Skip to main content
Top
Published in: International Journal of Hematology 1/2019

01-01-2019 | Original Article

Deregulated iron metabolism in bone marrow from adenine-induced mouse model of chronic kidney disease

Authors: Tomoko Kimura, Takahiro Kuragano, Kiyoko Yamamoto, Masayoshi Nanami, Yukiko Hasuike, Takeshi Nakanishi

Published in: International Journal of Hematology | Issue 1/2019

Login to get access

Abstract

Although the primary cause of anemia in chronic kidney disease (CKD) is lack of sufficient erythropoietin (EPO), other factors may be involved, including the deregulation of iron metabolism. To clarify the mechanism of deranged erythropoiesis in CKD, we evaluated bone marrow (BM) cells in adenine-induced CKD mice. They showed even higher EPO expression in the kidney. Hepatic hepcidin mRNA and plasma hepcidin and ferritin levels were increased. Flow cytometry revealed a decrease in the number of cells expressing transferrin receptor (TfR), or late erythroid progenitors in BM; these cells correspond to proerythroblasts, and basophilic and polychromatic erythroblasts. In CKD mice, levels of erythroferrone mRNA in BM and splenic cells were significantly decreased, and MafB protein levels in BM cells were significantly increased. These results suggest that, in BM, the decrease in TfR, which may be associated with increased MafB levels, and the decrease in erythroferrone increase hepatic hepcidin expression, which may perturb iron recycling and erythropoiesis.
Literature
1.
go back to reference Fisher JW. Erythropoietin: physiology and pharmacology update. Exp Biol Med (Maywood). 2003;228:1–14.CrossRef Fisher JW. Erythropoietin: physiology and pharmacology update. Exp Biol Med (Maywood). 2003;228:1–14.CrossRef
2.
go back to reference Nakhoul G, Simon JF. Anemia of chronic kidney disease; treat it, but not too aggressively. Cleve Clin J Med. 2016;83:613–24.CrossRefPubMed Nakhoul G, Simon JF. Anemia of chronic kidney disease; treat it, but not too aggressively. Cleve Clin J Med. 2016;83:613–24.CrossRefPubMed
3.
go back to reference Radtke HW, Claussner A, Erbes PM, Scheuermann EH, Schoeppe W, Koch KM. Serum erythropoietin concentration in chronic renal failure: relationship to degree of anemia and excretory renal function. Blood. 1979;54:877–84.PubMed Radtke HW, Claussner A, Erbes PM, Scheuermann EH, Schoeppe W, Koch KM. Serum erythropoietin concentration in chronic renal failure: relationship to degree of anemia and excretory renal function. Blood. 1979;54:877–84.PubMed
4.
go back to reference Fukushima Y, Fukuda M, Yoshida K, Yamaguchi A, Nakamoto Y, Miura AB, et al. Serum Erythropoietin levels and inhibitors of erythropoiesis in patients with chronic renal failure. Tohoku J Exp Med. 1986;150:1–15.CrossRefPubMed Fukushima Y, Fukuda M, Yoshida K, Yamaguchi A, Nakamoto Y, Miura AB, et al. Serum Erythropoietin levels and inhibitors of erythropoiesis in patients with chronic renal failure. Tohoku J Exp Med. 1986;150:1–15.CrossRefPubMed
5.
go back to reference Macdougall IC. Role of uremic toxins in exacerbating anemia in renal failure. Kidney Int Suppl. 2001;78:67–72.CrossRef Macdougall IC. Role of uremic toxins in exacerbating anemia in renal failure. Kidney Int Suppl. 2001;78:67–72.CrossRef
6.
go back to reference Sun CC, Vaja V, Chen S, Theurl I, Stepanek A, Brown DE, et al. A hepcidin lowering agent mobilizes iron for incorporation into red blood cells in an adenine-induced kidney disease model of anemia in rats. Nephrol Dial Transpl. 2013;28:1733–43.CrossRef Sun CC, Vaja V, Chen S, Theurl I, Stepanek A, Brown DE, et al. A hepcidin lowering agent mobilizes iron for incorporation into red blood cells in an adenine-induced kidney disease model of anemia in rats. Nephrol Dial Transpl. 2013;28:1733–43.CrossRef
7.
go back to reference Jankowska EA, Kasztura M, Sokolski M, Bronisz M, Nawrocka S, Oleśkowska-Florek W, et al. Iron deficiency defined as depleted iron stores accompanied by unmet cellular iron requirements identifies patients at the highest risk of death after an episode of acute heart failure. Eur Heart J. 2014;35:2468–76.CrossRefPubMed Jankowska EA, Kasztura M, Sokolski M, Bronisz M, Nawrocka S, Oleśkowska-Florek W, et al. Iron deficiency defined as depleted iron stores accompanied by unmet cellular iron requirements identifies patients at the highest risk of death after an episode of acute heart failure. Eur Heart J. 2014;35:2468–76.CrossRefPubMed
8.
go back to reference Akchurin O, Sureshbabu A, Doty SB, Zhu YS, Patino E, Cunningham-Rundles S, et al. Lack of hepcidin ameliorates anemia and improves growth in an adenine-induced mouse model of chronic kidney disease. Am J Physiol Renal Physiol. 2016;311:F877–89.CrossRefPubMedPubMedCentral Akchurin O, Sureshbabu A, Doty SB, Zhu YS, Patino E, Cunningham-Rundles S, et al. Lack of hepcidin ameliorates anemia and improves growth in an adenine-induced mouse model of chronic kidney disease. Am J Physiol Renal Physiol. 2016;311:F877–89.CrossRefPubMedPubMedCentral
9.
go back to reference Khorramian E, Fung E, Chua K, Gabayan V, Ganz T, Nemeth E, et al. In a mouse model of sepsis, hepcidin ablation ameliorates anemia more effectively than iron and erythropoietin treatment. Shock. 2017;48:490–7.CrossRefPubMedPubMedCentral Khorramian E, Fung E, Chua K, Gabayan V, Ganz T, Nemeth E, et al. In a mouse model of sepsis, hepcidin ablation ameliorates anemia more effectively than iron and erythropoietin treatment. Shock. 2017;48:490–7.CrossRefPubMedPubMedCentral
10.
go back to reference Koury MJ, Ponka P. New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Annu Rev Nutr. 2004;24:105–31.CrossRef Koury MJ, Ponka P. New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Annu Rev Nutr. 2004;24:105–31.CrossRef
11.
go back to reference Williams KN, Szilagyi A, Conrad P, Halerz M, Kini AR, Li Y, et al. Peripheral blood mononuclear cell-derived erythroid progenitors and erythroblasts are decreased in burn patients. J Burn Care Res. 2013;34:133–41.CrossRefPubMed Williams KN, Szilagyi A, Conrad P, Halerz M, Kini AR, Li Y, et al. Peripheral blood mononuclear cell-derived erythroid progenitors and erythroblasts are decreased in burn patients. J Burn Care Res. 2013;34:133–41.CrossRefPubMed
12.
go back to reference Wang PW, Eisenbart JD, Cordes SP, Barsh GS, Stoffel M, Le Beau MM. Human KRML (MAFB): cDNA cloning, genomic structure, and evaluation as a candidate tumor suppressor gene in myeloid leukemias. Genomics. 1999;59:275–81.CrossRefPubMed Wang PW, Eisenbart JD, Cordes SP, Barsh GS, Stoffel M, Le Beau MM. Human KRML (MAFB): cDNA cloning, genomic structure, and evaluation as a candidate tumor suppressor gene in myeloid leukemias. Genomics. 1999;59:275–81.CrossRefPubMed
13.
go back to reference Sieweke MH, Tekotte H, Frampton J, Graf T. MafB is an interaction partner and repressor of Ets-1 that inhibits erythroid differentiation. Cell. 1996;85:49–60.CrossRefPubMed Sieweke MH, Tekotte H, Frampton J, Graf T. MafB is an interaction partner and repressor of Ets-1 that inhibits erythroid differentiation. Cell. 1996;85:49–60.CrossRefPubMed
15.
go back to reference Hasan S, Johnson NB, Mosier MJ, Shankar R, Conrad P, Szilagyi A, et al. Myelo-erythroid commitment after burn injury is under beta-adrenergic control via MafB regulation. Am J Physiol Cell Physiol. 2017;312:C286–301.CrossRef Hasan S, Johnson NB, Mosier MJ, Shankar R, Conrad P, Szilagyi A, et al. Myelo-erythroid commitment after burn injury is under beta-adrenergic control via MafB regulation. Am J Physiol Cell Physiol. 2017;312:C286–301.CrossRef
16.
go back to reference Jia T, Olauson H, Lindberg K, Amin R, Edvardsson K, Lindholm B, et al. A novel model of adenine-induced tubulointerstitial nephropathy in mice. BMC Nephrol. 2013;30:14:116. Jia T, Olauson H, Lindberg K, Amin R, Edvardsson K, Lindholm B, et al. A novel model of adenine-induced tubulointerstitial nephropathy in mice. BMC Nephrol. 2013;30:14:116.
17.
go back to reference Wong YT, Gruber J, Jenner AM, Ng MP, Ruan R, Tay FE. Elevation of oxidative-damage biomarkers during aging in F2 hybrid mice: protection by chronic oral intake of resveratrol. Free Radic Biol Med. 2009;46:799–809.CrossRefPubMed Wong YT, Gruber J, Jenner AM, Ng MP, Ruan R, Tay FE. Elevation of oxidative-damage biomarkers during aging in F2 hybrid mice: protection by chronic oral intake of resveratrol. Free Radic Biol Med. 2009;46:799–809.CrossRefPubMed
18.
19.
go back to reference Diwan A, Koesters AG, Odley AM, Pushkaran S, Baines CP, Spike BT, et al. Unrestrained erythroblast development in Nix-/- mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proc Natl Acad Sci U S A. 2007;104:6794–9.CrossRefPubMedPubMedCentral Diwan A, Koesters AG, Odley AM, Pushkaran S, Baines CP, Spike BT, et al. Unrestrained erythroblast development in Nix-/- mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proc Natl Acad Sci U S A. 2007;104:6794–9.CrossRefPubMedPubMedCentral
20.
go back to reference Liu J, Zhang J, Ginzburg Y, Li H, Xue F, De Franceschi L, et al. Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered erythropoiesis. Blood. 2013;121:e43–9.CrossRefPubMedPubMedCentral Liu J, Zhang J, Ginzburg Y, Li H, Xue F, De Franceschi L, et al. Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered erythropoiesis. Blood. 2013;121:e43–9.CrossRefPubMedPubMedCentral
21.
go back to reference Matusuo-Tezuka Y, Noguchi-Sasaki M, Kurasawa M, Yorozu K, Shimonaka Y. Quantitative analysis of dietary iron utilization for erythropoiesis in response to body iron status. Exp Hematol. 2016;44:491–501.CrossRef Matusuo-Tezuka Y, Noguchi-Sasaki M, Kurasawa M, Yorozu K, Shimonaka Y. Quantitative analysis of dietary iron utilization for erythropoiesis in response to body iron status. Exp Hematol. 2016;44:491–501.CrossRef
22.
go back to reference Liu Y, Pop R, Sadegh C, Brugnara C, Haase VH, Socolovsky M. Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood. 2006;108:123–33.CrossRefPubMedPubMedCentral Liu Y, Pop R, Sadegh C, Brugnara C, Haase VH, Socolovsky M. Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood. 2006;108:123–33.CrossRefPubMedPubMedCentral
23.
go back to reference Elliott S, Pham E, Macdougall IC. Erythropoietins: a common mechanism of action. Exp Hematol. 2008;36:1573–84.CrossRefPubMed Elliott S, Pham E, Macdougall IC. Erythropoietins: a common mechanism of action. Exp Hematol. 2008;36:1573–84.CrossRefPubMed
24.
go back to reference Garrido P, Ribeiro S, Fernandes J, Vala H, Bronze-da-Rocha E, Belo L, et al. Iron-hepcidin dysmetabolism, anemia and renal hypoxia, inflammation and fibrosis in the remnant kidney rat model. PLoS One. 2015;10:e0124048.CrossRefPubMedPubMedCentral Garrido P, Ribeiro S, Fernandes J, Vala H, Bronze-da-Rocha E, Belo L, et al. Iron-hepcidin dysmetabolism, anemia and renal hypoxia, inflammation and fibrosis in the remnant kidney rat model. PLoS One. 2015;10:e0124048.CrossRefPubMedPubMedCentral
26.
go back to reference Gross AW, Lodish HF. Cellular trafficking and degradation of erythropoietin and novel erythropoiesis stimulating protein (NESP). J Biol Chem. 2006;281:2024–32.CrossRefPubMed Gross AW, Lodish HF. Cellular trafficking and degradation of erythropoietin and novel erythropoiesis stimulating protein (NESP). J Biol Chem. 2006;281:2024–32.CrossRefPubMed
27.
go back to reference Hertzberg-Bigelman E, Barashi R, Levy R, Cohen L, Ben-Shoshan J, Keren G, et al. Down-regulation of cardiac erythropoietin receptor and its downstream activated signal transducer phospho-STAT-5 in a rat model of chronic kidney disease. Isr Med Assoc J. 2016;18:326–30.PubMed Hertzberg-Bigelman E, Barashi R, Levy R, Cohen L, Ben-Shoshan J, Keren G, et al. Down-regulation of cardiac erythropoietin receptor and its downstream activated signal transducer phospho-STAT-5 in a rat model of chronic kidney disease. Isr Med Assoc J. 2016;18:326–30.PubMed
28.
go back to reference Zeigler BM, Vajdos J, Qin W, Loverro L, Niss K. A mouse model for an erythropoietin-deficiency anemia. Dis Model Mech. 2010;3:763–72.CrossRefPubMed Zeigler BM, Vajdos J, Qin W, Loverro L, Niss K. A mouse model for an erythropoietin-deficiency anemia. Dis Model Mech. 2010;3:763–72.CrossRefPubMed
30.
go back to reference Harigae H. Iron metabolism and related diseases: an overview. Int J Hematol. 2018 Jan;107(1):5–6. doi.CrossRefPubMed Harigae H. Iron metabolism and related diseases: an overview. Int J Hematol. 2018 Jan;107(1):5–6. doi.CrossRefPubMed
31.
go back to reference Papanikolaou G, Pantopoulos K. Systemic iron homeostasis and erythropoiesis. IUBMB Life. 2017;6 9:399–413.CrossRef Papanikolaou G, Pantopoulos K. Systemic iron homeostasis and erythropoiesis. IUBMB Life. 2017;6 9:399–413.CrossRef
32.
go back to reference Kautz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46:678–84.CrossRefPubMedPubMedCentral Kautz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46:678–84.CrossRefPubMedPubMedCentral
33.
go back to reference Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.CrossRefPubMed Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.CrossRefPubMed
34.
go back to reference Keel SB, Doty R, Liu L, Nemeth E, Cherian S, Ganz T, et al. Evidence that the expression of transferrin receptor 1 on erythroid marrow cells mediates hepcidin suppression in the liver. Exp Hematol. 2015;43:469–78.CrossRefPubMedPubMedCentral Keel SB, Doty R, Liu L, Nemeth E, Cherian S, Ganz T, et al. Evidence that the expression of transferrin receptor 1 on erythroid marrow cells mediates hepcidin suppression in the liver. Exp Hematol. 2015;43:469–78.CrossRefPubMedPubMedCentral
35.
go back to reference Sieweke MH, Tekotte H, Frampton J, Graf T. MafB represses erythroid genes and differentiation through direct interaction with c-Ets-1. Leukemia. 1997; Suppl3 : 486–8. Sieweke MH, Tekotte H, Frampton J, Graf T. MafB represses erythroid genes and differentiation through direct interaction with c-Ets-1. Leukemia. 1997; Suppl3 : 486–8.
36.
go back to reference Johnson NB, Posluszny JA, He LK, Szilagyi A, Gamelli G, Shankar RL, et al. Perturbed MafB/GATA1 axis after burn trauma bares the potential mechanism for immune suppression and anemia of critical illness. J Leukoc Biol. 2016;100:725–36.CrossRefPubMedPubMedCentral Johnson NB, Posluszny JA, He LK, Szilagyi A, Gamelli G, Shankar RL, et al. Perturbed MafB/GATA1 axis after burn trauma bares the potential mechanism for immune suppression and anemia of critical illness. J Leukoc Biol. 2016;100:725–36.CrossRefPubMedPubMedCentral
37.
go back to reference Zhang Y, Chen Q, Ross AC. Retinoic acid and tumor necrosis factor-α induced monocytic cell gene expression is regulated in part by induction of transcription factor MafB. Exp Cell Res. 2012;318:2407–16.CrossRefPubMedPubMedCentral Zhang Y, Chen Q, Ross AC. Retinoic acid and tumor necrosis factor-α induced monocytic cell gene expression is regulated in part by induction of transcription factor MafB. Exp Cell Res. 2012;318:2407–16.CrossRefPubMedPubMedCentral
Metadata
Title
Deregulated iron metabolism in bone marrow from adenine-induced mouse model of chronic kidney disease
Authors
Tomoko Kimura
Takahiro Kuragano
Kiyoko Yamamoto
Masayoshi Nanami
Yukiko Hasuike
Takeshi Nakanishi
Publication date
01-01-2019
Publisher
Springer Japan
Published in
International Journal of Hematology / Issue 1/2019
Print ISSN: 0925-5710
Electronic ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-018-2531-2

Other articles of this Issue 1/2019

International Journal of Hematology 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine