Skip to main content
Top
Published in: Annals of Nuclear Medicine 6/2021

01-06-2021 | Positron Emission Tomography | Original Article

Deep learning-based attenuation correction for brain PET with various radiotracers

Authors: Fumio Hashimoto, Masanori Ito, Kibo Ote, Takashi Isobe, Hiroyuki Okada, Yasuomi Ouchi

Published in: Annals of Nuclear Medicine | Issue 6/2021

Login to get access

Abstract

Objectives

Attenuation correction (AC) is crucial for ensuring the quantitative accuracy of positron emission tomography (PET) imaging. However, obtaining accurate μ-maps from brain-dedicated PET scanners without AC acquisition mechanism is challenging. Therefore, to overcome these problems, we developed a deep learning-based PET AC (deep AC) framework to synthesize transmission computed tomography (TCT) images from non-AC (NAC) PET images using a convolutional neural network (CNN) with a huge dataset of various radiotracers for brain PET imaging.

Methods

The proposed framework is comprised of three steps: (1) NAC PET image generation, (2) synthetic TCT generation using CNN, and (3) PET image reconstruction. We trained the CNN by combining the mixed image dataset of six radiotracers to avoid overfitting, including [18F]FDG, [18F]BCPP-EF, [11C]Racropride, [11C]PIB, [11C]DPA-713, and [11C]PBB3. We used 1261 brain NAC PET and TCT images (1091 for training and 70 for testing). We did not include [11C]Methionine subjects in the training dataset, but included them in the testing dataset.

Results

The image quality of the synthetic TCT images obtained using the CNN trained on the mixed dataset of six radiotracers was superior to those obtained using the CNN trained on the split dataset generated from each radiotracer. In the [18F]FDG study, the mean relative PET biases of the emission-segmented AC (ESAC) and deep AC were 8.46 ± 5.24 and − 5.69 ± 4.97, respectively. The deep AC PET and TCT AC PET images exhibited excellent correlation for all seven radiotracers (R2 = 0.912–0.982).

Conclusion

These results indicate that our proposed deep AC framework can be leveraged to provide quantitatively superior PET images when using the CNN trained on the mixed dataset of PET tracers than when using the CNN trained on the split dataset which means specific for each tracer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Phelps ME. PET: molecular imaging and its biological applications. New York: Springer; 2012. Phelps ME. PET: molecular imaging and its biological applications. New York: Springer; 2012.
2.
go back to reference Watanabe M, Shimizu K, Omura T, Takahashi M, Kosugi T, Yoshikawa E, et al. A new high-resolution PET scanner dedicated to brain research. IEEE Trans Nucl Sci. 2002;49(3):634–9.CrossRef Watanabe M, Shimizu K, Omura T, Takahashi M, Kosugi T, Yoshikawa E, et al. A new high-resolution PET scanner dedicated to brain research. IEEE Trans Nucl Sci. 2002;49(3):634–9.CrossRef
3.
go back to reference Watanabe M, Saito A, Isobe T, Ote K, Yamada R, Moriya T, et al. Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors. Phys Med Biol. 2017;62(17):7148–66.CrossRef Watanabe M, Saito A, Isobe T, Ote K, Yamada R, Moriya T, et al. Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors. Phys Med Biol. 2017;62(17):7148–66.CrossRef
4.
go back to reference Tashima H, Yoshida E, Iwao Y, Wakizaka H, Maeda T, Seki C, et al. First prototyping of a dedicated PET system with the hemisphere detector arrangement. Phys Med Biol. 2019;64(6):065004.CrossRef Tashima H, Yoshida E, Iwao Y, Wakizaka H, Maeda T, Seki C, et al. First prototyping of a dedicated PET system with the hemisphere detector arrangement. Phys Med Biol. 2019;64(6):065004.CrossRef
5.
go back to reference Berker Y, Li Y. Attenuation correction in emission tomography using the emission data—a review. Med Phys. 2016;43(2):807–32.CrossRef Berker Y, Li Y. Attenuation correction in emission tomography using the emission data—a review. Med Phys. 2016;43(2):807–32.CrossRef
6.
go back to reference Rezaei A, Defrise M, Bal G, Michel C, Conti M, Watson C, et al. Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans Med Imaging. 2012;31(12):2224–33.CrossRef Rezaei A, Defrise M, Bal G, Michel C, Conti M, Watson C, et al. Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans Med Imaging. 2012;31(12):2224–33.CrossRef
9.
go back to reference Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med. 2011;52(9):1392–9.CrossRef Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med. 2011;52(9):1392–9.CrossRef
10.
go back to reference Hashimoto F, Ohba H, Ote K, Teramoto A, Tsukada H. Dynamic PET image denoising using deep convolutional neural networks without prior training datasets. IEEE Access. 2019;7:96594–603.CrossRef Hashimoto F, Ohba H, Ote K, Teramoto A, Tsukada H. Dynamic PET image denoising using deep convolutional neural networks without prior training datasets. IEEE Access. 2019;7:96594–603.CrossRef
11.
go back to reference Hashimoto F, Ohba H, Ote K, Kakimoto A, Tsukada H, Ouchi Y. 4D deep image prior: dynamic PET image denoising using an unsupervised four-dimensional branch convolutional neural network. Phys Med Biol. 2021;66(1):015006.CrossRef Hashimoto F, Ohba H, Ote K, Kakimoto A, Tsukada H, Ouchi Y. 4D deep image prior: dynamic PET image denoising using an unsupervised four-dimensional branch convolutional neural network. Phys Med Biol. 2021;66(1):015006.CrossRef
12.
go back to reference Reader AJ, Corda G, Mehranian A, da Costa-Luis C, Ellis S, Schnabel JA. Deep learning for PET image reconstruction. IEEE Trans Radiat Plasma Med Sci. 2021;5(1):1–25.CrossRef Reader AJ, Corda G, Mehranian A, da Costa-Luis C, Ellis S, Schnabel JA. Deep learning for PET image reconstruction. IEEE Trans Radiat Plasma Med Sci. 2021;5(1):1–25.CrossRef
13.
go back to reference Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10(3):257–73.CrossRef Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10(3):257–73.CrossRef
14.
go back to reference Lee JS. A review of deep learning-based approaches for attenuation correction in positron emission tomography. IEEE Trans Radiat Plasma Med Sci. 2021;5(2):160–84.CrossRef Lee JS. A review of deep learning-based approaches for attenuation correction in positron emission tomography. IEEE Trans Radiat Plasma Med Sci. 2021;5(2):160–84.CrossRef
16.
go back to reference Arabi H, Zeng G, Zheng G, Zaidi H. Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI. Eur J Nucl Med Mol Imaging. 2019;46(13):2746–59.CrossRef Arabi H, Zeng G, Zheng G, Zaidi H. Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI. Eur J Nucl Med Mol Imaging. 2019;46(13):2746–59.CrossRef
17.
go back to reference Yang J, Park D, Gullberg GT, Seo Y. Joint correction of attenuation and scatter in image space using deep convolutional neural networks for dedicated brain 18F-FDG PET. Phys Med Biol. 2019;64(7):075019.CrossRef Yang J, Park D, Gullberg GT, Seo Y. Joint correction of attenuation and scatter in image space using deep convolutional neural networks for dedicated brain 18F-FDG PET. Phys Med Biol. 2019;64(7):075019.CrossRef
21.
go back to reference Dong X, Wang T, Lei Y, Higgins K, Liu T, Curran WJ, et al. Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging. Phys Med Biol. 2019;64(21):215016.CrossRef Dong X, Wang T, Lei Y, Higgins K, Liu T, Curran WJ, et al. Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging. Phys Med Biol. 2019;64(21):215016.CrossRef
22.
go back to reference Hu Z, Li Y, Zou S, Xue H, Sang Z, Liu X, et al. Obtaining PET/CT images from non-attenuation corrected PET images in a single PET system using Wasserstein generative adversarial networks. Phys Med Biol. 2020;65(21):215010.CrossRef Hu Z, Li Y, Zou S, Xue H, Sang Z, Liu X, et al. Obtaining PET/CT images from non-attenuation corrected PET images in a single PET system using Wasserstein generative adversarial networks. Phys Med Biol. 2020;65(21):215010.CrossRef
23.
go back to reference Dong X, Lei Y, Wang T, Higgins K, Liu T, Curran WJ, et al. Deep learning-based attenuation correction in the absence of structural information for whole-body positron emission tomography imaging. Phys Med Biol. 2020;65(5):055011.CrossRef Dong X, Lei Y, Wang T, Higgins K, Liu T, Curran WJ, et al. Deep learning-based attenuation correction in the absence of structural information for whole-body positron emission tomography imaging. Phys Med Biol. 2020;65(5):055011.CrossRef
24.
go back to reference Hwang D, Kim KY, Kang SK, Seo S, Paeng JC, Lee DS, et al. Improving the accuracy of simultaneously reconstructed activity and attenuation maps using deep learning. J Nucl Med. 2018;59(10):1624–9.CrossRef Hwang D, Kim KY, Kang SK, Seo S, Paeng JC, Lee DS, et al. Improving the accuracy of simultaneously reconstructed activity and attenuation maps using deep learning. J Nucl Med. 2018;59(10):1624–9.CrossRef
25.
go back to reference Hwang D, Kang SK, Kim KY, Seo S, Paeng JC, Lee DS, et al. Generation of PET attenuation map for whole-body time-of-flight 18F-FDG PET/MRI using a deep neural network trained with simultaneously reconstructed activity and attenuation maps. J Nucl Med. 2019;60(8):1183–9.CrossRef Hwang D, Kang SK, Kim KY, Seo S, Paeng JC, Lee DS, et al. Generation of PET attenuation map for whole-body time-of-flight 18F-FDG PET/MRI using a deep neural network trained with simultaneously reconstructed activity and attenuation maps. J Nucl Med. 2019;60(8):1183–9.CrossRef
26.
go back to reference Arabi H, Zaidi H. Deep learning-guided estimation of attenuation correction factors from time-of-flight PET emission data. Med Image Anal. 2020;64:101718.CrossRef Arabi H, Zaidi H. Deep learning-guided estimation of attenuation correction factors from time-of-flight PET emission data. Med Image Anal. 2020;64:101718.CrossRef
27.
go back to reference Arabi H, Bortolin K, Ginovart N, Garibotto V, Zaidi H. Deep learning-guided joint attenuation and scatter correction in multi-tracer neuroimaging studies. Hum Brain Mapp. 2020;41(13):3667–79.CrossRef Arabi H, Bortolin K, Ginovart N, Garibotto V, Zaidi H. Deep learning-guided joint attenuation and scatter correction in multi-tracer neuroimaging studies. Hum Brain Mapp. 2020;41(13):3667–79.CrossRef
28.
go back to reference Harada N, Nishiyama S, Kanazawa M, Tsukada H. Development of novel PET probes, [18F]BCPP-EF, [18F]BCPP-BF, and [11C]BCPP-EM for mitochondrial complex 1 imaging in the living brain. J Label Compd Radiopharm. 2013;56(11):553–61.CrossRef Harada N, Nishiyama S, Kanazawa M, Tsukada H. Development of novel PET probes, [18F]BCPP-EF, [18F]BCPP-BF, and [11C]BCPP-EM for mitochondrial complex 1 imaging in the living brain. J Label Compd Radiopharm. 2013;56(11):553–61.CrossRef
29.
go back to reference Boutin H, Chauveau F, Thominiaux C, Grégoire MC, James ML, Trebossen R, et al. 11C-DPA-713: a novel peripheral benzodiazepine receptor PET ligand for in vivo imaging of neuroinflammation. J Nucl Med. 2007;48(4):573–81.CrossRef Boutin H, Chauveau F, Thominiaux C, Grégoire MC, James ML, Trebossen R, et al. 11C-DPA-713: a novel peripheral benzodiazepine receptor PET ligand for in vivo imaging of neuroinflammation. J Nucl Med. 2007;48(4):573–81.CrossRef
30.
go back to reference Kaji S, Kida S. Overview of image-to-image translation by use of deep neural networks: denoising, super-resolution, modality conversion, and reconstruction in medical imaging. Radiol Phys Technol. 2019;12(3):235–48.CrossRef Kaji S, Kida S. Overview of image-to-image translation by use of deep neural networks: denoising, super-resolution, modality conversion, and reconstruction in medical imaging. Radiol Phys Technol. 2019;12(3):235–48.CrossRef
31.
go back to reference Hashimoto F, Kakimoto A, Ota N, Ito S, Nishizawa S. Automated segmentation of 2D low-dose CT images of the psoas-major muscle using deep convolutional neural networks. Radiol Phys Technol. 2019;12(2):210–5.CrossRef Hashimoto F, Kakimoto A, Ota N, Ito S, Nishizawa S. Automated segmentation of 2D low-dose CT images of the psoas-major muscle using deep convolutional neural networks. Radiol Phys Technol. 2019;12(2):210–5.CrossRef
32.
go back to reference Hashimoto F, Ote K, Oida T, Teramoto A, Ouchi Y. Compressed-sensing magnetic resonance image reconstruction using an iterative convolutional neural network approach. Appl Sci. 2020;10(6):1902.CrossRef Hashimoto F, Ote K, Oida T, Teramoto A, Ouchi Y. Compressed-sensing magnetic resonance image reconstruction using an iterative convolutional neural network approach. Appl Sci. 2020;10(6):1902.CrossRef
35.
go back to reference Tanaka E, Kudo H. Subset-dependent relaxation in block-iterative algorithms for image reconstruction in emission tomography. Phys Med Biol. 2003;48(10):1405–22.CrossRef Tanaka E, Kudo H. Subset-dependent relaxation in block-iterative algorithms for image reconstruction in emission tomography. Phys Med Biol. 2003;48(10):1405–22.CrossRef
36.
go back to reference Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC. Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr. 1998;22(2):324–33.CrossRef Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC. Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr. 1998;22(2):324–33.CrossRef
37.
go back to reference Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med. 2003;44(2):291–315.PubMed Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med. 2003;44(2):291–315.PubMed
38.
go back to reference Kittler J, Illingworth J. Minimum error thresholding. Pattern Recogn. 1986;19(1):41–7.CrossRef Kittler J, Illingworth J. Minimum error thresholding. Pattern Recogn. 1986;19(1):41–7.CrossRef
39.
go back to reference Nakamoto Y, Osman M, Cohade C, Marshall LT, Links JM, Kohlmyer S, et al. PET/CT: comparison of quantitative tracer uptake between germanium and CT transmission attenuation-corrected images. J Nucl Med. 2002;43(9):1137–43.PubMed Nakamoto Y, Osman M, Cohade C, Marshall LT, Links JM, Kohlmyer S, et al. PET/CT: comparison of quantitative tracer uptake between germanium and CT transmission attenuation-corrected images. J Nucl Med. 2002;43(9):1137–43.PubMed
Metadata
Title
Deep learning-based attenuation correction for brain PET with various radiotracers
Authors
Fumio Hashimoto
Masanori Ito
Kibo Ote
Takashi Isobe
Hiroyuki Okada
Yasuomi Ouchi
Publication date
01-06-2021
Publisher
Springer Singapore
Published in
Annals of Nuclear Medicine / Issue 6/2021
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-021-01611-w

Other articles of this Issue 6/2021

Annals of Nuclear Medicine 6/2021 Go to the issue