Skip to main content
Top
Published in: Medical Oncology 7/2016

01-07-2016 | Original Paper

Epac1 knockdown inhibits the proliferation of ovarian cancer cells by inactivating AKT/Cyclin D1/CDK4 pathway in vitro and in vivo

Authors: Meng Gao, Yanyan Ma, Robert C. Bast Jr., Yue Li, Lu Wan, Yanping Liu, Yingshuo Sun, Zhenghui Fang, Lining Zhang, Xiaoyan Wang, Zengtao Wei

Published in: Medical Oncology | Issue 7/2016

Login to get access

Abstract

Ovarian cancer is the leading cause of death among gynecological malignancies, and high grade serous ovarian carcinoma is the most common and most aggressive subtype. Recently, it was demonstrated that cAMP mediates protein kinase A-independent effects through Epac (exchange protein directly activated by cAMP) proteins. Epac proteins, including Epac1 and Epac2, are implicated in several diverse cellular responses, such as insulin secretion, exocytosis, cellular calcium handling and formation of cell–cell junctions. Several reports document that Epac1 could play vital roles in promoting proliferation, invasion and migration of some cancer cells. However, the expression levels and roles of Epac1 in ovarian cancer have not been investigated. In the present study, we detected the expression levels of Epac1 mRNA and protein in three kinds of ovarian cancer cells SKOV3, OVCAR3 and CAOV3. Furthermore, the effect of Epac1 knockdown on the proliferation and apoptosis of SKOV3 and OVCAR3 cells was evaluated in vitro and in vivo. The results showed that there was higher expression of Epac1 mRNA and protein in SKOV3 and OVCAR3 cells. Epac1 knockdown inhibited the proliferation of SKOV3 and OVCAR3 cells in vitro and in vivo. Decreased proliferation may be due to downregulation of Epac1-induced G1 phase arrest by inactivating the AKT/Cyclin D1/CDK4 pathway, but not to alterations in the MAPK pathway or to apoptosis. Taken together, our data provide new insight into the essential role of Epac1 in regulating growth of ovarian cancer cells and suggest that Epac1 might represent an attractive therapeutic target for treatment of ovarian cancer.
Appendix
Available only for authorised users
Literature
3.
go back to reference Marquez RT, Baggerly KA, Patterson AP, Liu J, Broaddus R, Frumovitz M, et al. Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal fallopian tube, endometrium, and colon. Clin Cancer Res. 2005;11(17):6116–26. doi:10.1158/1078-0432.CCR-04-2509.CrossRefPubMed Marquez RT, Baggerly KA, Patterson AP, Liu J, Broaddus R, Frumovitz M, et al. Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal fallopian tube, endometrium, and colon. Clin Cancer Res. 2005;11(17):6116–26. doi:10.​1158/​1078-0432.​CCR-04-2509.CrossRefPubMed
5.
go back to reference Clarke-Pearson DL. Clinical practice. Screening for ovarian cancer. N Engl J Med. 2009;361:170–7.CrossRefPubMed Clarke-Pearson DL. Clinical practice. Screening for ovarian cancer. N Engl J Med. 2009;361:170–7.CrossRefPubMed
7.
go back to reference Mayr M, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol. 2001;2:599–609.CrossRefPubMed Mayr M, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol. 2001;2:599–609.CrossRefPubMed
8.
go back to reference Beavo JA, Brunton LL. Cyclic nucleotide research—still expanding after half a century. Nat Rev Mol Cell Biol. 2002;3:710–8.CrossRefPubMed Beavo JA, Brunton LL. Cyclic nucleotide research—still expanding after half a century. Nat Rev Mol Cell Biol. 2002;3:710–8.CrossRefPubMed
9.
go back to reference de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998;396:474–7.CrossRefPubMed de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998;396:474–7.CrossRefPubMed
10.
go back to reference Bos JL. Epac: a new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol. 2003;4:733–8.CrossRefPubMed Bos JL. Epac: a new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol. 2003;4:733–8.CrossRefPubMed
12.
go back to reference Bryn T, Mahic M, Enserink JM, Schwede F, Aandahl EM, Tasken K. The cyclic AMP-Epac1-Rap1 pathway is dissociated from regulation of effector functions in monocytes but acquires immunoregulatory function in mature macrophages. J Immunol. 2006;176(12):7361–70. doi:10.4049/jimmunol.176.12.7361.CrossRefPubMed Bryn T, Mahic M, Enserink JM, Schwede F, Aandahl EM, Tasken K. The cyclic AMP-Epac1-Rap1 pathway is dissociated from regulation of effector functions in monocytes but acquires immunoregulatory function in mature macrophages. J Immunol. 2006;176(12):7361–70. doi:10.​4049/​jimmunol.​176.​12.​7361.CrossRefPubMed
13.
go back to reference Tiwari S, Felekkis K, Moon EY, Flies A, Sherr DH, Lerner A. Among circulating hematopoietic cells, B-CLL uniquely expresses functional EPAC1, but EPAC1-mediated Rap1 activation does not account for PDE4 inhibitor-induced apoptosis. Blood. 2004;103(7):2661–7. doi:10.1182/blood-2003-06-2154.CrossRefPubMed Tiwari S, Felekkis K, Moon EY, Flies A, Sherr DH, Lerner A. Among circulating hematopoietic cells, B-CLL uniquely expresses functional EPAC1, but EPAC1-mediated Rap1 activation does not account for PDE4 inhibitor-induced apoptosis. Blood. 2004;103(7):2661–7. doi:10.​1182/​blood-2003-06-2154.CrossRefPubMed
15.
go back to reference Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, et al. A family of cAMP-binding proteins that directly activate Rap1. Science. 1998;282:2275–9.CrossRefPubMed Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, et al. A family of cAMP-binding proteins that directly activate Rap1. Science. 1998;282:2275–9.CrossRefPubMed
17.
go back to reference Kang G, Joseph JW, Chepurny OG, Monaco M, Wheeler MB, Bos JL, et al. Epac-selective cAMP analog 8-pCPT-2′-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic beta-cells. J Biol Chem. 2003;278(10):8279–85. doi:10.1074/jbc.M211682200.CrossRefPubMed Kang G, Joseph JW, Chepurny OG, Monaco M, Wheeler MB, Bos JL, et al. Epac-selective cAMP analog 8-pCPT-2′-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic beta-cells. J Biol Chem. 2003;278(10):8279–85. doi:10.​1074/​jbc.​M211682200.CrossRefPubMed
18.
go back to reference Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol. 2000;2:805–11.CrossRefPubMed Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol. 2000;2:805–11.CrossRefPubMed
19.
go back to reference Oestreich EA, Wang H, Malik S, Kaproth-Joslin KA, Blaxall BC, Kelley GG, et al. Epac-mediated activation of phospholipase C(epsilon) plays a critical role in beta-adrenergic receptor-dependent enhancement of Ca2+ mobilization in cardiac myocytes. J Biol Chem. 2007;282(8):5488–95. doi:10.1074/jbc.M608495200.CrossRefPubMed Oestreich EA, Wang H, Malik S, Kaproth-Joslin KA, Blaxall BC, Kelley GG, et al. Epac-mediated activation of phospholipase C(epsilon) plays a critical role in beta-adrenergic receptor-dependent enhancement of Ca2+ mobilization in cardiac myocytes. J Biol Chem. 2007;282(8):5488–95. doi:10.​1074/​jbc.​M608495200.CrossRefPubMed
20.
go back to reference Birukova AA, Zagranichnaya T, Fu P, Alekseeva E, Chen W, Jacobson JR, et al. Prostaglandins PGE(2) and PGI(2) promote endothelial barrier enhancement via PKA- and Epac1/Rap1-dependent Rac activation. Exp Cell Res. 2007;313:2504–20.CrossRefPubMedPubMedCentral Birukova AA, Zagranichnaya T, Fu P, Alekseeva E, Chen W, Jacobson JR, et al. Prostaglandins PGE(2) and PGI(2) promote endothelial barrier enhancement via PKA- and Epac1/Rap1-dependent Rac activation. Exp Cell Res. 2007;313:2504–20.CrossRefPubMedPubMedCentral
21.
go back to reference Cullere X, Shaw SK, Andersson L, Hirahashi J, Luscinskas FW, Mayadas TN. Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPase. Blood. 2005;105(5):1950–5. doi:10.1182/blood-2004-05-1987.CrossRefPubMed Cullere X, Shaw SK, Andersson L, Hirahashi J, Luscinskas FW, Mayadas TN. Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPase. Blood. 2005;105(5):1950–5. doi:10.​1182/​blood-2004-05-1987.CrossRefPubMed
25.
go back to reference Qi J, Zhao P, Li F, Guo Y, Cui H, Liu A, et al. Down-regulation of Rab17 promotes tumourigenic properties of hepatocellular carcinoma cells via Erk pathway. Int J Clin Exp Pathol. 2015;8:4963–71.PubMedPubMedCentral Qi J, Zhao P, Li F, Guo Y, Cui H, Liu A, et al. Down-regulation of Rab17 promotes tumourigenic properties of hepatocellular carcinoma cells via Erk pathway. Int J Clin Exp Pathol. 2015;8:4963–71.PubMedPubMedCentral
26.
28.
go back to reference Yang L, Zhang HW, Hu R, Yang Y, Qi Q, Lu N, et al. Wogonin induces G1 phase arrest through inhibiting Cdk4 and cyclin D1 concomitant with an elevation in p21Cip1 in human cervical carcinoma HeLa cells. Biochem Cell Biol. 2009;87(6):933–42. doi:10.1139/o09-060.CrossRefPubMed Yang L, Zhang HW, Hu R, Yang Y, Qi Q, Lu N, et al. Wogonin induces G1 phase arrest through inhibiting Cdk4 and cyclin D1 concomitant with an elevation in p21Cip1 in human cervical carcinoma HeLa cells. Biochem Cell Biol. 2009;87(6):933–42. doi:10.​1139/​o09-060.CrossRefPubMed
29.
go back to reference Kim TH, Oh S, Kim SS. Recombinant human prothrombin kringle-2 induces bovine capillary endothelial cell cycle arrest at G0–G1 phase through inhibition of cyclin D1/CDK4 complex: modulation of reactive oxygen species generation and up-regulation of cyclin-dependent kinase inhibitors. Angiogenesis. 2005;8(4):307–14. doi:10.1007/s10456-005-9020-y.CrossRefPubMed Kim TH, Oh S, Kim SS. Recombinant human prothrombin kringle-2 induces bovine capillary endothelial cell cycle arrest at G0–G1 phase through inhibition of cyclin D1/CDK4 complex: modulation of reactive oxygen species generation and up-regulation of cyclin-dependent kinase inhibitors. Angiogenesis. 2005;8(4):307–14. doi:10.​1007/​s10456-005-9020-y.CrossRefPubMed
30.
go back to reference Li T, Zhao X, Mo Z, Huang W, Yan H, Ling Z, et al. Formononetin promotes cell cycle arrest via downregulation of Akt/Cyclin D1/CDK4 in human prostate cancer cells. Cell Physiol Biochem. 2014;34(4):1351–8. doi:10.1159/000366342.CrossRefPubMed Li T, Zhao X, Mo Z, Huang W, Yan H, Ling Z, et al. Formononetin promotes cell cycle arrest via downregulation of Akt/Cyclin D1/CDK4 in human prostate cancer cells. Cell Physiol Biochem. 2014;34(4):1351–8. doi:10.​1159/​000366342.CrossRefPubMed
32.
Metadata
Title
Epac1 knockdown inhibits the proliferation of ovarian cancer cells by inactivating AKT/Cyclin D1/CDK4 pathway in vitro and in vivo
Authors
Meng Gao
Yanyan Ma
Robert C. Bast Jr.
Yue Li
Lu Wan
Yanping Liu
Yingshuo Sun
Zhenghui Fang
Lining Zhang
Xiaoyan Wang
Zengtao Wei
Publication date
01-07-2016
Publisher
Springer US
Published in
Medical Oncology / Issue 7/2016
Print ISSN: 1357-0560
Electronic ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-016-0786-0

Other articles of this Issue 7/2016

Medical Oncology 7/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.