PubMedCrossRef
180.
go back to reference Basnyat P, Pesu M, Söderqvist M, Grönholm A, Liimatainen S, Peltola M, et al. Chronically reduced IL-10 plasma levels are associated with hippocampal sclerosis in temporal lobe epilepsy patients. BMC Neurol 2020, 20: 241.PubMedPubMedCentralCrossRef Basnyat P, Pesu M, Söderqvist M, Grönholm A, Liimatainen S, Peltola M, et al. Chronically reduced IL-10 plasma levels are associated with hippocampal sclerosis in temporal lobe epilepsy patients. BMC Neurol 2020, 20: 241.PubMedPubMedCentralCrossRef
181.
go back to reference Ruffolo G, Alfano V, Romagnolo A, Zimmer T, Mills JD, Cifelli P, et al. GABAA receptor function is enhanced by Interleukin-10 in human epileptogenic gangliogliomas and its effect is counteracted by Interleukin-1β. Sci Rep 2022, 12: 17956.PubMedPubMedCentralCrossRef Ruffolo G, Alfano V, Romagnolo A, Zimmer T, Mills JD, Cifelli P, et al. GABAA receptor function is enhanced by Interleukin-10 in human epileptogenic gangliogliomas and its effect is counteracted by Interleukin-1β. Sci Rep 2022, 12: 17956.PubMedPubMedCentralCrossRef
182.
go back to reference Piepke M, Clausen BH, Ludewig P, Vienhues JH, Bedke T, Javidi E, et al. Interleukin-10 improves stroke outcome by controlling the detrimental Interleukin-17A response. J Neuroinflammation 2021, 18: 265.PubMedPubMedCentralCrossRef Piepke M, Clausen BH, Ludewig P, Vienhues JH, Bedke T, Javidi E, et al. Interleukin-10 improves stroke outcome by controlling the detrimental Interleukin-17A response. J Neuroinflammation 2021, 18: 265.PubMedPubMedCentralCrossRef
183.
go back to reference Rutz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines—from host defence to tissue homeostasis. Nat Rev Immunol 2014, 14: 783–795.PubMedCrossRef Rutz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines—from host defence to tissue homeostasis. Nat Rev Immunol 2014, 14: 783–795.PubMedCrossRef
184.
go back to reference de Vries EE, van den Munckhof B, Braun KP, van Royen-Kerkhof A, de Jager W, Jansen FE. Inflammatory mediators in human epilepsy: A systematic review and meta-analysis. Neurosci Biobehav Rev 2016, 63: 177–190.PubMedCrossRef de Vries EE, van den Munckhof B, Braun KP, van Royen-Kerkhof A, de Jager W, Jansen FE. Inflammatory mediators in human epilepsy: A systematic review and meta-analysis. Neurosci Biobehav Rev 2016, 63: 177–190.PubMedCrossRef
185.
go back to reference Ouédraogo O, Rébillard RM, Jamann H, Mamane VH, Clénet ML, Daigneault A, et al. Increased frequency of proinflammatory CD4 T cells and pathological levels of serum neurofilament light chain in adult drug-resistant epilepsy. Epilepsia 2021, 62: 176–189.PubMedCrossRef Ouédraogo O, Rébillard RM, Jamann H, Mamane VH, Clénet ML, Daigneault A, et al. Increased frequency of proinflammatory CD4 T cells and pathological levels of serum neurofilament light chain in adult drug-resistant epilepsy. Epilepsia 2021, 62: 176–189.PubMedCrossRef
186.
go back to reference Talebian A, Hassani F, Nikoueinejad H, Akbari H. Investigating the relationship between serum levels of interleukin-22 and interleukin-1 beta with febrile seizure. Iran J Allergy Asthma Immunol 2020, 19: 409–415.PubMed Talebian A, Hassani F, Nikoueinejad H, Akbari H. Investigating the relationship between serum levels of interleukin-22 and interleukin-1 beta with febrile seizure. Iran J Allergy Asthma Immunol 2020, 19: 409–415.PubMed
187.
go back to reference Gallagher G, Eskdale J, Jordan W, Peat J, Campbell J, Boniotto M, et al. Human interleukin-19 and its receptor: A potential role in the induction of Th2 responses. Int Immunopharmacol 2004, 4: 615–626.PubMedCrossRef Gallagher G, Eskdale J, Jordan W, Peat J, Campbell J, Boniotto M, et al. Human interleukin-19 and its receptor: A potential role in the induction of Th2 responses. Int Immunopharmacol 2004, 4: 615–626.PubMedCrossRef
188.
go back to reference Oral HB, Kotenko SV, Yilmaz M, Mani O, Zumkehr J, Blaser K, et al. Regulation of T cells and cytokines by the interleukin-10 (IL-10)-family cytokines IL-19, IL-20, IL-22, IL-24 and IL-26. Eur J Immunol 2006, 36: 380–388.PubMedCrossRef Oral HB, Kotenko SV, Yilmaz M, Mani O, Zumkehr J, Blaser K, et al. Regulation of T cells and cytokines by the interleukin-10 (IL-10)-family cytokines IL-19, IL-20, IL-22, IL-24 and IL-26. Eur J Immunol 2006, 36: 380–388.PubMedCrossRef
189.
go back to reference Xie W, Fang L, Gan S, Xuan H. Interleukin-19 alleviates brain injury by anti-inflammatory effects in a mice model of focal cerebral ischemia. Brain Res 2016, 1650: 172–177.PubMedCrossRef Xie W, Fang L, Gan S, Xuan H. Interleukin-19 alleviates brain injury by anti-inflammatory effects in a mice model of focal cerebral ischemia. Brain Res 2016, 1650: 172–177.PubMedCrossRef
190.
go back to reference Hsu YH, Yang YY, Huwang MH, Weng YH, Jou IM, Wu PT, et al. Anti-IL-20 monoclonal antibody inhibited inflammation and protected against cartilage destruction in murine models of osteoarthritis. PLoS One 2017, 12: e0175802.PubMedPubMedCentralCrossRef Hsu YH, Yang YY, Huwang MH, Weng YH, Jou IM, Wu PT, et al. Anti-IL-20 monoclonal antibody inhibited inflammation and protected against cartilage destruction in murine models of osteoarthritis. PLoS One 2017, 12: e0175802.PubMedPubMedCentralCrossRef
191.
go back to reference Chen WY, Chang MS. IL-20 is regulated by hypoxia-inducible factor and up-regulated after experimental ischemic stroke. J Immunol 2009, 182: 5003–5012.PubMedCrossRef Chen WY, Chang MS. IL-20 is regulated by hypoxia-inducible factor and up-regulated after experimental ischemic stroke. J Immunol 2009, 182: 5003–5012.PubMedCrossRef
192.
go back to reference Hsu YH, Lin RM, Chiu YS, Liu WL, Huang KY. Effects of IL-1β, IL-20, and BMP-2 on intervertebral disc inflammation under hypoxia. J Clin Med 2020, 9: E140.CrossRef Hsu YH, Lin RM, Chiu YS, Liu WL, Huang KY. Effects of IL-1β, IL-20, and BMP-2 on intervertebral disc inflammation under hypoxia. J Clin Med 2020, 9: E140.CrossRef
194.
go back to reference Corvaisier M, Delneste Y, Jeanvoine H, Preisser L, Blanchard S, Garo E, et al. IL-26 is overexpressed in rheumatoid arthritis and induces proinflammatory cytokine production and Th17 cell generation. PLoS Biol 2012, 10: e1001395.PubMedPubMedCentralCrossRef Corvaisier M, Delneste Y, Jeanvoine H, Preisser L, Blanchard S, Garo E, et al. IL-26 is overexpressed in rheumatoid arthritis and induces proinflammatory cytokine production and Th17 cell generation. PLoS Biol 2012, 10: e1001395.PubMedPubMedCentralCrossRef
196.
go back to reference Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27: Related but functionally distinct regulators of inflammation. Annu Rev Immunol 2007, 25: 221–242.PubMedCrossRef Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27: Related but functionally distinct regulators of inflammation. Annu Rev Immunol 2007, 25: 221–242.PubMedCrossRef
197.
go back to reference Turrin NP, Rivest S. Innate immune reaction in response to seizures: Implications for the neuropathology associated with epilepsy. Neurobiol Dis 2004, 16: 321–334.PubMedCrossRef Turrin NP, Rivest S. Innate immune reaction in response to seizures: Implications for the neuropathology associated with epilepsy. Neurobiol Dis 2004, 16: 321–334.PubMedCrossRef
198.
go back to reference Gillinder L, McCombe P, Powell T, Hartel G, Gillis D, Rojas IL, et al. Cytokines as a marker of central nervous system autoantibody associated epilepsy. Epilepsy Res 2021, 176: 106708.PubMedCrossRef Gillinder L, McCombe P, Powell T, Hartel G, Gillis D, Rojas IL, et al. Cytokines as a marker of central nervous system autoantibody associated epilepsy. Epilepsy Res 2021, 176: 106708.PubMedCrossRef
199.
go back to reference Sahin S, Uysal S, Yentur SP, Kacar A. Reduced cerebrospinal fluid levels of interleukin-10 in children with febrile seizures. Seizure 2019, 65: 94–97.PubMedCrossRef Sahin S, Uysal S, Yentur SP, Kacar A. Reduced cerebrospinal fluid levels of interleukin-10 in children with febrile seizures. Seizure 2019, 65: 94–97.PubMedCrossRef
200.
go back to reference Sonobe Y, Yawata I, Kawanokuchi J, Takeuchi H, Mizuno T, Suzumura A. Production of IL-27 and other IL-12 family cytokines by microglia and their subpopulations. Brain Res 2005, 1040: 202–207.PubMedCrossRef Sonobe Y, Yawata I, Kawanokuchi J, Takeuchi H, Mizuno T, Suzumura A. Production of IL-27 and other IL-12 family cytokines by microglia and their subpopulations. Brain Res 2005, 1040: 202–207.PubMedCrossRef
201.
go back to reference Constantinescu CS, Tani M, Ransohoff RM, Wysocka M, Hilliard B, Fujioka T, et al. Astrocytes as antigen-presenting cells: Expression of IL-12/IL-23. J Neurochem 2005, 95: 331–340.PubMedCrossRef Constantinescu CS, Tani M, Ransohoff RM, Wysocka M, Hilliard B, Fujioka T, et al. Astrocytes as antigen-presenting cells: Expression of IL-12/IL-23. J Neurochem 2005, 95: 331–340.PubMedCrossRef
202.
go back to reference Zykov MV, Barbarash OL, Kashtalap VV, Kutikhin AG, Barbarash LS. Interleukin-12 serum level has prognostic value in patients with ST-segment elevation myocardial infarction. Heart Lung 2016, 45: 336–340.PubMedCrossRef Zykov MV, Barbarash OL, Kashtalap VV, Kutikhin AG, Barbarash LS. Interleukin-12 serum level has prognostic value in patients with ST-segment elevation myocardial infarction. Heart Lung 2016, 45: 336–340.PubMedCrossRef
204.
go back to reference Wang M, Zhong D, Zheng Y, Li H, Chen H, Ma S, et al. Damage effect of interleukin (IL)-23 on oxygen-glucose-deprived cells of the neurovascular unit via IL-23 receptor. Neuroscience 2015, 289: 406–416.PubMedCrossRef Wang M, Zhong D, Zheng Y, Li H, Chen H, Ma S, et al. Damage effect of interleukin (IL)-23 on oxygen-glucose-deprived cells of the neurovascular unit via IL-23 receptor. Neuroscience 2015, 289: 406–416.PubMedCrossRef
205.
go back to reference Gelderblom M, Gallizioli M, Ludewig P, Thom V, Arunachalam P, Rissiek B, et al. IL-23 (interleukin-23)-producing conventional dendritic cells control the detrimental IL-17 (interleukin-17) response in stroke. Stroke 2018, 49: 155–164.PubMedCrossRef Gelderblom M, Gallizioli M, Ludewig P, Thom V, Arunachalam P, Rissiek B, et al. IL-23 (interleukin-23)-producing conventional dendritic cells control the detrimental IL-17 (interleukin-17) response in stroke. Stroke 2018, 49: 155–164.PubMedCrossRef
206.
go back to reference Zhong Q, Zhou K, Liang QL, Lin S, Wang YC, Xiong XY, et al. Interleukin-23 secreted by activated macrophages drives γδT cell production of interleukin-17 to aggravate secondary injury after intracerebral hemorrhage. J Am Heart Assoc 2016, 5: e004340.PubMedPubMedCentralCrossRef Zhong Q, Zhou K, Liang QL, Lin S, Wang YC, Xiong XY, et al. Interleukin-23 secreted by activated macrophages drives γδT cell production of interleukin-17 to aggravate secondary injury after intracerebral hemorrhage. J Am Heart Assoc 2016, 5: e004340.PubMedPubMedCentralCrossRef
207.
go back to reference Fan L, Zhou L. Anti-IL-23 exerted protective effects on cerebral ischemia-reperfusion injury through JAK2/STAT3 signaling pathway. Mol Biol Rep 2021, 48: 3475–3484.PubMedCrossRef Fan L, Zhou L. Anti-IL-23 exerted protective effects on cerebral ischemia-reperfusion injury through JAK2/STAT3 signaling pathway. Mol Biol Rep 2021, 48: 3475–3484.PubMedCrossRef
209.
go back to reference Wojno ED, Hunter CA. New directions in the basic and translational biology of interleukin-27. Trends Immunol 2012, 33: 91–97.PubMedCrossRef Wojno ED, Hunter CA. New directions in the basic and translational biology of interleukin-27. Trends Immunol 2012, 33: 91–97.PubMedCrossRef
211.
go back to reference Casella G, Finardi A, Descamps H, Colombo F, Maiorino C, Ruffini F, et al. IL-27, but not IL-35, inhibits neuroinflammation through modulating GM-CSF expression. Sci Rep 2017, 7: 16547.PubMedPubMedCentralCrossRef Casella G, Finardi A, Descamps H, Colombo F, Maiorino C, Ruffini F, et al. IL-27, but not IL-35, inhibits neuroinflammation through modulating GM-CSF expression. Sci Rep 2017, 7: 16547.PubMedPubMedCentralCrossRef
212.
go back to reference Luo C, Li B, Chen L, Zhao L, Wei Y. IL-27 protects the brain from ischemia-reperfusion injury via the gp130/STAT3 signaling pathway. J Mol Neurosci 2021, 71: 1838–1848.PubMedCrossRef Luo C, Li B, Chen L, Zhao L, Wei Y. IL-27 protects the brain from ischemia-reperfusion injury via the gp130/STAT3 signaling pathway. J Mol Neurosci 2021, 71: 1838–1848.PubMedCrossRef
213.
go back to reference Xu C, Zhu H, Shen R, Feng Q, Zhou H, Zhao Z. IL-35 is a protective immunomodulator in brain ischemic injury in mice. Neurochem Res 2018, 43: 1454–1463.PubMedCrossRef Xu C, Zhu H, Shen R, Feng Q, Zhou H, Zhao Z. IL-35 is a protective immunomodulator in brain ischemic injury in mice. Neurochem Res 2018, 43: 1454–1463.PubMedCrossRef
214.
go back to reference Qian L, Li M, Lin X, Teng H, Yu L, Jiang M. Interleukin-35 attenuates blood-brain barrier dysfunction caused by cerebral ischemia-reperfusion injury through inhibiting brain endothelial cell injury. Ann Transl Med 2022, 10: 776.PubMedPubMedCentralCrossRef Qian L, Li M, Lin X, Teng H, Yu L, Jiang M. Interleukin-35 attenuates blood-brain barrier dysfunction caused by cerebral ischemia-reperfusion injury through inhibiting brain endothelial cell injury. Ann Transl Med 2022, 10: 776.PubMedPubMedCentralCrossRef
215.
go back to reference An J, Li H, Xia D, Xu B, Wang J, Qiu H, et al. The role of interleukin-17 in epilepsy. Epilepsy Res 2022, 186: 107001.PubMedCrossRef An J, Li H, Xia D, Xu B, Wang J, Qiu H, et al. The role of interleukin-17 in epilepsy. Epilepsy Res 2022, 186: 107001.PubMedCrossRef
216.
go back to reference Adamopoulos IE, Kuchroo V. IL-17A and IL-17F in tissue homeostasis, inflammation and regeneration. Nat Rev Rheumatol 2023, 19: 535–536.PubMedCrossRef Adamopoulos IE, Kuchroo V. IL-17A and IL-17F in tissue homeostasis, inflammation and regeneration. Nat Rev Rheumatol 2023, 19: 535–536.PubMedCrossRef
217.
go back to reference Iwakura Y, Nakae S, Saijo S, Ishigame H. The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol Rev 2008, 226: 57–79.PubMedCrossRef Iwakura Y, Nakae S, Saijo S, Ishigame H. The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol Rev 2008, 226: 57–79.PubMedCrossRef
218.
go back to reference Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y, et al. Differential roles of interleukin-17A and-17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 2009, 30: 108–119.PubMedCrossRef Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y, et al. Differential roles of interleukin-17A and-17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 2009, 30: 108–119.PubMedCrossRef
219.
220.
go back to reference Qian Y, Liu C, Hartupee J, Altuntas CZ, Gulen MF, Jane-Wit D, et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat Immunol 2007, 8: 247–256.PubMedCrossRef Qian Y, Liu C, Hartupee J, Altuntas CZ, Gulen MF, Jane-Wit D, et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat Immunol 2007, 8: 247–256.PubMedCrossRef
222.
go back to reference Kawanokuchi J, Shimizu K, Nitta A, Yamada K, Mizuno T, Takeuchi H, et al. Production and functions of IL-17 in microglia. J Neuroimmunol 2008, 194: 54–61.PubMedCrossRef Kawanokuchi J, Shimizu K, Nitta A, Yamada K, Mizuno T, Takeuchi H, et al. Production and functions of IL-17 in microglia. J Neuroimmunol 2008, 194: 54–61.PubMedCrossRef
223.
go back to reference Gelderblom M, Weymar A, Bernreuther C, Velden J, Arunachalam P, Steinbach K, et al. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood 2012, 120: 3793–3802.PubMedCrossRef Gelderblom M, Weymar A, Bernreuther C, Velden J, Arunachalam P, Steinbach K, et al. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood 2012, 120: 3793–3802.PubMedCrossRef
224.
go back to reference Luo H, Liu HZ, Zhang WW, Matsuda M, Lv N, Chen G, et al. Interleukin-17 regulates neuron-glial communications, synaptic transmission, and neuropathic pain after chemotherapy. Cell Rep 2019, 29: 2384-2397.e5.PubMedCrossRef Luo H, Liu HZ, Zhang WW, Matsuda M, Lv N, Chen G, et al. Interleukin-17 regulates neuron-glial communications, synaptic transmission, and neuropathic pain after chemotherapy. Cell Rep 2019, 29: 2384-2397.e5.PubMedCrossRef
226.
227.
go back to reference Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP, et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 2008, 29: 44–56.PubMedPubMedCentralCrossRef Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP, et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 2008, 29: 44–56.PubMedPubMedCentralCrossRef
228.
go back to reference Mao LY, Ding J, Peng WF, Ma Y, Zhang YH, Fan W, et al. Interictal interleukin-17A levels are elevated and correlate with seizure severity of epilepsy patients. Epilepsia 2013, 54: e142–e145.PubMedCrossRef Mao LY, Ding J, Peng WF, Ma Y, Zhang YH, Fan W, et al. Interictal interleukin-17A levels are elevated and correlate with seizure severity of epilepsy patients. Epilepsia 2013, 54: e142–e145.PubMedCrossRef
229.
go back to reference Wang Y, Wang D, Guo D. Interictal cytokine levels were correlated to seizure severity of epileptic patients: A retrospective study on 1218 epileptic patients. J Transl Med 2015, 13: 378.PubMedPubMedCentralCrossRef Wang Y, Wang D, Guo D. Interictal cytokine levels were correlated to seizure severity of epileptic patients: A retrospective study on 1218 epileptic patients. J Transl Med 2015, 13: 378.PubMedPubMedCentralCrossRef
230.
go back to reference He JJ, Li S, Shu HF, Yu SX, Liu SY, Yin Q, et al. The interleukin 17 system in cortical lesions in focal cortical dysplasias. J Neuropathol Exp Neurol 2013, 72: 152–163.PubMedCrossRef He JJ, Li S, Shu HF, Yu SX, Liu SY, Yin Q, et al. The interleukin 17 system in cortical lesions in focal cortical dysplasias. J Neuropathol Exp Neurol 2013, 72: 152–163.PubMedCrossRef
231.
go back to reference He JJ, Wu KF, Li S, Shu HF, Zhang CQ, Liu SY, et al. Expression of the interleukin 17 in cortical tubers of the tuberous sclerosis complex. J Neuroimmunol 2013, 262: 85–91.PubMedCrossRef He JJ, Wu KF, Li S, Shu HF, Zhang CQ, Liu SY, et al. Expression of the interleukin 17 in cortical tubers of the tuberous sclerosis complex. J Neuroimmunol 2013, 262: 85–91.PubMedCrossRef
232.
go back to reference He JJ, Sun FJ, Wang Y, Luo XQ, Lei P, Zhou J, et al. Increased expression of interleukin 17 in the cortex and hippocampus from patients with mesial temporal lobe epilepsy. J Neuroimmunol 2016, 298: 153–159.PubMedCrossRef He JJ, Sun FJ, Wang Y, Luo XQ, Lei P, Zhou J, et al. Increased expression of interleukin 17 in the cortex and hippocampus from patients with mesial temporal lobe epilepsy. J Neuroimmunol 2016, 298: 153–159.PubMedCrossRef
233.
go back to reference Xu D, Robinson AP, Ishii T, Duncan DS, Alden TD, Goings GE, et al. Peripherally derived T regulatory and γδ T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. J Exp Med 2018, 215: 1169–1186.PubMedPubMedCentralCrossRef Xu D, Robinson AP, Ishii T, Duncan DS, Alden TD, Goings GE, et al. Peripherally derived T regulatory and γδ T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. J Exp Med 2018, 215: 1169–1186.PubMedPubMedCentralCrossRef
234.
go back to reference Rahman MT, Ghosh C, Hossain M, Linfield D, Rezaee F, Janigro D, et al. IFN-γ, IL-17A, or zonulin rapidly increase the permeability of the blood-brain and small intestinal epithelial barriers: Relevance for neuro-inflammatory diseases. Biochem Biophys Res Commun 2018, 507: 274–279.PubMedCrossRef Rahman MT, Ghosh C, Hossain M, Linfield D, Rezaee F, Janigro D, et al. IFN-γ, IL-17A, or zonulin rapidly increase the permeability of the blood-brain and small intestinal epithelial barriers: Relevance for neuro-inflammatory diseases. Biochem Biophys Res Commun 2018, 507: 274–279.PubMedCrossRef
235.
go back to reference Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 2007, 13: 1173–1175.PubMedPubMedCentralCrossRef Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 2007, 13: 1173–1175.PubMedPubMedCentralCrossRef
236.
go back to reference Huppert J, Closhen D, Croxford A, White R, Kulig P, Pietrowski E, et al. Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J 2010, 24: 1023–1034.PubMedCrossRef Huppert J, Closhen D, Croxford A, White R, Kulig P, Pietrowski E, et al. Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J 2010, 24: 1023–1034.PubMedCrossRef
237.
go back to reference Koshal P, Jamwal S, Kumar P. Glucagon-like Peptide-1 (GLP-1) and neurotransmitters signaling in epilepsy: An insight review. Neuropharmacology 2018, 136: 271–279.PubMedCrossRef Koshal P, Jamwal S, Kumar P. Glucagon-like Peptide-1 (GLP-1) and neurotransmitters signaling in epilepsy: An insight review. Neuropharmacology 2018, 136: 271–279.PubMedCrossRef
238.
go back to reference Kostic M, Zivkovic N, Cvetanovic A, Stojanovic I, Colic M. IL-17 signalling in astrocytes promotes glutamate excitotoxicity: Indications for the link between inflammatory and neurodegenerative events in multiple sclerosis. Mult Scler Relat Disord 2017, 11: 12–17.PubMedCrossRef Kostic M, Zivkovic N, Cvetanovic A, Stojanovic I, Colic M. IL-17 signalling in astrocytes promotes glutamate excitotoxicity: Indications for the link between inflammatory and neurodegenerative events in multiple sclerosis. Mult Scler Relat Disord 2017, 11: 12–17.PubMedCrossRef
239.
240.
go back to reference Bie Q, Jin C, Zhang B, Dong H. IL-17B: A new area of study in the IL-17 family. Mol Immunol 2017, 90: 50–56.PubMedCrossRef Bie Q, Jin C, Zhang B, Dong H. IL-17B: A new area of study in the IL-17 family. Mol Immunol 2017, 90: 50–56.PubMedCrossRef
242.
go back to reference Huang J, Lee HY, Zhao X, Han J, Su Y, Sun Q, et al. Interleukin-17D regulates group 3 innate lymphoid cell function through its receptor CD93. Immunity 2021, 54: 673-686.e4.PubMedCrossRef Huang J, Lee HY, Zhao X, Han J, Su Y, Sun Q, et al. Interleukin-17D regulates group 3 innate lymphoid cell function through its receptor CD93. Immunity 2021, 54: 673-686.e4.PubMedCrossRef
243.
go back to reference Lee Y, Clinton J, Yao C, Chang SH. Interleukin-17D promotes pathogenicity during infection by suppressing CD8 T cell activity. Front Immunol 2019, 10: 1172.PubMedPubMedCentralCrossRef Lee Y, Clinton J, Yao C, Chang SH. Interleukin-17D promotes pathogenicity during infection by suppressing CD8 T cell activity. Front Immunol 2019, 10: 1172.PubMedPubMedCentralCrossRef
244.
go back to reference Matsushima K, Yang, Oppenheim JJ. Interleukin-8: An evolving chemokine. Cytokine 2022, 153: 155828. Matsushima K, Yang, Oppenheim JJ. Interleukin-8: An evolving chemokine. Cytokine 2022, 153: 155828.
245.
go back to reference Pernhorst K, Herms S, Hoffmann P, Cichon S, Schulz H, Sander T, et al. TLR4, ATF-3 and IL8 inflammation mediator expression correlates with seizure frequency in human epileptic brain tissue. Seizure 2013, 22: 675–678.PubMedCrossRef Pernhorst K, Herms S, Hoffmann P, Cichon S, Schulz H, Sander T, et al. TLR4, ATF-3 and IL8 inflammation mediator expression correlates with seizure frequency in human epileptic brain tissue. Seizure 2013, 22: 675–678.PubMedCrossRef
246.
go back to reference Billiau AD, Witters P, Ceulemans B, Kasran A, Wouters C, Lagae L. Intravenous immunoglobulins in refractory childhood-onset epilepsy: Effects on seizure frequency, EEG activity, and cerebrospinal fluid cytokine profile. Epilepsia 2007, 48: 1739–1749.PubMedCrossRef Billiau AD, Witters P, Ceulemans B, Kasran A, Wouters C, Lagae L. Intravenous immunoglobulins in refractory childhood-onset epilepsy: Effects on seizure frequency, EEG activity, and cerebrospinal fluid cytokine profile. Epilepsia 2007, 48: 1739–1749.PubMedCrossRef
247.
go back to reference Strauss KI, Elisevich KV. Brain region and epilepsy-associated differences in inflammatory mediator levels in medically refractory mesial temporal lobe epilepsy. J Neuroinflammation 2016, 13: 270.PubMedPubMedCentralCrossRef Strauss KI, Elisevich KV. Brain region and epilepsy-associated differences in inflammatory mediator levels in medically refractory mesial temporal lobe epilepsy. J Neuroinflammation 2016, 13: 270.PubMedPubMedCentralCrossRef
248.
go back to reference Gallentine WB, Shinnar S, Hesdorffer DC, Epstein L, Nordli DR Jr, Lewis DV, et al. Plasma cytokines associated with febrile status epilepticus in children: A potential biomarker for acute hippocampal injury. Epilepsia 2017, 58: 1102–1111.PubMedPubMedCentralCrossRef Gallentine WB, Shinnar S, Hesdorffer DC, Epstein L, Nordli DR Jr, Lewis DV, et al. Plasma cytokines associated with febrile status epilepticus in children: A potential biomarker for acute hippocampal injury. Epilepsia 2017, 58: 1102–1111.PubMedPubMedCentralCrossRef
249.
go back to reference Česká K, Papež J, Ošlejšková H, Slabý O, Radová L, Loja T, et al. CCL2/MCP-1, interleukin-8, and fractalkine/CXC3CL1: Potential biomarkers of epileptogenesis and pharmacoresistance in childhood epilepsy. Eur J Paediatr Neurol 2023, 46: 48–54.PubMedCrossRef Česká K, Papež J, Ošlejšková H, Slabý O, Radová L, Loja T, et al. CCL2/MCP-1, interleukin-8, and fractalkine/CXC3CL1: Potential biomarkers of epileptogenesis and pharmacoresistance in childhood epilepsy. Eur J Paediatr Neurol 2023, 46: 48–54.PubMedCrossRef
250.
go back to reference Di Sapia R, Zimmer TS, Kebede V, Balosso S, Ravizza T, Sorrentino D, et al. CXCL1-CXCR1/2 signaling is induced in human temporal lobe epilepsy and contributes to seizures in a murine model of acquired epilepsy. Neurobiol Dis 2021, 158: 105468.PubMedCrossRef Di Sapia R, Zimmer TS, Kebede V, Balosso S, Ravizza T, Sorrentino D, et al. CXCL1-CXCR1/2 signaling is induced in human temporal lobe epilepsy and contributes to seizures in a murine model of acquired epilepsy. Neurobiol Dis 2021, 158: 105468.PubMedCrossRef
251.
go back to reference Li S, Olde Heuvel F, Rehman R, Aousji O, Froehlich A, Li Z, et al. Interleukin-13 and its receptor are synaptic proteins involved in plasticity and neuroprotection. Nat Commun 2023, 14: 200.PubMedPubMedCentralCrossRef Li S, Olde Heuvel F, Rehman R, Aousji O, Froehlich A, Li Z, et al. Interleukin-13 and its receptor are synaptic proteins involved in plasticity and neuroprotection. Nat Commun 2023, 14: 200.PubMedPubMedCentralCrossRef
252.
go back to reference Bieber T. Interleukin-13: Targeting an underestimated cytokine in atopic dermatitis. Allergy 2020, 75: 54–62.PubMedCrossRef Bieber T. Interleukin-13: Targeting an underestimated cytokine in atopic dermatitis. Allergy 2020, 75: 54–62.PubMedCrossRef
Metadata
Title
Interleukins in Epilepsy: Friend or Foe
Authors
Yuan Dong
Xia Zhang
Ying Wang
Publication date
24-01-2024
Publisher
Springer Nature Singapore
Published in
Neuroscience Bulletin / Issue 5/2024
Print ISSN: 1673-7067
Electronic ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-023-01170-2

Other articles of this Issue 5/2024

Neuroscience Bulletin 5/2024 Go to the issue