Skip to main content
Top
Published in: Neurocritical Care 2/2016

01-04-2016 | Translational Research

Conivaptan, a Selective Arginine Vasopressin V1a and V2 Receptor Antagonist Attenuates Global Cerebral Edema Following Experimental Cardiac Arrest via Perivascular Pool of Aquaporin-4

Authors: Shin Nakayama, Mahmood Amiry-Moghaddam, Ole Petter Ottersen, Anish Bhardwaj

Published in: Neurocritical Care | Issue 2/2016

Login to get access

Abstract

Background

Cerebral edema is a major cause of mortality following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). Arginine vasopressin (AVP) and water channel aquaporin-4 (AQP4) have been implicated in the pathogenesis of CA-evoked cerebral edema. In this study, we examined if conivaptan, a V1a and V2 antagonist, attenuates cerebral edema following CA/CPR in wild type (WT) mice as well as mice with targeted disruption of the gene encoding α-syntrophin (α-syn−/−) that demonstrate diminished perivascular AQP4 pool.

Methods

Isoflurane-anesthetized adult male WT C57Bl/6 and α-syn−/− mice were subjected to 8 min CA/CPR and treated with either bolus IV injection (0.15 or 0.3 mg/kg) followed by continuous infusion of conivaptan (0.15 mg/kg/day or 0.3 mg/kg/day), or vehicle infusion for 48 h. Serum osmolality, regional brain water content, and blood–brain barrier (BBB) disruption were determined at the end of the experiment. Sham-operated mice in both strains served as controls.

Results

Treatment with conivaptan elevated serum osmolality in a dose-dependent manner. In WT mice, conivaptan at 0.3 mg dose significantly attenuated regional water content in the caudoputamen (81.0 ± 0.5 vs 82.5 ± 0.4 % in controls; mean ± SEM) and cortex (78.8 ± 0.2 vs 79.4 ± 0.2 % in controls), while conivaptan at 0.15 mg was not effective. In α-syn−/− mice, conivaptan at 0.3 mg dose did not attenuate water content compared with controls. Conivaptan (0.3 mg/kg/day) attenuated post-CA BBB disruption at 48 h in WT mice but not in α-syn−/− mice.

Conclusions

Continuous IV infusion of conivaptan attenuates cerebral edema and BBB disruption following CA. These effects of conivaptan that are dependent on the presence of perivascular pool of AQP4 appear be mediated via its dual effect on V1 and V2 receptors.
Literature
1.
go back to reference Adrie C, Haouache H, Saleh M, et al. An underrecognized source of organ donors: patients with brain death after successfully resuscitated cardiac arrest. Intensive Care Med. 2008;34(1):132–7.CrossRefPubMed Adrie C, Haouache H, Saleh M, et al. An underrecognized source of organ donors: patients with brain death after successfully resuscitated cardiac arrest. Intensive Care Med. 2008;34(1):132–7.CrossRefPubMed
2.
go back to reference Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000;6(2):159–63.CrossRefPubMed Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000;6(2):159–63.CrossRefPubMed
3.
go back to reference Badaut J, Lasbennes F, Magistretti PJ, et al. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab. 2002;22(4):367–78.CrossRefPubMed Badaut J, Lasbennes F, Magistretti PJ, et al. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab. 2002;22(4):367–78.CrossRefPubMed
4.
go back to reference Vajda Z, Pedersen M, Fuchtbauer EM, et al. Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc Natl Acad Sci USA. 2002;99(20):13131–6.CrossRefPubMedPubMedCentral Vajda Z, Pedersen M, Fuchtbauer EM, et al. Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc Natl Acad Sci USA. 2002;99(20):13131–6.CrossRefPubMedPubMedCentral
5.
go back to reference Amiry-Moghaddam M, Otsuka T, Hurn PD, et al. An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA. 2003;100(4):2106–11.CrossRefPubMedPubMedCentral Amiry-Moghaddam M, Otsuka T, Hurn PD, et al. An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA. 2003;100(4):2106–11.CrossRefPubMedPubMedCentral
6.
go back to reference Amiry-Moghaddam M, Williamson A, Palomba M, et al. Delayed K + clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc Natl Acad Sci USA. 2003;100(23):13615–20.CrossRefPubMedPubMedCentral Amiry-Moghaddam M, Williamson A, Palomba M, et al. Delayed K + clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc Natl Acad Sci USA. 2003;100(23):13615–20.CrossRefPubMedPubMedCentral
7.
go back to reference Amiry-Moghaddam M, Xue R, Haug FM, et al. Alpha-syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia. FASEB J. 2004;18(3):542–4.PubMed Amiry-Moghaddam M, Xue R, Haug FM, et al. Alpha-syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia. FASEB J. 2004;18(3):542–4.PubMed
9.
go back to reference Haj-Yasein NN, Vindedal GF, Eilert-Olsen M, et al. Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc Natl Acad Sci USA. 2011;108(43):17815–20.CrossRefPubMedPubMedCentral Haj-Yasein NN, Vindedal GF, Eilert-Olsen M, et al. Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc Natl Acad Sci USA. 2011;108(43):17815–20.CrossRefPubMedPubMedCentral
10.
go back to reference Neely JD, Amiry-Moghaddam M, Ottersen OP, et al. Syntrophin-dependent expression and localization of aquaporin-4 water channel protein. Proc Natl Acad Sci USA. 2001;98(24):14108–13.CrossRefPubMedPubMedCentral Neely JD, Amiry-Moghaddam M, Ottersen OP, et al. Syntrophin-dependent expression and localization of aquaporin-4 water channel protein. Proc Natl Acad Sci USA. 2001;98(24):14108–13.CrossRefPubMedPubMedCentral
11.
go back to reference Migliati E, Meurice N, DuBois P, et al. Inhibition of aquaporin-1 and aquaporin-4 water permeability by a derivative of the loop diuretic bumetanide acting at an internal pore-occluding binding site. Mol Pharmacol. 2009;76(1):105–12.CrossRefPubMedPubMedCentral Migliati E, Meurice N, DuBois P, et al. Inhibition of aquaporin-1 and aquaporin-4 water permeability by a derivative of the loop diuretic bumetanide acting at an internal pore-occluding binding site. Mol Pharmacol. 2009;76(1):105–12.CrossRefPubMedPubMedCentral
12.
go back to reference Zeynalov E, Chen CH, Froehner SC, et al. The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med. 2008;36(9):2634–40.CrossRefPubMedPubMedCentral Zeynalov E, Chen CH, Froehner SC, et al. The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med. 2008;36(9):2634–40.CrossRefPubMedPubMedCentral
13.
go back to reference Doczi T, Laszlo FA, Szerdahelyi P, et al. Involvement of vasopressin in brain edema formation: further evidence obtained from the Brattleboro diabetes insipidus rat with experimental subarachnoid hemorrhage. Neurosurgery. 1984;14(4):436–41.CrossRefPubMed Doczi T, Laszlo FA, Szerdahelyi P, et al. Involvement of vasopressin in brain edema formation: further evidence obtained from the Brattleboro diabetes insipidus rat with experimental subarachnoid hemorrhage. Neurosurgery. 1984;14(4):436–41.CrossRefPubMed
14.
go back to reference Trabold R, Krieg S, Scholler K, et al. Role of vasopressin V(1a) and V2 receptors for the development of secondary brain damage after traumatic brain injury in mice. J Neurotrauma. 2008;25(12):1459–65.CrossRefPubMed Trabold R, Krieg S, Scholler K, et al. Role of vasopressin V(1a) and V2 receptors for the development of secondary brain damage after traumatic brain injury in mice. J Neurotrauma. 2008;25(12):1459–65.CrossRefPubMed
15.
go back to reference Rosenberg GA, Scremin O, Estrada E, et al. Arginine vasopressin V1-antagonist and atrial natriuretic peptide reduce hemorrhagic brain edema in rats. Stroke. 1992;23(12):1767–73 (discussion 1773–1764).CrossRefPubMed Rosenberg GA, Scremin O, Estrada E, et al. Arginine vasopressin V1-antagonist and atrial natriuretic peptide reduce hemorrhagic brain edema in rats. Stroke. 1992;23(12):1767–73 (discussion 1773–1764).CrossRefPubMed
16.
go back to reference Molnar AH, Varga C, Berko A, et al. Prevention of hypoxic brain oedema by the administration of vasopressin receptor antagonist OPC-31260. Prog Brain Res. 2008;170:519–25.CrossRefPubMed Molnar AH, Varga C, Berko A, et al. Prevention of hypoxic brain oedema by the administration of vasopressin receptor antagonist OPC-31260. Prog Brain Res. 2008;170:519–25.CrossRefPubMed
17.
go back to reference Phillips PA, Abrahams JM, Kelly J, et al. Localization of vasopressin binding sites in rat brain by in vitro autoradiography using a radioiodinated V1 receptor antagonist. Neuroscience. 1988;27(3):749–61.CrossRefPubMed Phillips PA, Abrahams JM, Kelly J, et al. Localization of vasopressin binding sites in rat brain by in vitro autoradiography using a radioiodinated V1 receptor antagonist. Neuroscience. 1988;27(3):749–61.CrossRefPubMed
18.
go back to reference Okuno K, Taya K, Marmarou CR, et al. The modulation of aquaporin-4 by using PKC-activator (phorbol myristate acetate) and V1a receptor antagonist (SR49059) following middle cerebral artery occlusion/reperfusion in the rat. Acta Neurochir Suppl. 2008;102:431–6.CrossRefPubMed Okuno K, Taya K, Marmarou CR, et al. The modulation of aquaporin-4 by using PKC-activator (phorbol myristate acetate) and V1a receptor antagonist (SR49059) following middle cerebral artery occlusion/reperfusion in the rat. Acta Neurochir Suppl. 2008;102:431–6.CrossRefPubMed
19.
go back to reference Kleindienst A, Dunbar JG, Glisson R, et al. The role of vasopressin V1a receptors in cytotoxic brain edema formation following brain injury. Acta Neurochir (Wien). 2013;155(1):151–64.CrossRef Kleindienst A, Dunbar JG, Glisson R, et al. The role of vasopressin V1a receptors in cytotoxic brain edema formation following brain injury. Acta Neurochir (Wien). 2013;155(1):151–64.CrossRef
20.
go back to reference Manaenko A, Fathali N, Khatibi NH, et al. Arginine-vasopressin V1a receptor inhibition improves neurologic outcomes following an intracerebral hemorrhagic brain injury. Neurochem Int. 2011;58(4):542–8.CrossRefPubMedPubMedCentral Manaenko A, Fathali N, Khatibi NH, et al. Arginine-vasopressin V1a receptor inhibition improves neurologic outcomes following an intracerebral hemorrhagic brain injury. Neurochem Int. 2011;58(4):542–8.CrossRefPubMedPubMedCentral
21.
go back to reference Croiset G, De Wied D. Proconvulsive effect of vasopressin; mediation by a putative V2 receptor subtype in the central nervous system. Brain Res. 1997;759(1):18–23.CrossRefPubMed Croiset G, De Wied D. Proconvulsive effect of vasopressin; mediation by a putative V2 receptor subtype in the central nervous system. Brain Res. 1997;759(1):18–23.CrossRefPubMed
22.
go back to reference Decaux G, Soupart A, Vassart G. Non-peptide arginine-vasopressin antagonists: the vaptans. Lancet. 2008;371(9624):1624–32.CrossRefPubMed Decaux G, Soupart A, Vassart G. Non-peptide arginine-vasopressin antagonists: the vaptans. Lancet. 2008;371(9624):1624–32.CrossRefPubMed
23.
go back to reference Adams ME, Kramarcy N, Krall SP, et al. Absence of alpha-syntrophin leads to structurally aberrant neuromuscular synapses deficient in utrophin. J Cell Biol. 2000;150(6):1385–98.CrossRefPubMedPubMedCentral Adams ME, Kramarcy N, Krall SP, et al. Absence of alpha-syntrophin leads to structurally aberrant neuromuscular synapses deficient in utrophin. J Cell Biol. 2000;150(6):1385–98.CrossRefPubMedPubMedCentral
24.
go back to reference Allen D, Nakayama S, Kuroiwa M, et al. SK2 channels are neuroprotective for ischemia-induced neuronal cell death. J Cereb Blood Flow Metab. 2011;31(12):2302–12.CrossRefPubMedPubMedCentral Allen D, Nakayama S, Kuroiwa M, et al. SK2 channels are neuroprotective for ischemia-induced neuronal cell death. J Cereb Blood Flow Metab. 2011;31(12):2302–12.CrossRefPubMedPubMedCentral
25.
go back to reference Nakayama S, Vest R, Traystman RJ, et al. Sexually dimorphic response of TRPM2 inhibition following cardiac arrest-induced global cerebral ischemia in mice. J Mol Neurosci. 2013;51(1):92–8.CrossRefPubMedPubMedCentral Nakayama S, Vest R, Traystman RJ, et al. Sexually dimorphic response of TRPM2 inhibition following cardiac arrest-induced global cerebral ischemia in mice. J Mol Neurosci. 2013;51(1):92–8.CrossRefPubMedPubMedCentral
26.
go back to reference Chen CH, Toung TJ, Sapirstein A, et al. Effect of duration of osmotherapy on blood-brain barrier disruption and regional cerebral edema after experimental stroke. J Cereb Blood Flow Metab. 2006;26(7):951–8.CrossRefPubMed Chen CH, Toung TJ, Sapirstein A, et al. Effect of duration of osmotherapy on blood-brain barrier disruption and regional cerebral edema after experimental stroke. J Cereb Blood Flow Metab. 2006;26(7):951–8.CrossRefPubMed
27.
go back to reference Toung TJ, Chen CH, Lin C, et al. Osmotherapy with hypertonic saline attenuates water content in brain and extracerebral organs. Crit Care Med. 2007;35(2):526–31.CrossRefPubMed Toung TJ, Chen CH, Lin C, et al. Osmotherapy with hypertonic saline attenuates water content in brain and extracerebral organs. Crit Care Med. 2007;35(2):526–31.CrossRefPubMed
28.
go back to reference Uyama O, Okamura N, Yanase M, et al. Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence. J Cereb Blood Flow Metab. 1988;8(2):282–4.CrossRefPubMed Uyama O, Okamura N, Yanase M, et al. Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence. J Cereb Blood Flow Metab. 1988;8(2):282–4.CrossRefPubMed
29.
go back to reference Nakano T, Hurn PD, Herson PS, et al. Testosterone exacerbates neuronal damage following cardiac arrest and cardiopulmonary resuscitation in mouse. Brain Res. 2010;1357:124–30.CrossRefPubMedPubMedCentral Nakano T, Hurn PD, Herson PS, et al. Testosterone exacerbates neuronal damage following cardiac arrest and cardiopulmonary resuscitation in mouse. Brain Res. 2010;1357:124–30.CrossRefPubMedPubMedCentral
30.
go back to reference Nielsen S, Nagelhus EA, Amiry-Moghaddam M, et al. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci. 1997;17(1):171–80.PubMed Nielsen S, Nagelhus EA, Amiry-Moghaddam M, et al. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci. 1997;17(1):171–80.PubMed
32.
go back to reference Frydenlund DS, Bhardwaj A, Otsuka T, et al. Temporary loss of perivascular aquaporin-4 in neocortex after transient middle cerebral artery occlusion in mice. Proc Natl Acad Sci USA. 2006;103(36):13532–6.CrossRefPubMedPubMedCentral Frydenlund DS, Bhardwaj A, Otsuka T, et al. Temporary loss of perivascular aquaporin-4 in neocortex after transient middle cerebral artery occlusion in mice. Proc Natl Acad Sci USA. 2006;103(36):13532–6.CrossRefPubMedPubMedCentral
33.
go back to reference Papadopoulos MC, Manley GT, Krishna S, et al. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004;18(11):1291–3.PubMed Papadopoulos MC, Manley GT, Krishna S, et al. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004;18(11):1291–3.PubMed
34.
go back to reference Chen CH, Xue R, Zhang J, et al. Effect of osmotherapy with hypertonic saline on regional cerebral edema following experimental stroke: a study utilizing magnetic resonance imaging. Neurocrit Care. 2007;7(1):92–100.CrossRefPubMed Chen CH, Xue R, Zhang J, et al. Effect of osmotherapy with hypertonic saline on regional cerebral edema following experimental stroke: a study utilizing magnetic resonance imaging. Neurocrit Care. 2007;7(1):92–100.CrossRefPubMed
35.
go back to reference Chang Y, Chen TY, Chen CH, et al. Plasma arginine-vasopressin following experimental stroke: effect of osmotherapy. J Appl Physiol. 2006;100(5):1445–51.CrossRefPubMed Chang Y, Chen TY, Chen CH, et al. Plasma arginine-vasopressin following experimental stroke: effect of osmotherapy. J Appl Physiol. 2006;100(5):1445–51.CrossRefPubMed
36.
go back to reference Liu X, Nakayama S, Amiry-Moghaddam M, et al. Arginine-vasopressin V1 but not V2 receptor antagonism modulates infarct volume, brain water content, and aquaporin-4 expression following experimental stroke. Neurocrit Care. 2010;12(1):124–31.CrossRefPubMed Liu X, Nakayama S, Amiry-Moghaddam M, et al. Arginine-vasopressin V1 but not V2 receptor antagonism modulates infarct volume, brain water content, and aquaporin-4 expression following experimental stroke. Neurocrit Care. 2010;12(1):124–31.CrossRefPubMed
37.
go back to reference Vakili A, Kataoka H, Plesnila N. Role of arginine vasopressin V1 and V2 receptors for brain damage after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2005;25(8):1012–9.CrossRefPubMed Vakili A, Kataoka H, Plesnila N. Role of arginine vasopressin V1 and V2 receptors for brain damage after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2005;25(8):1012–9.CrossRefPubMed
38.
go back to reference Niermann H, Amiry-Moghaddam M, Holthoff K, et al. A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci. 2001;21(9):3045–51.PubMed Niermann H, Amiry-Moghaddam M, Holthoff K, et al. A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci. 2001;21(9):3045–51.PubMed
39.
go back to reference Shuaib A, Xu Wang C, Yang T, et al. Effects of nonpeptide V(1) vasopressin receptor antagonist SR-49059 on infarction volume and recovery of function in a focal embolic stroke model. Stroke. 2002;33(12):3033–7.CrossRefPubMed Shuaib A, Xu Wang C, Yang T, et al. Effects of nonpeptide V(1) vasopressin receptor antagonist SR-49059 on infarction volume and recovery of function in a focal embolic stroke model. Stroke. 2002;33(12):3033–7.CrossRefPubMed
40.
go back to reference Taya K, Gulsen S, Okuno K, et al. Modulation of AQP4 expression by the selective V1a receptor antagonist, SR49059, decreases trauma-induced brain edema. Acta Neurochir Suppl. 2008;102:425–9.CrossRefPubMed Taya K, Gulsen S, Okuno K, et al. Modulation of AQP4 expression by the selective V1a receptor antagonist, SR49059, decreases trauma-induced brain edema. Acta Neurochir Suppl. 2008;102:425–9.CrossRefPubMed
41.
go back to reference Landgraf R, Ramirez AD, Ramirez VD. The positive feedback action of vasopressin on its own release from rat septal tissue in vitro is receptor-mediated. Brain Res. 1991;545(1–2):137–41.CrossRefPubMed Landgraf R, Ramirez AD, Ramirez VD. The positive feedback action of vasopressin on its own release from rat septal tissue in vitro is receptor-mediated. Brain Res. 1991;545(1–2):137–41.CrossRefPubMed
42.
go back to reference Yeung PK, Lo AC, Leung JW, et al. Targeted overexpression of endothelin-1 in astrocytes leads to more severe cytotoxic brain edema and higher mortality. J Cereb Blood Flow Metab. 2009;29(12):1891–902.CrossRefPubMed Yeung PK, Lo AC, Leung JW, et al. Targeted overexpression of endothelin-1 in astrocytes leads to more severe cytotoxic brain edema and higher mortality. J Cereb Blood Flow Metab. 2009;29(12):1891–902.CrossRefPubMed
44.
go back to reference Fields JD, Bhardwaj A. Non-peptide arginine-vasopressin antagonists (vaptans) for the treatment of hyponatremia in neurocritical care: a new alternative. Neurocrit Care. 2009;11:1–4.CrossRefPubMed Fields JD, Bhardwaj A. Non-peptide arginine-vasopressin antagonists (vaptans) for the treatment of hyponatremia in neurocritical care: a new alternative. Neurocrit Care. 2009;11:1–4.CrossRefPubMed
45.
go back to reference Galton C, Deem S, Yanez ND, et al. Open-label randomized trial of the safety and efficacy of a single dose conivaptan to raise serum sodium in patients with traumatic brain injury. Neurocrit Care. 2011;14(3):354–60.CrossRefPubMed Galton C, Deem S, Yanez ND, et al. Open-label randomized trial of the safety and efficacy of a single dose conivaptan to raise serum sodium in patients with traumatic brain injury. Neurocrit Care. 2011;14(3):354–60.CrossRefPubMed
46.
go back to reference Dhar R, Murphy-Human T. A bolus of conivaptan lowers intracranial pressure in a patient with hyponatremia after traumatic brain injury. Neurocrit Care. 2011;14(1):97–102.CrossRefPubMed Dhar R, Murphy-Human T. A bolus of conivaptan lowers intracranial pressure in a patient with hyponatremia after traumatic brain injury. Neurocrit Care. 2011;14(1):97–102.CrossRefPubMed
47.
go back to reference Zeynalov E, Jones SM, Seo JW, et al. Arginine-vasopressin receptor blocker conivaptan reduces brain edema and blood-brain barrier disruption after experimental stroke in mice. PLoS ONE. 2015;10(8):e0136121.CrossRefPubMedPubMedCentral Zeynalov E, Jones SM, Seo JW, et al. Arginine-vasopressin receptor blocker conivaptan reduces brain edema and blood-brain barrier disruption after experimental stroke in mice. PLoS ONE. 2015;10(8):e0136121.CrossRefPubMedPubMedCentral
48.
go back to reference Hockel K, Scholler K, Trabold R, et al. Vasopressin V(1a) receptors mediate posthemorrhagic systemic hypertension thereby determining rebleeding rate and outcome after experimental subarachnoid hemorrhage. Stroke. 2012;43(1):227–32.CrossRefPubMed Hockel K, Scholler K, Trabold R, et al. Vasopressin V(1a) receptors mediate posthemorrhagic systemic hypertension thereby determining rebleeding rate and outcome after experimental subarachnoid hemorrhage. Stroke. 2012;43(1):227–32.CrossRefPubMed
49.
go back to reference Udelson JE, Smith WB, Hendrix GH, et al. Acute hemodynamic effects of conivaptan, a dual V(1A) and V(2) vasopressin receptor antagonist, in patients with advanced heart failure. Circulation. 2001;104(20):2417–23.CrossRefPubMed Udelson JE, Smith WB, Hendrix GH, et al. Acute hemodynamic effects of conivaptan, a dual V(1A) and V(2) vasopressin receptor antagonist, in patients with advanced heart failure. Circulation. 2001;104(20):2417–23.CrossRefPubMed
50.
go back to reference Zeltser D, Rosansky S, van Rensburg H, et al. Assessment of the efficacy and safety of intravenous conivaptan in euvolemic and hypervolemic hyponatremia. Am J Nephrol. 2007;27(5):447–57.CrossRefPubMed Zeltser D, Rosansky S, van Rensburg H, et al. Assessment of the efficacy and safety of intravenous conivaptan in euvolemic and hypervolemic hyponatremia. Am J Nephrol. 2007;27(5):447–57.CrossRefPubMed
Metadata
Title
Conivaptan, a Selective Arginine Vasopressin V1a and V2 Receptor Antagonist Attenuates Global Cerebral Edema Following Experimental Cardiac Arrest via Perivascular Pool of Aquaporin-4
Authors
Shin Nakayama
Mahmood Amiry-Moghaddam
Ole Petter Ottersen
Anish Bhardwaj
Publication date
01-04-2016
Publisher
Springer US
Published in
Neurocritical Care / Issue 2/2016
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-015-0236-4

Other articles of this Issue 2/2016

Neurocritical Care 2/2016 Go to the issue

Practical Pearl

Mucor Thrombus