Skip to main content
Top
Published in: Neurocritical Care 2/2020

Open Access 01-04-2020 | Central Nervous System Trauma | Original Work

Relationship Between Measures of Cerebrovascular Reactivity and Intracranial Lesion Progression in Acute TBI Patients: an Exploratory Analysis

Authors: François Mathieu, Frederick A. Zeiler, Daniel P. Whitehouse, Tilak Das, Ari Ercole, Peter Smielewski, Peter J. Hutchinson, Marek Czosnyka, Virginia F. J. Newcombe, David K. Menon

Published in: Neurocritical Care | Issue 2/2020

Login to get access

Abstract

Background

Failure of cerebral autoregulation and progression of intracranial lesion have both been shown to contribute to poor outcome in patients with acute traumatic brain injury (TBI), but the interplay between the two phenomena has not been investigated. Preliminary evidence leads us to hypothesize that brain tissue adjacent to primary injury foci may be more vulnerable to large fluctuations in blood flow in the absence of intact autoregulatory mechanisms. The goal of this study was therefore to assess the influence of cerebrovascular reactivity measures on radiological lesion expansion in a cohort of patients with acute TBI.

Methods

We conducted a retrospective cohort analysis on 50 TBI patients who had undergone high-frequency multimodal intracranial monitoring and for which at least two brain computed tomography (CT) scans had been performed in the acute phase of injury. We first performed univariate analyses on the full cohort to identify non-neurophysiological factors (i.e., initial lesion volume, timing of scan, coagulopathy) associated with traumatic lesion growth in this population. In a subset analysis of 23 patients who had intracranial recording data covering the period between the initial and repeat CT scan, we then correlated changes in serial volumetric lesion measurements with cerebrovascular reactivity metrics derived from the pressure reactivity index (PRx), pulse amplitude index (PAx), and RAC (correlation coefficient between the pulse amplitude of intracranial pressure and cerebral perfusion pressure). Using multivariate methods, these results were subsequently adjusted for the non-neurophysiological confounders identified in the univariate analyses.

Results

We observed significant positive linear associations between the degree of cerebrovascular reactivity impairment and progression of pericontusional edema. The strongest correlations were observed between edema progression and the following indices of cerebrovascular reactivity between sequential scans: % time PRx > 0.25 (r = 0.69, p = 0.002) and % time PAx > 0.25 (r = 0.64, p = 0.006). These associations remained significant after adjusting for initial lesion volume and mean cerebral perfusion pressure. In contrast, progression of the hemorrhagic core and extra-axial hemorrhage volume did not appear to be strongly influenced by autoregulatory status.

Conclusions

Our preliminary findings suggest a possible link between autoregulatory failure and traumatic edema progression, which warrants re-evaluation in larger-scale prospective studies.
Literature
1.
go back to reference Governance arrangements for research ethics committees: a harmonised edition. . UK Health Departments; 2011. Governance arrangements for research ethics committees: a harmonised edition. . UK Health Departments; 2011.
2.
go back to reference Rivera-Lara L, Zorrilla-Vaca A, Geocadin R, Ziai W, Healy R, Thompson R, et al. predictors of outcome with cerebral autoregulation monitoring: a systematic review and meta-analysis. Crit Care Med. 2017;45(4):695–704.CrossRef Rivera-Lara L, Zorrilla-Vaca A, Geocadin R, Ziai W, Healy R, Thompson R, et al. predictors of outcome with cerebral autoregulation monitoring: a systematic review and meta-analysis. Crit Care Med. 2017;45(4):695–704.CrossRef
3.
go back to reference Czosnyka M, Balestreri M, Steiner L, Smielewski P, Hutchinson PJ, Matta B, et al. Age, intracranial pressure, autoregulation, and outcome after brain trauma. J Neurosurg. 2005;102(3):450–4.CrossRef Czosnyka M, Balestreri M, Steiner L, Smielewski P, Hutchinson PJ, Matta B, et al. Age, intracranial pressure, autoregulation, and outcome after brain trauma. J Neurosurg. 2005;102(3):450–4.CrossRef
4.
go back to reference Sorrentino E, Diedler J, Kasprowicz M, Budohoski KP, Haubrich C, Smielewski P, et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16(2):258–66.CrossRef Sorrentino E, Diedler J, Kasprowicz M, Budohoski KP, Haubrich C, Smielewski P, et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16(2):258–66.CrossRef
5.
go back to reference Aries MJ, Czosnyka M, Budohoski KP, Kolias AG, Radolovich DK, Lavinio A, et al. Continuous monitoring of cerebrovascular reactivity using pulse waveform of intracranial pressure. Neurocrit Care. 2012;17(1):67–76.CrossRef Aries MJ, Czosnyka M, Budohoski KP, Kolias AG, Radolovich DK, Lavinio A, et al. Continuous monitoring of cerebrovascular reactivity using pulse waveform of intracranial pressure. Neurocrit Care. 2012;17(1):67–76.CrossRef
7.
go back to reference Fainardi E, Chieregato A, Antonelli V, Fagioli L, Servadei F. Time course of CT evolution in traumatic subarachnoid haemorrhage: a study of 141 patients. Acta Neurochir (Wien). 2004;146(3):257–63 (discussion 63).CrossRef Fainardi E, Chieregato A, Antonelli V, Fagioli L, Servadei F. Time course of CT evolution in traumatic subarachnoid haemorrhage: a study of 141 patients. Acta Neurochir (Wien). 2004;146(3):257–63 (discussion 63).CrossRef
8.
go back to reference Servadei F, Nanni A, Nasi MT, Zappi D, Vergoni G, Giuliani G, et al. Evolving brain lesions in the first 12 hours after head injury: analysis of 37 comatose patients. Neurosurgery. 1995;37(5):899–906 (discussion -7).CrossRef Servadei F, Nanni A, Nasi MT, Zappi D, Vergoni G, Giuliani G, et al. Evolving brain lesions in the first 12 hours after head injury: analysis of 37 comatose patients. Neurosurgery. 1995;37(5):899–906 (discussion -7).CrossRef
9.
go back to reference Stein SC, Spettell C, Young G, Ross SE. Delayed and progressive brain injury in closed-head trauma: radiological demonstration. Neurosurgery. 1993;32(1):25–30 (discussion -1).CrossRef Stein SC, Spettell C, Young G, Ross SE. Delayed and progressive brain injury in closed-head trauma: radiological demonstration. Neurosurgery. 1993;32(1):25–30 (discussion -1).CrossRef
10.
go back to reference Chieregato A, Fainardi E, Morselli-Labate AM, Antonelli V, Compagnone C, Targa L, et al. Factors associated with neurological outcome and lesion progression in traumatic subarachnoid hemorrhage patients. Neurosurgery. 2005;56(4):671–80 (discussion -80).CrossRef Chieregato A, Fainardi E, Morselli-Labate AM, Antonelli V, Compagnone C, Targa L, et al. Factors associated with neurological outcome and lesion progression in traumatic subarachnoid hemorrhage patients. Neurosurgery. 2005;56(4):671–80 (discussion -80).CrossRef
11.
go back to reference Alahmadi H, Vachhrajani S, Cusimano MD. The natural history of brain contusion: an analysis of radiological and clinical progression. J Neurosurg. 2010;112(5):1139–45.CrossRef Alahmadi H, Vachhrajani S, Cusimano MD. The natural history of brain contusion: an analysis of radiological and clinical progression. J Neurosurg. 2010;112(5):1139–45.CrossRef
12.
go back to reference Kurland D, Hong C, Aarabi B, Gerzanich V, Simard JM. Hemorrhagic progression of a contusion after traumatic brain injury: a review. J Neurotrauma. 2012;29(1):19–31.CrossRef Kurland D, Hong C, Aarabi B, Gerzanich V, Simard JM. Hemorrhagic progression of a contusion after traumatic brain injury: a review. J Neurotrauma. 2012;29(1):19–31.CrossRef
13.
go back to reference Simard JM, Kilbourne M, Tsymbalyuk O, Tosun C, Caridi J, Ivanova S, et al. Key role of sulfonylurea receptor 1 in progressive secondary hemorrhage after brain contusion. J Neurotrauma. 2009;26(12):2257–67.CrossRef Simard JM, Kilbourne M, Tsymbalyuk O, Tosun C, Caridi J, Ivanova S, et al. Key role of sulfonylurea receptor 1 in progressive secondary hemorrhage after brain contusion. J Neurotrauma. 2009;26(12):2257–67.CrossRef
14.
go back to reference Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, et al. Guidelines for the management of severe traumatic brain injury. J Neurotrauma. 2007;24(Suppl 1):S1–106. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, et al. Guidelines for the management of severe traumatic brain injury. J Neurotrauma. 2007;24(Suppl 1):S1–106.
15.
go back to reference Hutchinson PJ, Hutchinson DB, Barr RH, Burgess F, Kirkpatrick PJ, Pickard JD. A new cranial access device for cerebral monitoring. Br J Neurosurg. 2000;14(1):46–8.CrossRef Hutchinson PJ, Hutchinson DB, Barr RH, Burgess F, Kirkpatrick PJ, Pickard JD. A new cranial access device for cerebral monitoring. Br J Neurosurg. 2000;14(1):46–8.CrossRef
16.
go back to reference Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41(1):11–7 (discussion 7–9).CrossRef Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41(1):11–7 (discussion 7–9).CrossRef
17.
go back to reference Stocchetti N, Croci M, Spagnoli D, Gilardoni F, Resta F, Colombo A. Mass volume measurement in severe head injury: accuracy and feasibility of two pragmatic methods. J Neurol Neurosurg Psychiatry. 2000;68(1):14–7.CrossRef Stocchetti N, Croci M, Spagnoli D, Gilardoni F, Resta F, Colombo A. Mass volume measurement in severe head injury: accuracy and feasibility of two pragmatic methods. J Neurol Neurosurg Psychiatry. 2000;68(1):14–7.CrossRef
18.
go back to reference Zimmerman RD, Maldjian JA, Brun NC, Horvath B, Skolnick BE. Radiologic estimation of hematoma volume in intracerebral hemorrhage trial by CT scan. AJNR Am J Neuroradiol. 2006;27(3):666–70.PubMed Zimmerman RD, Maldjian JA, Brun NC, Horvath B, Skolnick BE. Radiologic estimation of hematoma volume in intracerebral hemorrhage trial by CT scan. AJNR Am J Neuroradiol. 2006;27(3):666–70.PubMed
19.
go back to reference Zeiler FA, Donnelly J, Smielewski P, Menon DK, Hutchinson PJ, Czosnyka M. Critical thresholds of intracranial pressure-derived continuous cerebrovascular. J Neurotrauma. 2018;35:1107–15.CrossRef Zeiler FA, Donnelly J, Smielewski P, Menon DK, Hutchinson PJ, Czosnyka M. Critical thresholds of intracranial pressure-derived continuous cerebrovascular. J Neurotrauma. 2018;35:1107–15.CrossRef
20.
go back to reference Zeiler FA, Donnelly J, Smielewski P, Menon DK, Hutchinson PJ, Czosnyka M. Critical thresholds of intracranial pressure-derived continuous cerebrovascular reactivity indices for outcome prediction in noncraniectomized patients with traumatic brain injury. J Neurotrauma. 2018;35(10):1107–15.CrossRef Zeiler FA, Donnelly J, Smielewski P, Menon DK, Hutchinson PJ, Czosnyka M. Critical thresholds of intracranial pressure-derived continuous cerebrovascular reactivity indices for outcome prediction in noncraniectomized patients with traumatic brain injury. J Neurotrauma. 2018;35(10):1107–15.CrossRef
21.
go back to reference White CL, Griffith S, Caron JL. Early progression of traumatic cerebral contusions: characterization and risk factors. J Trauma. 2009;67(3):508–14 (discussion 14–5).CrossRef White CL, Griffith S, Caron JL. Early progression of traumatic cerebral contusions: characterization and risk factors. J Trauma. 2009;67(3):508–14 (discussion 14–5).CrossRef
22.
go back to reference Beaumont A, Hayasaki K, Marmarou A, Barzo P, Fatouros P, Corwin F. The effects of dopamine on edema formation in two models of traumatic brain injury. Acta Neurochir Suppl. 2000;76:147–51.PubMed Beaumont A, Hayasaki K, Marmarou A, Barzo P, Fatouros P, Corwin F. The effects of dopamine on edema formation in two models of traumatic brain injury. Acta Neurochir Suppl. 2000;76:147–51.PubMed
23.
go back to reference Gudeman SK, Kishore PR, Miller JD, Girevendulis AK, Lipper MH, Becker DP. The genesis and significance of delayed traumatic intracerebral hematoma. Neurosurgery. 1979;5(3):309–13.CrossRef Gudeman SK, Kishore PR, Miller JD, Girevendulis AK, Lipper MH, Becker DP. The genesis and significance of delayed traumatic intracerebral hematoma. Neurosurgery. 1979;5(3):309–13.CrossRef
24.
go back to reference Stein SC, Young GS, Talucci RC, Greenbaum BH, Ross SE. Delayed brain injury after head trauma: significance of coagulopathy. Neurosurgery. 1992;30(2):160–5.CrossRef Stein SC, Young GS, Talucci RC, Greenbaum BH, Ross SE. Delayed brain injury after head trauma: significance of coagulopathy. Neurosurgery. 1992;30(2):160–5.CrossRef
25.
go back to reference Tseng SH. Delayed traumatic intracerebral hemorrhage: a study of prognostic factors. J Formos Med Assoc. 1992;91(6):585–9.PubMed Tseng SH. Delayed traumatic intracerebral hemorrhage: a study of prognostic factors. J Formos Med Assoc. 1992;91(6):585–9.PubMed
26.
go back to reference Patel NY, Hoyt DB, Nakaji P, Marshall L, Holbrook T, Coimbra R, et al. Traumatic brain injury: patterns of failure of nonoperative management. J Trauma. 2000;48(3):367–74 (discussion 74–5).CrossRef Patel NY, Hoyt DB, Nakaji P, Marshall L, Holbrook T, Coimbra R, et al. Traumatic brain injury: patterns of failure of nonoperative management. J Trauma. 2000;48(3):367–74 (discussion 74–5).CrossRef
27.
go back to reference Oertel M, Kelly DF, McArthur D, Boscardin WJ, Glenn TC, Lee JH, et al. Progressive hemorrhage after head trauma: predictors and consequences of the evolving injury. J Neurosurg. 2002;96(1):109–16.CrossRef Oertel M, Kelly DF, McArthur D, Boscardin WJ, Glenn TC, Lee JH, et al. Progressive hemorrhage after head trauma: predictors and consequences of the evolving injury. J Neurosurg. 2002;96(1):109–16.CrossRef
28.
go back to reference Engstrom M, Romner B, Schalen W, Reinstrup P. Thrombocytopenia predicts progressive hemorrhage after head trauma. J Neurotrauma. 2005;22(2):291–6.CrossRef Engstrom M, Romner B, Schalen W, Reinstrup P. Thrombocytopenia predicts progressive hemorrhage after head trauma. J Neurotrauma. 2005;22(2):291–6.CrossRef
29.
go back to reference Chang EF, Meeker M, Holland MC. Acute traumatic intraparenchymal hemorrhage: risk factors for progression in the early post-injury period. Neurosurgery. 2007;61(1 Suppl):222–30 (discussion 30–1).PubMed Chang EF, Meeker M, Holland MC. Acute traumatic intraparenchymal hemorrhage: risk factors for progression in the early post-injury period. Neurosurgery. 2007;61(1 Suppl):222–30 (discussion 30–1).PubMed
30.
go back to reference Flint AC, Manley GT, Gean AD, Hemphill JC 3rd, Rosenthal G. Post-operative expansion of hemorrhagic contusions after unilateral decompressive hemicraniectomy in severe traumatic brain injury. J Neurotrauma. 2008;25(5):503–12.CrossRef Flint AC, Manley GT, Gean AD, Hemphill JC 3rd, Rosenthal G. Post-operative expansion of hemorrhagic contusions after unilateral decompressive hemicraniectomy in severe traumatic brain injury. J Neurotrauma. 2008;25(5):503–12.CrossRef
31.
go back to reference Narayan RK, Maas AI, Servadei F, Skolnick BE, Tillinger MN, Marshall LF, et al. Progression of traumatic intracerebral hemorrhage: a prospective observational study. J Neurotrauma. 2008;25(6):629–39.CrossRef Narayan RK, Maas AI, Servadei F, Skolnick BE, Tillinger MN, Marshall LF, et al. Progression of traumatic intracerebral hemorrhage: a prospective observational study. J Neurotrauma. 2008;25(6):629–39.CrossRef
32.
go back to reference Allard CB, Scarpelini S, Rhind SG, Baker AJ, Shek PN, Tien H, et al. Abnormal coagulation tests are associated with progression of traumatic intracranial hemorrhage. J Trauma. 2009;67(5):959–67.CrossRef Allard CB, Scarpelini S, Rhind SG, Baker AJ, Shek PN, Tien H, et al. Abnormal coagulation tests are associated with progression of traumatic intracranial hemorrhage. J Trauma. 2009;67(5):959–67.CrossRef
33.
go back to reference Carnevale JA, Segar DJ, Powers AY, Shah M, Doberstein C, Drapcho B, et al. Blossoming contusions: identifying factors contributing to the expansion of traumatic intracerebral hemorrhage. J Neurosurg. 2018;129(5):1305–16.CrossRef Carnevale JA, Segar DJ, Powers AY, Shah M, Doberstein C, Drapcho B, et al. Blossoming contusions: identifying factors contributing to the expansion of traumatic intracerebral hemorrhage. J Neurosurg. 2018;129(5):1305–16.CrossRef
34.
go back to reference Zeiler FA, Donnelly J, Nourallah B, Thelin EP, Calviello L, Smielewski P, et al. Intracranial and extracranial injury burden as drivers of impaired cerebrovascular reactivity in traumatic brain injury. J Neurotrauma. 2018;35(14):1569–77.CrossRef Zeiler FA, Donnelly J, Nourallah B, Thelin EP, Calviello L, Smielewski P, et al. Intracranial and extracranial injury burden as drivers of impaired cerebrovascular reactivity in traumatic brain injury. J Neurotrauma. 2018;35(14):1569–77.CrossRef
35.
go back to reference Zeiler FA, Ercole A, Cabeleira M, Carbonara M, Stochetti N, Menon DK, Smielewski P, Czosnyka M. Comparison of performance of different optimal cerebral perfusion pressure parameters for outcome prediction in adult traumatic brain injury: A collaborative european neurotrauma effectiveness research in traumatic brain injury (CENTER-TBI) study. J Neurotrauma. 2019;36(10):1505–1517. https://doi.org/10.1089/neu.2018.6182.CrossRefPubMed Zeiler FA, Ercole A, Cabeleira M, Carbonara M, Stochetti N, Menon DK, Smielewski P, Czosnyka M. Comparison of performance of different optimal cerebral perfusion pressure parameters for outcome prediction in adult traumatic brain injury: A collaborative european neurotrauma effectiveness research in traumatic brain injury (CENTER-TBI) study. J Neurotrauma. 2019;36(10):1505–1517. https://​doi.​org/​10.​1089/​neu.​2018.​6182.CrossRefPubMed
36.
go back to reference Brady KM, Lee JK, Kibler KK, Easley RB, Koehler RC, Shaffner DH. Continuous measurement of autoregulation by spontaneous fluctuations in cerebral perfusion pressure: comparison of 3 methods. Stroke. 2008;39(9):2531–7.CrossRef Brady KM, Lee JK, Kibler KK, Easley RB, Koehler RC, Shaffner DH. Continuous measurement of autoregulation by spontaneous fluctuations in cerebral perfusion pressure: comparison of 3 methods. Stroke. 2008;39(9):2531–7.CrossRef
37.
go back to reference Hardman JM, Manoukian A. Pathology of head trauma. Neuroimaging Clin N Am. 2002;12(2):175–87.CrossRef Hardman JM, Manoukian A. Pathology of head trauma. Neuroimaging Clin N Am. 2002;12(2):175–87.CrossRef
38.
go back to reference Matsuyama T, Shimomura T, Okumura Y, Sakaki T. Rapid resolution of symptomatic acute subdural hematoma: case report. Surg Neurol. 1997;48(2):193–6.CrossRef Matsuyama T, Shimomura T, Okumura Y, Sakaki T. Rapid resolution of symptomatic acute subdural hematoma: case report. Surg Neurol. 1997;48(2):193–6.CrossRef
Metadata
Title
Relationship Between Measures of Cerebrovascular Reactivity and Intracranial Lesion Progression in Acute TBI Patients: an Exploratory Analysis
Authors
François Mathieu
Frederick A. Zeiler
Daniel P. Whitehouse
Tilak Das
Ari Ercole
Peter Smielewski
Peter J. Hutchinson
Marek Czosnyka
Virginia F. J. Newcombe
David K. Menon
Publication date
01-04-2020
Publisher
Springer US
Published in
Neurocritical Care / Issue 2/2020
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-019-00885-3

Other articles of this Issue 2/2020

Neurocritical Care 2/2020 Go to the issue