Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Protein expression profiling of inflammatory mediators in human temporal lobe epilepsy reveals co-activation of multiple chemokines and cytokines

Authors: Anne A Kan, Wilco de Jager, Marina de Wit, Cobi Heijnen, Mirjam van Zuiden, Cyrill Ferrier, Peter van Rijen, Peter Gosselaar, Ellen Hessel, Onno van Nieuwenhuizen, Pierre N E de Graan

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Mesial temporal lobe epilepsy (mTLE) is a chronic and often treatment-refractory brain disorder characterized by recurrent seizures originating from the hippocampus. The pathogenic mechanisms underlying mTLE remain largely unknown. Recent clinical and experimental evidence supports a role of various inflammatory mediators in mTLE. Here, we performed protein expression profiling of 40 inflammatory mediators in surgical resection material from mTLE patients with and without hippocampal sclerosis, and autopsy controls using a multiplex bead-based immunoassay. In mTLE patients we identified 21 upregulated inflammatory mediators, including 10 cytokines and 7 chemokines. Many of these upregulated mediators have not previously been implicated in mTLE (for example, CCL22, IL-7 and IL-25). Comparing the three patient groups, two main hippocampal expression patterns could be distinguished, pattern I (for example, IL-10 and IL-25) showing increased expression in mTLE + HS patients compared to mTLE-HS and controls, and pattern II (for example, CCL4 and IL-7) showing increased expression in both mTLE groups compared to controls. Upregulation of a subset of inflammatory mediators (for example, IL-25 and IL-7) could not only be detected in the hippocampus of mTLE patients, but also in the neocortex. Principle component analysis was used to cluster the inflammatory mediators into several components. Follow-up analyses of the identified components revealed that the three patient groups could be discriminated based on their unique expression profiles. Immunocytochemistry showed that IL-25 IR (pattern I) and CCL4 IR (pattern II) were localized in astrocytes and microglia, whereas IL-25 IR was also detected in neurons. Our data shows co-activation of multiple inflammatory mediators in hippocampus and neocortex of mTLE patients, indicating activation of multiple pro- and anti-epileptogenic immune pathways in this disease.
Literature
2.
go back to reference Engel J Jr: A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia 2001,42(6):796–803.PubMedCrossRef Engel J Jr: A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia 2001,42(6):796–803.PubMedCrossRef
3.
go back to reference Kwan P, Brodie MJ: Clinical trials of antiepileptic medications in newly diagnosed patients with epilepsy. Neurology 2003, 60:S2-S12.PubMedCrossRef Kwan P, Brodie MJ: Clinical trials of antiepileptic medications in newly diagnosed patients with epilepsy. Neurology 2003, 60:S2-S12.PubMedCrossRef
5.
go back to reference Proper EA, Oestreicher AB, Jansen GH, Veelen CW, van Rijen PC, Gispen WH, de Graan PN: Immunohistochemical characterization of mossy fibre sprouting in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 2000,123(Pt 1):19–30.PubMedCrossRef Proper EA, Oestreicher AB, Jansen GH, Veelen CW, van Rijen PC, Gispen WH, de Graan PN: Immunohistochemical characterization of mossy fibre sprouting in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 2000,123(Pt 1):19–30.PubMedCrossRef
6.
go back to reference Houser CR: Neuronal loss and synaptic reorganization in temporal lobe epilepsy. Adv Neurol 1999, 79:743–761.PubMed Houser CR: Neuronal loss and synaptic reorganization in temporal lobe epilepsy. Adv Neurol 1999, 79:743–761.PubMed
8.
go back to reference Vezzani A, Granata T: Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 2005, 46:1724–1743.PubMedCrossRef Vezzani A, Granata T: Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 2005, 46:1724–1743.PubMedCrossRef
9.
go back to reference Vezzani A, French J, Bartfai T, Baram TZ: The role of inflammation in epilepsy. Nat Rev Neurol 2011, 7:31–40.PubMedCrossRef Vezzani A, French J, Bartfai T, Baram TZ: The role of inflammation in epilepsy. Nat Rev Neurol 2011, 7:31–40.PubMedCrossRef
10.
go back to reference van Gassen KL, de Wit M, Koerkamp MJ, Rensen MG, van Rijen PC, Holstege FC, Lindhout D, de Graan PN: Possible role of the innate immunity in temporal lobe epilepsy. Epilepsia 2008, 49:1055–1065.PubMedCrossRef van Gassen KL, de Wit M, Koerkamp MJ, Rensen MG, van Rijen PC, Holstege FC, Lindhout D, de Graan PN: Possible role of the innate immunity in temporal lobe epilepsy. Epilepsia 2008, 49:1055–1065.PubMedCrossRef
11.
go back to reference Lee TS, Mane S, Eid T, Zhao H, Lin A, Guan Z, Kim JH, Schweitzer J, King-Stevens D, Weber P, Spencer SS, Spencer DD, de Lanerolle NC: Gene expression in temporal lobe epilepsy is consistent with increased release of glutamate by astrocytes. Mol Med 2007, 13:1–13.PubMedPubMedCentral Lee TS, Mane S, Eid T, Zhao H, Lin A, Guan Z, Kim JH, Schweitzer J, King-Stevens D, Weber P, Spencer SS, Spencer DD, de Lanerolle NC: Gene expression in temporal lobe epilepsy is consistent with increased release of glutamate by astrocytes. Mol Med 2007, 13:1–13.PubMedPubMedCentral
12.
go back to reference Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A: Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 2008, 29:142–160.PubMedCrossRef Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A: Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 2008, 29:142–160.PubMedCrossRef
13.
go back to reference Liimatainen S, Fallah M, Kharazmi E, Peltola M, Peltola J: Interleukin-6 levels are increased in temporal lobe epilepsy but not in extra-temporal lobe epilepsy. J Neurol 2009, 256:796–802.PubMedCrossRef Liimatainen S, Fallah M, Kharazmi E, Peltola M, Peltola J: Interleukin-6 levels are increased in temporal lobe epilepsy but not in extra-temporal lobe epilepsy. J Neurol 2009, 256:796–802.PubMedCrossRef
14.
go back to reference Yamamoto A, Schindler CK, Murphy BM, Bellver-Estelles C, So NK, Taki W, Meller R, Simon RP, Henshall DC: Evidence of tumor necrosis factor receptor 1 signaling in human temporal lobe epilepsy. Exp Neurol 2006, 202:410–420.PubMedCrossRef Yamamoto A, Schindler CK, Murphy BM, Bellver-Estelles C, So NK, Taki W, Meller R, Simon RP, Henshall DC: Evidence of tumor necrosis factor receptor 1 signaling in human temporal lobe epilepsy. Exp Neurol 2006, 202:410–420.PubMedCrossRef
15.
go back to reference Li G, Bauer S, Nowak M, Norwood B, Tackenberg B, Rosenow F, Knake S, Oertel WH, Hamer HM: Cytokines and epilepsy. Seizure 2011, 20:249–256.PubMedCrossRef Li G, Bauer S, Nowak M, Norwood B, Tackenberg B, Rosenow F, Knake S, Oertel WH, Hamer HM: Cytokines and epilepsy. Seizure 2011, 20:249–256.PubMedCrossRef
17.
go back to reference Murdoch C, Finn A: Chemokine receptors and their role in inflammation and infectious diseases. Blood 2000, 95:3032–3043.PubMed Murdoch C, Finn A: Chemokine receptors and their role in inflammation and infectious diseases. Blood 2000, 95:3032–3043.PubMed
18.
go back to reference Fabene PF, Bramanti P, Constantin G: The emerging role for chemokines in epilepsy. J Neuroimmunol 2010, 224:22–27.PubMedCrossRef Fabene PF, Bramanti P, Constantin G: The emerging role for chemokines in epilepsy. J Neuroimmunol 2010, 224:22–27.PubMedCrossRef
19.
go back to reference De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, De Luigi A, Garattini S, Vezzani A: Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 2000, 12:2623–2633.PubMedCrossRef De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, De Luigi A, Garattini S, Vezzani A: Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 2000, 12:2623–2633.PubMedCrossRef
20.
go back to reference Fabene PF, Navarro MG, Martinello M, Rossi B, Merigo F, Ottoboni L, Bach S, Angiari S, Benati D, Chakir A, Zanetti L, Schio F, Osculati A, Marzola P, Nicolato E, Homeister JW, Xia L, Lowe JB, McEver RP, Osculati F, Sbarbati A, Butcher EC, Constantin G: A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 2008, 14:1377–1383.PubMedPubMedCentralCrossRef Fabene PF, Navarro MG, Martinello M, Rossi B, Merigo F, Ottoboni L, Bach S, Angiari S, Benati D, Chakir A, Zanetti L, Schio F, Osculati A, Marzola P, Nicolato E, Homeister JW, Xia L, Lowe JB, McEver RP, Osculati F, Sbarbati A, Butcher EC, Constantin G: A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 2008, 14:1377–1383.PubMedPubMedCentralCrossRef
21.
go back to reference Zeng LH, Rensing NR, Wong M: The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci 2009, 29:6964–6972.PubMedPubMedCentralCrossRef Zeng LH, Rensing NR, Wong M: The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci 2009, 29:6964–6972.PubMedPubMedCentralCrossRef
22.
go back to reference Louboutin JP, Chekmasova A, Marusich E, Agrawal L, Strayer DS: Role of CCR5 and its ligands in the control of vascular inflammation and leukocyte recruitment required for acute excitotoxic seizure induction and neural damage. FASEB J 2011, 25:737–753.PubMedPubMedCentralCrossRef Louboutin JP, Chekmasova A, Marusich E, Agrawal L, Strayer DS: Role of CCR5 and its ligands in the control of vascular inflammation and leukocyte recruitment required for acute excitotoxic seizure induction and neural damage. FASEB J 2011, 25:737–753.PubMedPubMedCentralCrossRef
23.
go back to reference Marchi N, Fan Q, Ghosh C, Fazio V, Bertolini F, Betto G, Batra A, Carlton E, Najm I, Granata T, Janigro D: Antagonism of peripheral inflammation reduces the severity of status epilepticus. Neurobiol Dis 2009, 33:171–181.PubMedCrossRef Marchi N, Fan Q, Ghosh C, Fazio V, Bertolini F, Betto G, Batra A, Carlton E, Najm I, Granata T, Janigro D: Antagonism of peripheral inflammation reduces the severity of status epilepticus. Neurobiol Dis 2009, 33:171–181.PubMedCrossRef
24.
go back to reference Huang X, Zhang H, Yang J, Wu J, McMahon J, Lin Y, Cao Z, Gruenthal M, Huang Y: Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy. Neurobiol Dis 2010, 40:193–199.PubMedPubMedCentralCrossRef Huang X, Zhang H, Yang J, Wu J, McMahon J, Lin Y, Cao Z, Gruenthal M, Huang Y: Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy. Neurobiol Dis 2010, 40:193–199.PubMedPubMedCentralCrossRef
25.
go back to reference Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, Rossetti C, Molteni M, Casalgrandi M, Manfredi AA, Bianchi ME, Vezzani A: Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 2010, 16:413–419.PubMedCrossRef Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, Rossetti C, Molteni M, Casalgrandi M, Manfredi AA, Bianchi ME, Vezzani A: Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 2010, 16:413–419.PubMedCrossRef
27.
go back to reference Savarin-Vuaillat C, Ransohoff RM: Chemokines and chemokine receptors in neurological disease: raise, retain, or reduce? Neurotherapeutics 2007, 4:590–601.PubMedCrossRef Savarin-Vuaillat C, Ransohoff RM: Chemokines and chemokine receptors in neurological disease: raise, retain, or reduce? Neurotherapeutics 2007, 4:590–601.PubMedCrossRef
28.
go back to reference Schwartz M: The emergence of a new science of the mind: immunology benefits the mind. Mol Psychiatry 2010, 15:337–338.PubMedCrossRef Schwartz M: The emergence of a new science of the mind: immunology benefits the mind. Mol Psychiatry 2010, 15:337–338.PubMedCrossRef
29.
go back to reference McClelland S, Flynn C, Dube C, Richichi C, Zha Q, Ghestem A, Esclapez M, Bernard C, Baram TZ: Neuron-restrictive silencer factor-mediated hyperpolarization-activated cyclic nucleotide gated channelopathy in experimental temporal lobe epilepsy. Ann Neurol 2011, 70:454–464.PubMedPubMedCentralCrossRef McClelland S, Flynn C, Dube C, Richichi C, Zha Q, Ghestem A, Esclapez M, Bernard C, Baram TZ: Neuron-restrictive silencer factor-mediated hyperpolarization-activated cyclic nucleotide gated channelopathy in experimental temporal lobe epilepsy. Ann Neurol 2011, 70:454–464.PubMedPubMedCentralCrossRef
30.
go back to reference Kan AA, van Erp S, Derijck AA, de Wit M, Hessel EV, O’Duibhir E, de Jager W, van Rijen PC, Gosselaar PH, de Graan PN, Pasterkamp RJ: Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cell Mol Life Sci 2012. Epub ahead of print Kan AA, van Erp S, Derijck AA, de Wit M, Hessel EV, O’Duibhir E, de Jager W, van Rijen PC, Gosselaar PH, de Graan PN, Pasterkamp RJ: Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cell Mol Life Sci 2012. Epub ahead of print
31.
go back to reference Debets RM, van Veelen CW, van Huffelen AV, van Emde BW: Presurgical evaluation of patients with intractable partial epilepsy: the Dutch epilepsy surgery program. Acta Neurol Belg 1991, 91:125–140.PubMed Debets RM, van Veelen CW, van Huffelen AV, van Emde BW: Presurgical evaluation of patients with intractable partial epilepsy: the Dutch epilepsy surgery program. Acta Neurol Belg 1991, 91:125–140.PubMed
32.
go back to reference Boer K, Spliet WG, van Rijen PC, Redeker S, Troost D, Aronica E: Evidence of activated microglia in focal cortical dysplasia. J Neuroimmunol 2006, 173:188–195.PubMedCrossRef Boer K, Spliet WG, van Rijen PC, Redeker S, Troost D, Aronica E: Evidence of activated microglia in focal cortical dysplasia. J Neuroimmunol 2006, 173:188–195.PubMedCrossRef
33.
go back to reference Choi J, Nordli DR Jr, Alden TD, DiPatri A Jr, Laux L, Kelley K, Rosenow J, Schuele SU, Rajaram V, Koh S: Cellular injury and neuroinflammation in children with chronic intractable epilepsy. J Neuroinflammation 2009, 6:38.PubMedPubMedCentralCrossRef Choi J, Nordli DR Jr, Alden TD, DiPatri A Jr, Laux L, Kelley K, Rosenow J, Schuele SU, Rajaram V, Koh S: Cellular injury and neuroinflammation in children with chronic intractable epilepsy. J Neuroinflammation 2009, 6:38.PubMedPubMedCentralCrossRef
34.
go back to reference Wyler AR, Dohan FC, Schweitzer JB, Berry AD: A grading system for mesial temporal pathology (hippocampal sclerosis) from anterior temporal lobectomy. Journal of Epilepsy 1992, 5:220–225.CrossRef Wyler AR, Dohan FC, Schweitzer JB, Berry AD: A grading system for mesial temporal pathology (hippocampal sclerosis) from anterior temporal lobectomy. Journal of Epilepsy 1992, 5:220–225.CrossRef
35.
go back to reference Engel J, Van Ness PC, Rasmussen TB, Ojemann LM: Outcome with respect to epileptic seizures. New York: Raven; 1993:609–621. Engel J, Van Ness PC, Rasmussen TB, Ojemann LM: Outcome with respect to epileptic seizures. New York: Raven; 1993:609–621.
36.
go back to reference Hulse RE, Kunkler PE, Fedynyshyn JP, Kraig RP: Optimization of multiplexed bead-based cytokine immunoassays for rat serum and brain tissue. J Neurosci Methods 2004, 136:87–98.PubMedPubMedCentralCrossRef Hulse RE, Kunkler PE, Fedynyshyn JP, Kraig RP: Optimization of multiplexed bead-based cytokine immunoassays for rat serum and brain tissue. J Neurosci Methods 2004, 136:87–98.PubMedPubMedCentralCrossRef
37.
go back to reference de Jager W, Te VH, Prakken BJ, Kuis W, Rijkers GT: Simultaneous detection of 15 human cytokines in a single sample of stimulated peripheral blood mononuclear cells. Clin Diagn Lab Immunol 2003, 10:133–139.PubMedPubMedCentral de Jager W, Te VH, Prakken BJ, Kuis W, Rijkers GT: Simultaneous detection of 15 human cytokines in a single sample of stimulated peripheral blood mononuclear cells. Clin Diagn Lab Immunol 2003, 10:133–139.PubMedPubMedCentral
38.
go back to reference de Jager W, Prakken BJ, Bijlsma JW, Kuis W, Rijkers GT: Improved multiplex immunoassay performance in human plasma and synovial fluid following removal of interfering heterophilic antibodies. J Immunol Methods 2005, 300:124–135.PubMedCrossRef de Jager W, Prakken BJ, Bijlsma JW, Kuis W, Rijkers GT: Improved multiplex immunoassay performance in human plasma and synovial fluid following removal of interfering heterophilic antibodies. J Immunol Methods 2005, 300:124–135.PubMedCrossRef
39.
go back to reference Romijn HJ, van Uum JF, Breedijk I, Emmering J, Radu I, Pool CW: Double immunolabeling of neuropeptides in the human hypothalamus as analyzed by confocal laser scanning fluorescence microscopy. J Histochem Cytochem 1999, 47:229–236.PubMedCrossRef Romijn HJ, van Uum JF, Breedijk I, Emmering J, Radu I, Pool CW: Double immunolabeling of neuropeptides in the human hypothalamus as analyzed by confocal laser scanning fluorescence microscopy. J Histochem Cytochem 1999, 47:229–236.PubMedCrossRef
40.
go back to reference Marengo E, Robotti E, Bobba M, Gosetti F: The principle of exhaustiveness versus the principle of parsimony: a new approach for the identification of biomarkers from proteomic spot volume datasets based on principal component analysis. Anal Bioanal Chem 2010, 397:25–41.PubMedCrossRef Marengo E, Robotti E, Bobba M, Gosetti F: The principle of exhaustiveness versus the principle of parsimony: a new approach for the identification of biomarkers from proteomic spot volume datasets based on principal component analysis. Anal Bioanal Chem 2010, 397:25–41.PubMedCrossRef
41.
go back to reference Loup F, Picard F, Yonekawa Y, Wieser HG, Fritschy JM: Selective changes in GABAA receptor subtypes in white matter neurons of patients with focal epilepsy. Brain 2009, 132:2449–2463.PubMedCrossRef Loup F, Picard F, Yonekawa Y, Wieser HG, Fritschy JM: Selective changes in GABAA receptor subtypes in white matter neurons of patients with focal epilepsy. Brain 2009, 132:2449–2463.PubMedCrossRef
42.
go back to reference Notenboom RG, Hampson DR, Jansen GH, van Rijen PC, van Veelen CW, van Nieuwenhuizen O, de Graan PN: Up-regulation of hippocampal metabotropic glutamate receptor 5 in temporal lobe epilepsy patients. Brain 2006, 129:96–107.PubMedCrossRef Notenboom RG, Hampson DR, Jansen GH, van Rijen PC, van Veelen CW, van Nieuwenhuizen O, de Graan PN: Up-regulation of hippocampal metabotropic glutamate receptor 5 in temporal lobe epilepsy patients. Brain 2006, 129:96–107.PubMedCrossRef
43.
go back to reference Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG, Schrama LH, van Veelen CW, van Rijen PC, van Nieuwenhuizen O, Gispen WH, de Graan PNE: Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 2002, 125:32–43.PubMedCrossRef Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG, Schrama LH, van Veelen CW, van Rijen PC, van Nieuwenhuizen O, Gispen WH, de Graan PNE: Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 2002, 125:32–43.PubMedCrossRef
44.
go back to reference Aliashkevich AF, Yilmazer-Hanke D, Van Roost D, Mundhenk B, Schramm J, Blumcke I: Cellular pathology of amygdala neurons in human temporal lobe epilepsy. Acta Neuropathol 2003, 106:99–106.PubMedCrossRef Aliashkevich AF, Yilmazer-Hanke D, Van Roost D, Mundhenk B, Schramm J, Blumcke I: Cellular pathology of amygdala neurons in human temporal lobe epilepsy. Acta Neuropathol 2003, 106:99–106.PubMedCrossRef
45.
go back to reference Zattoni M, Mura ML, Deprez F, Schwendener RA, Engelhardt B, Frei K, Fritschy JM: Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J Neurosci 2011, 31:4037–4050.PubMedCrossRef Zattoni M, Mura ML, Deprez F, Schwendener RA, Engelhardt B, Frei K, Fritschy JM: Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J Neurosci 2011, 31:4037–4050.PubMedCrossRef
46.
go back to reference Dinarello CA: The interleukin-1 family: 10 years of discovery. FASEB J 1994, 8:1314–1325.PubMed Dinarello CA: The interleukin-1 family: 10 years of discovery. FASEB J 1994, 8:1314–1325.PubMed
47.
go back to reference Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, Picot MC, Baldy-Moulinier M, Bockaert J, Crespel A, Lerner-Natoli M: Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain 2007, 130:1942–1956.PubMedCrossRef Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, Picot MC, Baldy-Moulinier M, Bockaert J, Crespel A, Lerner-Natoli M: Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain 2007, 130:1942–1956.PubMedCrossRef
48.
go back to reference Nakahara H, Konishi Y, Beach TG, Yamada N, Makino S, Tooyama I: Infiltration of T lymphocytes and expression of icam-1 in the hippocampus of patients with hippocampal sclerosis. Acta Histochem Cytochem 2010, 43:157–162.PubMedPubMedCentralCrossRef Nakahara H, Konishi Y, Beach TG, Yamada N, Makino S, Tooyama I: Infiltration of T lymphocytes and expression of icam-1 in the hippocampus of patients with hippocampal sclerosis. Acta Histochem Cytochem 2010, 43:157–162.PubMedPubMedCentralCrossRef
49.
go back to reference dos Santos AC, Barsante MM, Arantes RM, Bernard CC, Teixeira MM, Carvalho-Tavares J: CCL2 and CCL5 mediate leukocyte adhesion in experimental autoimmune encephalomyelitis–an intravital microscopy study. J Neuroimmunol 2005, 162:122–129.PubMedCrossRef dos Santos AC, Barsante MM, Arantes RM, Bernard CC, Teixeira MM, Carvalho-Tavares J: CCL2 and CCL5 mediate leukocyte adhesion in experimental autoimmune encephalomyelitis–an intravital microscopy study. J Neuroimmunol 2005, 162:122–129.PubMedCrossRef
50.
go back to reference Vezzani A, Moneta D, Richichi C, Aliprandi M, Burrows SJ, Ravizza T, Perego C, De Simoni MG: Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia 2002,43(Suppl 5):30–35.PubMedCrossRef Vezzani A, Moneta D, Richichi C, Aliprandi M, Burrows SJ, Ravizza T, Perego C, De Simoni MG: Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia 2002,43(Suppl 5):30–35.PubMedCrossRef
51.
go back to reference Auvin S, Shin D, Mazarati A, Sankar R: Inflammation induced by LPS enhances epileptogenesis in immature rat and may be partially reversed by IL1RA. Epilepsia 2010,51(Suppl 3):34–38.PubMedPubMedCentralCrossRef Auvin S, Shin D, Mazarati A, Sankar R: Inflammation induced by LPS enhances epileptogenesis in immature rat and may be partially reversed by IL1RA. Epilepsia 2010,51(Suppl 3):34–38.PubMedPubMedCentralCrossRef
52.
go back to reference Heida JG, Pittman QJ: Causal links between brain cytokines and experimental febrile convulsions in the rat. Epilepsia 2005, 46:1906–1913.PubMedCrossRef Heida JG, Pittman QJ: Causal links between brain cytokines and experimental febrile convulsions in the rat. Epilepsia 2005, 46:1906–1913.PubMedCrossRef
53.
go back to reference Vezzani A, Moneta D, Conti M, Richichi C, Ravizza T, De Luigi A, De Simoni MG, Sperk G, Andell-Jonsson S, Lundkvist J, De Simoni MG, Sperk G, Andell-Jonsson S, Lundkvist J, Iverfeldt K, Bartfai T: Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc Natl Acad Sci USA 2000, 97:11534–11539.PubMedPubMedCentralCrossRef Vezzani A, Moneta D, Conti M, Richichi C, Ravizza T, De Luigi A, De Simoni MG, Sperk G, Andell-Jonsson S, Lundkvist J, De Simoni MG, Sperk G, Andell-Jonsson S, Lundkvist J, Iverfeldt K, Bartfai T: Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc Natl Acad Sci USA 2000, 97:11534–11539.PubMedPubMedCentralCrossRef
54.
go back to reference Biber K, de Jong EK, van Weering HR, Boddeke HW: Chemokines and their receptors in central nervous system disease. Curr Drug Targets 2006, 7:29–46.PubMedCrossRef Biber K, de Jong EK, van Weering HR, Boddeke HW: Chemokines and their receptors in central nervous system disease. Curr Drug Targets 2006, 7:29–46.PubMedCrossRef
55.
go back to reference Michaelson MD, Mehler MF, Xu H, Gross RE, Kessler JA: Interleukin-7 is trophic for embryonic neurons and is expressed in developing brain. Dev Biol 1996, 179:251–263.PubMedCrossRef Michaelson MD, Mehler MF, Xu H, Gross RE, Kessler JA: Interleukin-7 is trophic for embryonic neurons and is expressed in developing brain. Dev Biol 1996, 179:251–263.PubMedCrossRef
56.
go back to reference Moors M, Vudattu NK, Abel J, Kramer U, Rane L, Ulfig N, Ceccatelli S, Seyfert-Margolies V, Fritsche E, Maeurer MJ: Interleukin-7 (IL-7) and IL-7 splice variants affect differentiation of human neural progenitor cells. Genes Immun 2010, 11:11–20.PubMedCrossRef Moors M, Vudattu NK, Abel J, Kramer U, Rane L, Ulfig N, Ceccatelli S, Seyfert-Margolies V, Fritsche E, Maeurer MJ: Interleukin-7 (IL-7) and IL-7 splice variants affect differentiation of human neural progenitor cells. Genes Immun 2010, 11:11–20.PubMedCrossRef
57.
go back to reference Ishizaki Y, Kira R, Fukuda M, Torisu H, Sakai Y, Sanefuji M, Yukaya N, Hara T: Interleukin-10 is associated with resistance to febrile seizures: Genetic association and experimental animal studies. Epilepsia 2009, 50:761–767.PubMedCrossRef Ishizaki Y, Kira R, Fukuda M, Torisu H, Sakai Y, Sanefuji M, Yukaya N, Hara T: Interleukin-10 is associated with resistance to febrile seizures: Genetic association and experimental animal studies. Epilepsia 2009, 50:761–767.PubMedCrossRef
58.
go back to reference Levin SG, Godukhin OV: Protective effects of interleukin-10 on the development of epileptiform activity evoked by transient episodes of hypoxia in rat hippocampal slices. Neurosci Behav Physiol 2007, 37:467–470.PubMedCrossRef Levin SG, Godukhin OV: Protective effects of interleukin-10 on the development of epileptiform activity evoked by transient episodes of hypoxia in rat hippocampal slices. Neurosci Behav Physiol 2007, 37:467–470.PubMedCrossRef
59.
go back to reference Kurreeman FA, Schonkeren JJ, Heijmans BT, Toes RE, Huizinga TW: Transcription of the IL10 gene reveals allele-specific regulation at the mRNA level. Hum Mol Genet 2004, 13:1755–1762.PubMedCrossRef Kurreeman FA, Schonkeren JJ, Heijmans BT, Toes RE, Huizinga TW: Transcription of the IL10 gene reveals allele-specific regulation at the mRNA level. Hum Mol Genet 2004, 13:1755–1762.PubMedCrossRef
61.
go back to reference Guyon A, Nahon JL: Multiple actions of the chemokine stromal cell-derived factor-1alpha on neuronal activity. J Mol Endocrinol 2007, 38:365–376.PubMedCrossRef Guyon A, Nahon JL: Multiple actions of the chemokine stromal cell-derived factor-1alpha on neuronal activity. J Mol Endocrinol 2007, 38:365–376.PubMedCrossRef
62.
go back to reference Kleinschek MA, Owyang AM, Joyce-Shaikh B, Langrish CL, Chen Y, Gorman DM, Blumenschein WM, McClanahan T, Brombacher F, Hurst SD, Kastelein RA: IL-25 regulates Th17 function in autoimmune inflammation. J Exp Med 2007, 204:161–170.PubMedPubMedCentralCrossRef Kleinschek MA, Owyang AM, Joyce-Shaikh B, Langrish CL, Chen Y, Gorman DM, Blumenschein WM, McClanahan T, Brombacher F, Hurst SD, Kastelein RA: IL-25 regulates Th17 function in autoimmune inflammation. J Exp Med 2007, 204:161–170.PubMedPubMedCentralCrossRef
63.
go back to reference Alt C, Laschinger M, Engelhardt B: Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood–brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur J Immunol 2002, 32:2133–2144.PubMedCrossRef Alt C, Laschinger M, Engelhardt B: Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood–brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur J Immunol 2002, 32:2133–2144.PubMedCrossRef
64.
go back to reference Columba-Cabezas S, Serafini B, Ambrosini E, Aloisi F: Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol 2003, 13:38–51.PubMedCrossRef Columba-Cabezas S, Serafini B, Ambrosini E, Aloisi F: Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol 2003, 13:38–51.PubMedCrossRef
65.
go back to reference Sonobe Y, Takeuchi H, Kataoka K, Li H, Jin S, Mimuro M, Hashizume Y, Sano Y, Kanda T, Mizuno T, Suzumura A: Interleukin-25 expressed by brain capillary endothelial cells maintains blood–brain barrier function in a protein kinase Cepsilon-dependent manner. J Biol Chem 2009, 284:31834–31842.PubMedPubMedCentralCrossRef Sonobe Y, Takeuchi H, Kataoka K, Li H, Jin S, Mimuro M, Hashizume Y, Sano Y, Kanda T, Mizuno T, Suzumura A: Interleukin-25 expressed by brain capillary endothelial cells maintains blood–brain barrier function in a protein kinase Cepsilon-dependent manner. J Biol Chem 2009, 284:31834–31842.PubMedPubMedCentralCrossRef
66.
go back to reference Dogan RN, Long N, Forde E, Dennis K, Kohm AP, Miller SD, Karpus WJ: CCL22 regulates experimental autoimmune encephalomyelitis by controlling inflammatory macrophage accumulation and effector function. J Leukoc Biol 2011, 89:93–104.PubMedPubMedCentralCrossRef Dogan RN, Long N, Forde E, Dennis K, Kohm AP, Miller SD, Karpus WJ: CCL22 regulates experimental autoimmune encephalomyelitis by controlling inflammatory macrophage accumulation and effector function. J Leukoc Biol 2011, 89:93–104.PubMedPubMedCentralCrossRef
67.
go back to reference Galimberti D, Fenoglio C, Comi C, Scalabrini D, De Riz M, Leone M, Venturelli E, Cortini F, Piola M, Monaco F, Bresolin N, Scarpini E: MDC/CCL22 intrathecal levels in patients with multiple sclerosis. Mult Scler 2008, 14:547–549.PubMedCrossRef Galimberti D, Fenoglio C, Comi C, Scalabrini D, De Riz M, Leone M, Venturelli E, Cortini F, Piola M, Monaco F, Bresolin N, Scarpini E: MDC/CCL22 intrathecal levels in patients with multiple sclerosis. Mult Scler 2008, 14:547–549.PubMedCrossRef
68.
go back to reference Sweeney CM, Lonergan R, Basdeo SA, Kinsella K, Dungan LS, Higgins SC, Kelly PJ, Costelloe L, Tubridy N, Mills KH, Fletcher JM: IL-27 mediates the response to IFN-beta therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain Behav Immun 2011, 25:1170–1181.PubMedCrossRef Sweeney CM, Lonergan R, Basdeo SA, Kinsella K, Dungan LS, Higgins SC, Kelly PJ, Costelloe L, Tubridy N, Mills KH, Fletcher JM: IL-27 mediates the response to IFN-beta therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain Behav Immun 2011, 25:1170–1181.PubMedCrossRef
69.
go back to reference Fitzgerald DC, Rostami A: Therapeutic potential of IL-27 in multiple sclerosis? Expert Opin Biol Ther 2009, 9:149–160.PubMedCrossRef Fitzgerald DC, Rostami A: Therapeutic potential of IL-27 in multiple sclerosis? Expert Opin Biol Ther 2009, 9:149–160.PubMedCrossRef
70.
go back to reference Muller M, Carter SL, Hofer MJ, Manders P, Getts DR, Getts MT, Dreykluft A, Lu B, Gerard C, King NJ, Campbell IL: CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. J Immunol 2007, 179:2774–2786.PubMedCrossRef Muller M, Carter SL, Hofer MJ, Manders P, Getts DR, Getts MT, Dreykluft A, Lu B, Gerard C, King NJ, Campbell IL: CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. J Immunol 2007, 179:2774–2786.PubMedCrossRef
71.
go back to reference Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM: Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 1999, 103:807–815.PubMedPubMedCentralCrossRef Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM: Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 1999, 103:807–815.PubMedPubMedCentralCrossRef
72.
go back to reference Kohler RE, Comerford I, Townley S, Haylock-Jacobs S, Clark-Lewis I, McColl SR: Antagonism of the chemokine receptors CXCR3 and CXCR4 reduces the pathology of experimental autoimmune encephalomyelitis. Brain Pathol 2008, 18:504–516.PubMed Kohler RE, Comerford I, Townley S, Haylock-Jacobs S, Clark-Lewis I, McColl SR: Antagonism of the chemokine receptors CXCR3 and CXCR4 reduces the pathology of experimental autoimmune encephalomyelitis. Brain Pathol 2008, 18:504–516.PubMed
73.
go back to reference Camacho-Arroyo I, Lopez-Griego L, Morales-Montor J: The role of cytokines in the regulation of neurotransmission. Neuroimmunomodulation 2009, 16:1–12.PubMedCrossRef Camacho-Arroyo I, Lopez-Griego L, Morales-Montor J: The role of cytokines in the regulation of neurotransmission. Neuroimmunomodulation 2009, 16:1–12.PubMedCrossRef
74.
go back to reference Mendoza-Fernandez V, Andrew RD, Barajas-Lopez C: Interferon-alpha inhibits long-term potentiation and unmasks a long-term depression in the rat hippocampus. Brain Res 2000, 885:14–24.PubMedCrossRef Mendoza-Fernandez V, Andrew RD, Barajas-Lopez C: Interferon-alpha inhibits long-term potentiation and unmasks a long-term depression in the rat hippocampus. Brain Res 2000, 885:14–24.PubMedCrossRef
75.
go back to reference Salzmann A, Perroud N, Crespel A, Lambercy C, Malafosse A: Candidate genes for temporal lobe epilepsy: a replication study. Neurol Sci 2008, 29:397–403.PubMedCrossRef Salzmann A, Perroud N, Crespel A, Lambercy C, Malafosse A: Candidate genes for temporal lobe epilepsy: a replication study. Neurol Sci 2008, 29:397–403.PubMedCrossRef
76.
go back to reference Peltola J, Keranen T, Rainesalo S, Hurme M: Polymorphism of the interleukin-1 gene complex in localization-related epilepsy. Ann Neurol 2001, 50:275–276.PubMedCrossRef Peltola J, Keranen T, Rainesalo S, Hurme M: Polymorphism of the interleukin-1 gene complex in localization-related epilepsy. Ann Neurol 2001, 50:275–276.PubMedCrossRef
77.
go back to reference Dominici R, Cattaneo M, Malferrari G, Archi D, Mariani C, Grimaldi LM, Biunno I: Cloning and functional analysis of the allelic polymorphism in the transcription regulatory region of interleukin-1 alpha. Immunogenetics 2002, 54:82–86.PubMedCrossRef Dominici R, Cattaneo M, Malferrari G, Archi D, Mariani C, Grimaldi LM, Biunno I: Cloning and functional analysis of the allelic polymorphism in the transcription regulatory region of interleukin-1 alpha. Immunogenetics 2002, 54:82–86.PubMedCrossRef
78.
go back to reference Akita H, Takagi N, Ishihara N, Takagi K, Murotomi K, Funakoshi H, Matsumoto K, Nakamura T, Takeo S: Hepatocyte growth factor improves synaptic localization of the NMDA receptor and intracellular signaling after excitotoxic injury in cultured hippocampal neurons. Exp Neurol 2008, 210:83–94.PubMedCrossRef Akita H, Takagi N, Ishihara N, Takagi K, Murotomi K, Funakoshi H, Matsumoto K, Nakamura T, Takeo S: Hepatocyte growth factor improves synaptic localization of the NMDA receptor and intracellular signaling after excitotoxic injury in cultured hippocampal neurons. Exp Neurol 2008, 210:83–94.PubMedCrossRef
79.
go back to reference Tonges L, Ostendorf T, Lamballe F, Genestine M, Dono R, Koch JC, Bahr M, Maina F, Lingor P: Hepatocyte growth factor protects retinal ganglion cells by increasing neuronal survival and axonal regeneration in vitro and in vivo. J Neurochem 2011, 117:892–903.PubMedCrossRef Tonges L, Ostendorf T, Lamballe F, Genestine M, Dono R, Koch JC, Bahr M, Maina F, Lingor P: Hepatocyte growth factor protects retinal ganglion cells by increasing neuronal survival and axonal regeneration in vitro and in vivo. J Neurochem 2011, 117:892–903.PubMedCrossRef
80.
go back to reference Dube CM, Ravizza T, Hamamura M, Zha Q, Keebaugh A, Fok K, Andres AL, Nalcioglu O, Obenaus A, Vezzani A, Baram TZ: Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers. J Neurosci 2010, 30:7484–7494.PubMedPubMedCentralCrossRef Dube CM, Ravizza T, Hamamura M, Zha Q, Keebaugh A, Fok K, Andres AL, Nalcioglu O, Obenaus A, Vezzani A, Baram TZ: Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers. J Neurosci 2010, 30:7484–7494.PubMedPubMedCentralCrossRef
81.
go back to reference Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, Binaglia M, Corsini E, Di Luca M, Galli CL, Marinovich M: Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 2003, 23:8692–8700.PubMed Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, Binaglia M, Corsini E, Di Luca M, Galli CL, Marinovich M: Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 2003, 23:8692–8700.PubMed
82.
go back to reference Balosso S, Maroso M, Sanchez-Alavez M, Ravizza T, Frasca A, Bartfai T, Vezzani A: A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1beta. Brain 2008, 131:3256–3265.PubMedPubMedCentralCrossRef Balosso S, Maroso M, Sanchez-Alavez M, Ravizza T, Frasca A, Bartfai T, Vezzani A: A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1beta. Brain 2008, 131:3256–3265.PubMedPubMedCentralCrossRef
83.
go back to reference Cammalleri M, Martini D, Ristori C, Timperio AM, Bagnoli P: Vascular endothelial growth factor up-regulation in the mouse hippocampus and its role in the control of epileptiform activity. Eur J Neurosci 2011, 33:482–498.PubMedCrossRef Cammalleri M, Martini D, Ristori C, Timperio AM, Bagnoli P: Vascular endothelial growth factor up-regulation in the mouse hippocampus and its role in the control of epileptiform activity. Eur J Neurosci 2011, 33:482–498.PubMedCrossRef
84.
go back to reference Nicoletti JN, Shah SK, McCloskey DP, Goodman JH, Elkady A, Atassi H, Hylton D, Rudge JS, Scharfman HE, Croll SD: Vascular endothelial growth factor is up-regulated after status epilepticus and protects against seizure-induced neuronal loss in hippocampus. Neuroscience 2008, 151:232–241.PubMedCrossRef Nicoletti JN, Shah SK, McCloskey DP, Goodman JH, Elkady A, Atassi H, Hylton D, Rudge JS, Scharfman HE, Croll SD: Vascular endothelial growth factor is up-regulated after status epilepticus and protects against seizure-induced neuronal loss in hippocampus. Neuroscience 2008, 151:232–241.PubMedCrossRef
85.
go back to reference McCloskey DP, Croll SD, Scharfman HE: Depression of synaptic transmission by vascular endothelial growth factor in adult rat hippocampus and evidence for increased efficacy after chronic seizures. J Neurosci 2005, 25:8889–8897.PubMedPubMedCentralCrossRef McCloskey DP, Croll SD, Scharfman HE: Depression of synaptic transmission by vascular endothelial growth factor in adult rat hippocampus and evidence for increased efficacy after chronic seizures. J Neurosci 2005, 25:8889–8897.PubMedPubMedCentralCrossRef
86.
go back to reference Li Q, Oshige H, Zhen Y, Yamahara T, Oishi T, Seno T, Kawaguchi T, Numa Y, Kawamoto K: Interleukin-5 and interleukin-10 are produced in central nervous system tumor cysts. J Clin Neurosci 2009, 16:437–440.PubMedCrossRef Li Q, Oshige H, Zhen Y, Yamahara T, Oishi T, Seno T, Kawaguchi T, Numa Y, Kawamoto K: Interleukin-5 and interleukin-10 are produced in central nervous system tumor cysts. J Clin Neurosci 2009, 16:437–440.PubMedCrossRef
87.
go back to reference Liva SM, de Vellis J: IL-5 induces proliferation and activation of microglia via an unknown receptor. Neurochem Res 2001, 26:629–637.PubMedCrossRef Liva SM, de Vellis J: IL-5 induces proliferation and activation of microglia via an unknown receptor. Neurochem Res 2001, 26:629–637.PubMedCrossRef
88.
89.
go back to reference Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL: Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986, 136:2348–2357.PubMed Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL: Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986, 136:2348–2357.PubMed
90.
go back to reference Nunnari G, Xu Y, Acheampong EA, Fang J, Daniel R, Zhang C, Zhang H, Mukhtar M, Pomerantz RJ: Exogenous IL-7 induces Fas-mediated human neuronal apoptosis: potential effects during human immunodeficiency virus type 1 infection. J Neurovirol 2005, 11:319–328.PubMedCrossRef Nunnari G, Xu Y, Acheampong EA, Fang J, Daniel R, Zhang C, Zhang H, Mukhtar M, Pomerantz RJ: Exogenous IL-7 induces Fas-mediated human neuronal apoptosis: potential effects during human immunodeficiency virus type 1 infection. J Neurovirol 2005, 11:319–328.PubMedCrossRef
91.
go back to reference Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A: Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat Med 2007, 13:1173–1175.PubMedCrossRef Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A: Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat Med 2007, 13:1173–1175.PubMedCrossRef
92.
go back to reference Morin-Brureau M, Lebrun A, Rousset MC, Fagni L, Bockaert J, de Bock F, Lerner-Natoli M: Epileptiform activity induces vascular remodeling and zonula occludens 1 downregulation in organotypic hippocampal cultures: role of VEGF signaling pathways. J Neurosci 2011, 31:10677–10688.PubMedCrossRef Morin-Brureau M, Lebrun A, Rousset MC, Fagni L, Bockaert J, de Bock F, Lerner-Natoli M: Epileptiform activity induces vascular remodeling and zonula occludens 1 downregulation in organotypic hippocampal cultures: role of VEGF signaling pathways. J Neurosci 2011, 31:10677–10688.PubMedCrossRef
93.
go back to reference Suidan GL, Dickerson JW, Chen Y, McDole JR, Tripathi P, Pirko I, Seroogy KB, Johnson AJ: CD8 T cell-initiated vascular endothelial growth factor expression promotes central nervous system vascular permeability under neuroinflammatory conditions. J Immunol 2010, 184:1031–1040.PubMedCrossRef Suidan GL, Dickerson JW, Chen Y, McDole JR, Tripathi P, Pirko I, Seroogy KB, Johnson AJ: CD8 T cell-initiated vascular endothelial growth factor expression promotes central nervous system vascular permeability under neuroinflammatory conditions. J Immunol 2010, 184:1031–1040.PubMedCrossRef
94.
go back to reference Seiffert E, Dreier JP, Ivens S, Bechmann I, Tomkins O, Heinemann U, Friedman A: Lasting blood–brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci 2004, 24:7829–7836.PubMedCrossRef Seiffert E, Dreier JP, Ivens S, Bechmann I, Tomkins O, Heinemann U, Friedman A: Lasting blood–brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci 2004, 24:7829–7836.PubMedCrossRef
95.
96.
go back to reference Marchi N, Angelov L, Masaryk T, Fazio V, Granata T, Hernandez N, Hallene K, Diglaw T, Franic L, Najm I, Janigro D: Seizure-promoting effect of blood–brain barrier disruption. Epilepsia 2007, 48:732–742.PubMedPubMedCentralCrossRef Marchi N, Angelov L, Masaryk T, Fazio V, Granata T, Hernandez N, Hallene K, Diglaw T, Franic L, Najm I, Janigro D: Seizure-promoting effect of blood–brain barrier disruption. Epilepsia 2007, 48:732–742.PubMedPubMedCentralCrossRef
97.
go back to reference van Vliet EA, da Costa AS, Redeker S, van Schaik R, Aronica E, Gorter JA: Blood–brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 2007, 130:521–534.PubMedCrossRef van Vliet EA, da Costa AS, Redeker S, van Schaik R, Aronica E, Gorter JA: Blood–brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 2007, 130:521–534.PubMedCrossRef
98.
99.
go back to reference Vezzani A, Aronica E, Mazarati A, Pittman QJ: Epilepsy and brain inflammation. Exp Neurol 2011. Epub ahead of print Vezzani A, Aronica E, Mazarati A, Pittman QJ: Epilepsy and brain inflammation. Exp Neurol 2011. Epub ahead of print
100.
go back to reference Lukasiuk K, Dabrowski M, Adach A, Pitkanen A: Epileptogenesis-related genes revisited. Prog Brain Res 2006, 158:223–241.PubMedCrossRef Lukasiuk K, Dabrowski M, Adach A, Pitkanen A: Epileptogenesis-related genes revisited. Prog Brain Res 2006, 158:223–241.PubMedCrossRef
101.
go back to reference Peltola J, Palmio J, Korhonen L, Suhonen J, Miettinen A, Hurme M, Lindholm D, Keranen T: Interleukin-6 and interleukin-1 receptor antagonist in cerebrospinal fluid from patients with recent tonic-clonic seizures. Epilepsy Res 2000, 41:205–211.PubMedCrossRef Peltola J, Palmio J, Korhonen L, Suhonen J, Miettinen A, Hurme M, Lindholm D, Keranen T: Interleukin-6 and interleukin-1 receptor antagonist in cerebrospinal fluid from patients with recent tonic-clonic seizures. Epilepsy Res 2000, 41:205–211.PubMedCrossRef
102.
go back to reference Bauer S, Cepok S, Todorova-Rudolph A, Nowak M, Koller M, Lorenz R, Oertel WH, Rosenow F, Hemmer B, Hamer HM: Etiology and site of temporal lobe epilepsy influence postictal cytokine release. Epilepsy Res 2009, 86:82–88.PubMedCrossRef Bauer S, Cepok S, Todorova-Rudolph A, Nowak M, Koller M, Lorenz R, Oertel WH, Rosenow F, Hemmer B, Hamer HM: Etiology and site of temporal lobe epilepsy influence postictal cytokine release. Epilepsy Res 2009, 86:82–88.PubMedCrossRef
103.
go back to reference Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U: Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 2005, 6:775–786.PubMedCrossRef Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U: Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 2005, 6:775–786.PubMedCrossRef
104.
go back to reference Frost RA, Nystrom GJ, Lang CH: Epinephrine stimulates IL-6 expression in skeletal muscle and C2C12 myoblasts: role of c-Jun NH2-terminal kinase and histone deacetylase activity. Am J Physiol Endocrinol Metab 2004, 286:E809-E817.PubMedCrossRef Frost RA, Nystrom GJ, Lang CH: Epinephrine stimulates IL-6 expression in skeletal muscle and C2C12 myoblasts: role of c-Jun NH2-terminal kinase and histone deacetylase activity. Am J Physiol Endocrinol Metab 2004, 286:E809-E817.PubMedCrossRef
105.
go back to reference Febbraio MA, Pedersen BK: Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J 2002, 16:1335–1347.PubMedCrossRef Febbraio MA, Pedersen BK: Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J 2002, 16:1335–1347.PubMedCrossRef
106.
go back to reference Pacifici R, Paris L, Di Carlo S, Bacosi A, Pichini S, Zuccaro P: Cytokine production in blood mononuclear cells from epileptic patients. Epilepsia 1995, 36:384–387.PubMedCrossRef Pacifici R, Paris L, Di Carlo S, Bacosi A, Pichini S, Zuccaro P: Cytokine production in blood mononuclear cells from epileptic patients. Epilepsia 1995, 36:384–387.PubMedCrossRef
107.
go back to reference Lenz JC, Rockstroh JK: Vicriviroc, a new CC-chemokine receptor 5 inhibitor for treatment of HIV: properties, promises and challenges. Expert Opin Drug Metab Toxicol 2010, 6:1139–1150.PubMedCrossRef Lenz JC, Rockstroh JK: Vicriviroc, a new CC-chemokine receptor 5 inhibitor for treatment of HIV: properties, promises and challenges. Expert Opin Drug Metab Toxicol 2010, 6:1139–1150.PubMedCrossRef
108.
Metadata
Title
Protein expression profiling of inflammatory mediators in human temporal lobe epilepsy reveals co-activation of multiple chemokines and cytokines
Authors
Anne A Kan
Wilco de Jager
Marina de Wit
Cobi Heijnen
Mirjam van Zuiden
Cyrill Ferrier
Peter van Rijen
Peter Gosselaar
Ellen Hessel
Onno van Nieuwenhuizen
Pierre N E de Graan
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-207

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue