Skip to main content
Top
Published in: Neurocritical Care 1/2010

01-02-2010 | Translational Research

Arginine-Vasopressin V1 but not V2 Receptor Antagonism Modulates Infarct Volume, Brain Water Content, and Aquaporin-4 Expression Following Experimental Stroke

Authors: Xiaoqin Liu, Shin Nakayama, Mahmood Amiry-Moghaddam, Ole Petter Ottersen, Anish Bhardwaj

Published in: Neurocritical Care | Issue 1/2010

Login to get access

Abstract

Background

Aquaporin-4 (AQP4) plays an important role in the evolution of ischemia-evoked cerebral edema. Experimental studies have also demonstrated anti-edema effects of arginine-vasopressin (AVP) antagonists. In a well-characterized murine model of ischemic stroke, we tested the hypotheses that treatment with selective AVP V1 but not V2 receptor antagonist (1) attenuates injury volume and ischemia-evoked cerebral edema; and (2) modulates ischemia-evoked AQP4 expression.

Methods

Isoflurane-anesthetized adult male C57bl/6 mice were subjected to 60 min of middle cerebral artery occlusion (MCAO) by the intraluminal suture technique. Adequacy of MCAO and reperfusion was monitored with laser-Doppler flowmetry over the ipsilateral parietal cortex. Mice were treated with intracerebroventricular injection of selective AVP V1 and V2 receptor antagonist or control vehicle (0.9% saline). Infarct volume (tetrazolium staining), cerebral edema (wet-to-dry ratios) and AQP4 protein expression (immunoblotting) were determined in different treatment groups in separate sets of experiments at 24 h of reperfusion.

Results

Infarct volume (percentage of contralateral structure; mean ± SEM) was significantly attenuated in mice treated with 500 ng V1 receptor antagonist as well as at a dose of 1000 ng compared to controls. However, there was no difference in infarct volume following treatment with 1000 ng V2 antagonist as compared to controls. Water content in the ischemic hemisphere was significantly attenuated with V1 receptor antagonist (1000 ng) but not with V2 receptor antagonist as compared to controls. Treatment with AVP V1 receptor antagonist (1000 ng) but not V2 receptor antagonist, significantly upregulated AQP4 protein expression (% β-actin) compared to saline-treated mice in ipsilateral (ischemic) cerebral cortex.

Conclusions

These data demonstrate that following experimental stroke AVP V1 receptor antagonism: (1) attenuates injury volume and ischemia-evoked cerebral edema; (2) modulates AQP4 expression; and (3) may serve as an important therapeutic target for neuroprotection and ischemia-evoked cerebral edema.
Literature
1.
go back to reference Landgraf R. Central release of vasopressin: stimuli, dynamics, consequences. Prog Brain Res. 1992;91:29–39.CrossRefPubMed Landgraf R. Central release of vasopressin: stimuli, dynamics, consequences. Prog Brain Res. 1992;91:29–39.CrossRefPubMed
2.
go back to reference Buijs RM. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res. 1978;192:423–35.CrossRefPubMed Buijs RM. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res. 1978;192:423–35.CrossRefPubMed
3.
go back to reference Riphagen CL, Pittman QJ. Arginine vasopressin as a central neurotransmitter. Fed Proc. 1986;45:125–32. Riphagen CL, Pittman QJ. Arginine vasopressin as a central neurotransmitter. Fed Proc. 1986;45:125–32.
4.
go back to reference Bhardwaj A. Neurological impact of vasopressin dysregulation and hyponatremia. Ann Neurol. 2006;59:229–36.CrossRefPubMed Bhardwaj A. Neurological impact of vasopressin dysregulation and hyponatremia. Ann Neurol. 2006;59:229–36.CrossRefPubMed
5.
go back to reference Chang Y, Chen T-Y, Chen C-H, et al. Plasma arginine-vasopressin following experimental stroke: effect of osmotherapy. J Appl Physiol. 2006;100:1445–51.CrossRefPubMed Chang Y, Chen T-Y, Chen C-H, et al. Plasma arginine-vasopressin following experimental stroke: effect of osmotherapy. J Appl Physiol. 2006;100:1445–51.CrossRefPubMed
6.
go back to reference Niermann H, Amiry-Moghaddam M, Holthoff K, et al. A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci. 2001;21:3045–51.PubMed Niermann H, Amiry-Moghaddam M, Holthoff K, et al. A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci. 2001;21:3045–51.PubMed
7.
go back to reference Depasquale M, Patlak CS, Cserr HF. Brain ion and volume regulation during acute hyponatremia in Battleboro rats. Am J Physiol. 1989;256:F1059–66.PubMed Depasquale M, Patlak CS, Cserr HF. Brain ion and volume regulation during acute hyponatremia in Battleboro rats. Am J Physiol. 1989;256:F1059–66.PubMed
8.
go back to reference Cserr HF, Latzkovitz L. A role for centrally-released vasopressin in brain ion and volume regulation: a hypothesis. Prog Brain Res. 1992;91:3–6.CrossRefPubMed Cserr HF, Latzkovitz L. A role for centrally-released vasopressin in brain ion and volume regulation: a hypothesis. Prog Brain Res. 1992;91:3–6.CrossRefPubMed
9.
go back to reference Fernandez N, Martinez MA, Garcia-Villalon AL, et al. Cerebral vasoconstriction produced by vasopressin in conscious goats: role of vasopressin V(1) and V(2) receptors and nitric oxide. Br J Pharmacol. 2001;132:1837–44.CrossRefPubMed Fernandez N, Martinez MA, Garcia-Villalon AL, et al. Cerebral vasoconstriction produced by vasopressin in conscious goats: role of vasopressin V(1) and V(2) receptors and nitric oxide. Br J Pharmacol. 2001;132:1837–44.CrossRefPubMed
10.
go back to reference Decaux G, Soupart A, Vassart G. Non-peptide arginine-vasopressin antagonists: the vaptans. Lancet. 2008;371:1624–32.CrossRefPubMed Decaux G, Soupart A, Vassart G. Non-peptide arginine-vasopressin antagonists: the vaptans. Lancet. 2008;371:1624–32.CrossRefPubMed
11.
go back to reference Holmes CL, Landry DW, Granton JT. Science review: vasopressin and the cardiovascular system part 1—receptor physiology. Crit Care. 2003;7:427–34.CrossRefPubMed Holmes CL, Landry DW, Granton JT. Science review: vasopressin and the cardiovascular system part 1—receptor physiology. Crit Care. 2003;7:427–34.CrossRefPubMed
12.
go back to reference Kozniewska E, Szczepanska-Sadowska E. V2-like receptors mediate cerebral blood flow increase following vasopressin administration in rats. J Cardiovasc Pharmacol. 1990;15:579–85.PubMed Kozniewska E, Szczepanska-Sadowska E. V2-like receptors mediate cerebral blood flow increase following vasopressin administration in rats. J Cardiovasc Pharmacol. 1990;15:579–85.PubMed
13.
go back to reference Vakili A, Kataoka H, Plesnila N. Role of arginine vasopressin V1 and V2 receptors for brain damage after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2005;25:1012–9.CrossRefPubMed Vakili A, Kataoka H, Plesnila N. Role of arginine vasopressin V1 and V2 receptors for brain damage after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2005;25:1012–9.CrossRefPubMed
14.
go back to reference Barreca T, Gandolfo C, Corsini G, et al. Evaluation of the secretory pattern of plasma arginine vasopressin in stroke patients. Cerebrovasc Dis. 2001;11:113–8.CrossRefPubMed Barreca T, Gandolfo C, Corsini G, et al. Evaluation of the secretory pattern of plasma arginine vasopressin in stroke patients. Cerebrovasc Dis. 2001;11:113–8.CrossRefPubMed
15.
go back to reference Dickinson LD, Betz AL. Attenuated development of ischemic brain edema in vasopressin-deficient rats. J Cereb Blood Flow Metab. 1992;12:681–90.PubMed Dickinson LD, Betz AL. Attenuated development of ischemic brain edema in vasopressin-deficient rats. J Cereb Blood Flow Metab. 1992;12:681–90.PubMed
16.
go back to reference Liu XF, Shi YM, Lin BC. Mechanism of action of arginine vasopressin on acute ischemic brain edema. Chin Med (Engl). 1991;104:490–3. Liu XF, Shi YM, Lin BC. Mechanism of action of arginine vasopressin on acute ischemic brain edema. Chin Med (Engl). 1991;104:490–3.
17.
go back to reference Ikeda Y, Toda S, Kawamoto T, Teramoto A. Arginine vasopressin release inhibitor RU51599 attenuates brain edema following transient forebrain ischemia in rats. Acta Neurochir (Wien). 1997;139:1166–71.CrossRef Ikeda Y, Toda S, Kawamoto T, Teramoto A. Arginine vasopressin release inhibitor RU51599 attenuates brain edema following transient forebrain ischemia in rats. Acta Neurochir (Wien). 1997;139:1166–71.CrossRef
18.
go back to reference Shuiab A, Xu WC, Yang T, Noor R. Effects of nonpeptide V(1) vasopressin receptor antagonist SR-49059 on infarction volume and recovery of function in a focal embolic stroke model. Stroke. 2002;33:3033–7.CrossRef Shuiab A, Xu WC, Yang T, Noor R. Effects of nonpeptide V(1) vasopressin receptor antagonist SR-49059 on infarction volume and recovery of function in a focal embolic stroke model. Stroke. 2002;33:3033–7.CrossRef
19.
go back to reference Kleindienst A, Fazzina G, Dunbar JG, et al. Protective effect of the V1a receptor antagonist SR49059 on brain edema formation following middle cerebral artery occlusion in the rat. Acta Neurochir Suppl. 2006;96:303–6.CrossRefPubMed Kleindienst A, Fazzina G, Dunbar JG, et al. Protective effect of the V1a receptor antagonist SR49059 on brain edema formation following middle cerebral artery occlusion in the rat. Acta Neurochir Suppl. 2006;96:303–6.CrossRefPubMed
20.
go back to reference King LS, Agre P. Pathophysiology of the aquaporin water channels. Annu Rev Physiol. 1996;58:619–48.CrossRefPubMed King LS, Agre P. Pathophysiology of the aquaporin water channels. Annu Rev Physiol. 1996;58:619–48.CrossRefPubMed
21.
go back to reference Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000;6:159–63.CrossRefPubMed Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000;6:159–63.CrossRefPubMed
22.
go back to reference Badaut J, Lasbennes F, Magistretti PJ, et al. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab. 2002;22:367–78.CrossRefPubMed Badaut J, Lasbennes F, Magistretti PJ, et al. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab. 2002;22:367–78.CrossRefPubMed
23.
go back to reference Amiry-Moghaddam M, Otsuka T, Hurn PD, et al. An α-syntrophin dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA. 2003;100:2106–11.CrossRefPubMed Amiry-Moghaddam M, Otsuka T, Hurn PD, et al. An α-syntrophin dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA. 2003;100:2106–11.CrossRefPubMed
24.
go back to reference Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport in the brain. Nat Rev Neurosci. 2003;4:991–1001.CrossRefPubMed Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport in the brain. Nat Rev Neurosci. 2003;4:991–1001.CrossRefPubMed
25.
go back to reference Amiry-Moghaddam M, Xue R, Haug F-M, et al. Alpha-syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood–brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia. FASEB J. 2004;18:542–4.PubMed Amiry-Moghaddam M, Xue R, Haug F-M, et al. Alpha-syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood–brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia. FASEB J. 2004;18:542–4.PubMed
26.
go back to reference Bloch O, Papadopoulos MC, Manley GT, et al. Aquaporin-4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess. J Neurochem. 2005;95:254–62.CrossRefPubMed Bloch O, Papadopoulos MC, Manley GT, et al. Aquaporin-4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess. J Neurochem. 2005;95:254–62.CrossRefPubMed
27.
go back to reference Papadopoulos MC, Manley GT, Krishna S, et al. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004;18:1291–3.PubMed Papadopoulos MC, Manley GT, Krishna S, et al. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004;18:1291–3.PubMed
28.
go back to reference Ribeiro Mde C, Hirt L, Bogousslavsky J, et al. Time course of aquaporin expression after transient focal cerebral ischemia in mice. J Neurosci Res. 2006;83:1231–40.CrossRefPubMed Ribeiro Mde C, Hirt L, Bogousslavsky J, et al. Time course of aquaporin expression after transient focal cerebral ischemia in mice. J Neurosci Res. 2006;83:1231–40.CrossRefPubMed
29.
go back to reference Frigeri A, Grooper MA, Umenishi F, et al. Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J Cell Sci. 1995;108:2993–3002.PubMed Frigeri A, Grooper MA, Umenishi F, et al. Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J Cell Sci. 1995;108:2993–3002.PubMed
30.
go back to reference Nielsen S, Nagelhus EA, Amiri-Moghaddam M, et al. Specialized membrane domains for water transport in glial cells: high resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci. 1997;17:171–80.PubMed Nielsen S, Nagelhus EA, Amiri-Moghaddam M, et al. Specialized membrane domains for water transport in glial cells: high resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci. 1997;17:171–80.PubMed
31.
go back to reference Sawada M, Alkayed NJ, Goto S, et al. Estrogen receptor antagonist ICI182, 780 exacerbates ischemic injury in female mouse. J Cereb Blood Flow Metab. 2000;20:112–8.CrossRefPubMed Sawada M, Alkayed NJ, Goto S, et al. Estrogen receptor antagonist ICI182, 780 exacerbates ischemic injury in female mouse. J Cereb Blood Flow Metab. 2000;20:112–8.CrossRefPubMed
32.
go back to reference Zeynalov E, Chen CH, Froehner SC, et al. The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med. 2008;36:2634–40.CrossRefPubMed Zeynalov E, Chen CH, Froehner SC, et al. The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med. 2008;36:2634–40.CrossRefPubMed
33.
go back to reference Liu X, Zhang W, Alkayed NJ, et al. Lack of sex-linked differences in cerebral edema and aquaporin-4 expression after experimental stroke. J Cereb Blood Flow Metab. 2008;28:1898–906.CrossRefPubMed Liu X, Zhang W, Alkayed NJ, et al. Lack of sex-linked differences in cerebral edema and aquaporin-4 expression after experimental stroke. J Cereb Blood Flow Metab. 2008;28:1898–906.CrossRefPubMed
34.
go back to reference Hara H, Huang PL, Panahian N, et al. Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J Cereb Blood Flow Metab. 1996;16:605–11.CrossRefPubMed Hara H, Huang PL, Panahian N, et al. Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J Cereb Blood Flow Metab. 1996;16:605–11.CrossRefPubMed
35.
go back to reference Lin TN, He YY, Wu G, et al. Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke. 1993;24:117–21.PubMed Lin TN, He YY, Wu G, et al. Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke. 1993;24:117–21.PubMed
36.
go back to reference Ouyang Y, Rosenstein A, Kreiman G, et al. Tetanic stimulation leads to increased accumulation of Ca(2+)/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. J Neurosci. 1999;15(19):7823–33. Ouyang Y, Rosenstein A, Kreiman G, et al. Tetanic stimulation leads to increased accumulation of Ca(2+)/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. J Neurosci. 1999;15(19):7823–33.
37.
go back to reference Frydenlund DS, Bhardwaj A, Otsuka T, et al. Temporary loss of perivascular aquaporin-4 in neocortex after transient middle cerebral artery occlusion in mice. Proc Natl Acad Sci USA. 2006;103:13532–6.CrossRefPubMed Frydenlund DS, Bhardwaj A, Otsuka T, et al. Temporary loss of perivascular aquaporin-4 in neocortex after transient middle cerebral artery occlusion in mice. Proc Natl Acad Sci USA. 2006;103:13532–6.CrossRefPubMed
38.
go back to reference Hacke W, Schwab S, Horn M, et al. “Malignant” middle cerebral artery infarction: clinical course and prognostic signs. Arch Neurol. 1996;53:309–15.PubMed Hacke W, Schwab S, Horn M, et al. “Malignant” middle cerebral artery infarction: clinical course and prognostic signs. Arch Neurol. 1996;53:309–15.PubMed
39.
40.
go back to reference Abe O, Okubo T, Hayashi N, et al. Temporal changes of apparent diffusion coefficients of water and metabolites in rats with hemispheric infarction; experimental study of transhemispheric diaschisis in the contralateral hemisphere at 7 tesla. J Cereb Blood Flow Metab. 2000;20:726–35.CrossRefPubMed Abe O, Okubo T, Hayashi N, et al. Temporal changes of apparent diffusion coefficients of water and metabolites in rats with hemispheric infarction; experimental study of transhemispheric diaschisis in the contralateral hemisphere at 7 tesla. J Cereb Blood Flow Metab. 2000;20:726–35.CrossRefPubMed
41.
go back to reference Abbott NJ. Inflammatory mediators and modulation of blood–brain barrier permeability. Cell Mol Neurobiol. 2000;20:131–47.CrossRefPubMed Abbott NJ. Inflammatory mediators and modulation of blood–brain barrier permeability. Cell Mol Neurobiol. 2000;20:131–47.CrossRefPubMed
42.
go back to reference Bemana I, Nagao S. Treatment of brain edema with nonpeptide arginine vasopressin V1 receptor antagonist OPC-21268 in rats. Neurosurgery. 1999;44:148–54.CrossRefPubMed Bemana I, Nagao S. Treatment of brain edema with nonpeptide arginine vasopressin V1 receptor antagonist OPC-21268 in rats. Neurosurgery. 1999;44:148–54.CrossRefPubMed
43.
go back to reference Van Bruggen N, Thibodeaux H, Palmer JT, et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion in mouse brain. J Clin Invest. 1999;104:1613–20.CrossRefPubMed Van Bruggen N, Thibodeaux H, Palmer JT, et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion in mouse brain. J Clin Invest. 1999;104:1613–20.CrossRefPubMed
44.
go back to reference Doczi T, Laszlo FA, Szerdahelyi P, Joo F. Involvement of vasopressin in brain edema formation: further evidence obtained from the Battleboro diabetes insipidus rat with subarachnoid hemorrhage. Neurosurgery. 1984;14:436–41.PubMedCrossRef Doczi T, Laszlo FA, Szerdahelyi P, Joo F. Involvement of vasopressin in brain edema formation: further evidence obtained from the Battleboro diabetes insipidus rat with subarachnoid hemorrhage. Neurosurgery. 1984;14:436–41.PubMedCrossRef
45.
go back to reference Trabold R, Krieg S, Scholler K, et al. Role of vasopressin v(1a) and v(2) receptors for the development of secondary brain damage after traumatic brain injury in mice. J Neurotrauma. 2008;25:1459–65.CrossRefPubMed Trabold R, Krieg S, Scholler K, et al. Role of vasopressin v(1a) and v(2) receptors for the development of secondary brain damage after traumatic brain injury in mice. J Neurotrauma. 2008;25:1459–65.CrossRefPubMed
46.
go back to reference Rosenberg GA, Scremin O, Estrada E, et al. Arginine vasopressin V1-antagonist and atrial natriuretic peptide reduce hemorrhagic brain edema in rats. Stroke. 1992;23:1767–73.PubMed Rosenberg GA, Scremin O, Estrada E, et al. Arginine vasopressin V1-antagonist and atrial natriuretic peptide reduce hemorrhagic brain edema in rats. Stroke. 1992;23:1767–73.PubMed
47.
go back to reference Molnár AH, Varga C, Berkó A, et al. Prevention of hypoxic brain oedema by the administration of vasopressin receptor antagonist OPC-31260. Prog Brain Res. 2008;170:519–25.CrossRefPubMed Molnár AH, Varga C, Berkó A, et al. Prevention of hypoxic brain oedema by the administration of vasopressin receptor antagonist OPC-31260. Prog Brain Res. 2008;170:519–25.CrossRefPubMed
48.
go back to reference Liu X, Jin Y, Zheng H, Chen G, et al. Arginine vasopressin gene expression in supraoptic nucleus and paraventricular nucleus of hypothalamus following cerebral ischemia and reperfusion. Chin Med Sci J. 2000;15:157–61.PubMed Liu X, Jin Y, Zheng H, Chen G, et al. Arginine vasopressin gene expression in supraoptic nucleus and paraventricular nucleus of hypothalamus following cerebral ischemia and reperfusion. Chin Med Sci J. 2000;15:157–61.PubMed
49.
go back to reference Reeder RF, Nattie EE, North WG. Effect of vasopressin on cold-induced brain edema in cats. J Neurosurg. 1986;64:941–50.CrossRefPubMed Reeder RF, Nattie EE, North WG. Effect of vasopressin on cold-induced brain edema in cats. J Neurosurg. 1986;64:941–50.CrossRefPubMed
50.
go back to reference Liu X, Jin Y, Chen G. Effect of vasopressin on delayed neuronal damage in hippocampus following cerebral ischemia and reperfusion in gerbils. Chin Med Sci J. 1996;11:93–6.PubMed Liu X, Jin Y, Chen G. Effect of vasopressin on delayed neuronal damage in hippocampus following cerebral ischemia and reperfusion in gerbils. Chin Med Sci J. 1996;11:93–6.PubMed
51.
go back to reference Latzkovitz L, Cserr HF, Park JT, et al. Effects of arginine vasopressin and atriopeptin on glial cell volume measured as 3-MG space. Am J Physiol. 1993;264:C603–8. Latzkovitz L, Cserr HF, Park JT, et al. Effects of arginine vasopressin and atriopeptin on glial cell volume measured as 3-MG space. Am J Physiol. 1993;264:C603–8.
52.
go back to reference Urban IJ, Killian MJ. Two actions of vasopressin on neurons in the rat ventral hippocampus; a microelectrophoretic study. Neuropeptides. 1990;16:83–90.CrossRefPubMed Urban IJ, Killian MJ. Two actions of vasopressin on neurons in the rat ventral hippocampus; a microelectrophoretic study. Neuropeptides. 1990;16:83–90.CrossRefPubMed
53.
go back to reference Fields JD, Bhardwaj A. Non-peptide arginine-vasopressin antagonists (vaptans) for the treatment of hyponatremia in neurocritical care: a new alternative? Neurocrit Care. 2009;37:2306–7. Fields JD, Bhardwaj A. Non-peptide arginine-vasopressin antagonists (vaptans) for the treatment of hyponatremia in neurocritical care: a new alternative? Neurocrit Care. 2009;37:2306–7.
54.
go back to reference Okuno K, Taya K, Marmarou CR, et al. The modulation of aquaporin-4 by using PKC-activator (phorbol myristate acetate) and V1a receptor antagonist (SR49059) following middle cerebral artery occlusion/reperfusion in the rat. Acta Neurochir Suppl. 2008;102:431–6.CrossRefPubMed Okuno K, Taya K, Marmarou CR, et al. The modulation of aquaporin-4 by using PKC-activator (phorbol myristate acetate) and V1a receptor antagonist (SR49059) following middle cerebral artery occlusion/reperfusion in the rat. Acta Neurochir Suppl. 2008;102:431–6.CrossRefPubMed
55.
go back to reference Taya K, Gulsen S, Okuno K, et al. Modulation of AQP4 expression by the selective V1a receptor antagonist, SR49059, decreases trauma-induced brain edema. Acta Neurochir Suppl. 2008;102:425–9.CrossRefPubMed Taya K, Gulsen S, Okuno K, et al. Modulation of AQP4 expression by the selective V1a receptor antagonist, SR49059, decreases trauma-induced brain edema. Acta Neurochir Suppl. 2008;102:425–9.CrossRefPubMed
56.
go back to reference Vajda Z, Pedersen M, Füchtbauer EM, et al. Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc Natl Acad Sci USA. 2002;99:13131–6.CrossRefPubMed Vajda Z, Pedersen M, Füchtbauer EM, et al. Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc Natl Acad Sci USA. 2002;99:13131–6.CrossRefPubMed
Metadata
Title
Arginine-Vasopressin V1 but not V2 Receptor Antagonism Modulates Infarct Volume, Brain Water Content, and Aquaporin-4 Expression Following Experimental Stroke
Authors
Xiaoqin Liu
Shin Nakayama
Mahmood Amiry-Moghaddam
Ole Petter Ottersen
Anish Bhardwaj
Publication date
01-02-2010
Publisher
Humana Press Inc
Published in
Neurocritical Care / Issue 1/2010
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-009-9277-x

Other articles of this Issue 1/2010

Neurocritical Care 1/2010 Go to the issue