Skip to main content
Top
Published in: Immunologic Research 2-3/2014

01-05-2014 | IMMUNOLOGY AT STANFORD UNIVERSITY

Function of the tetraspanin molecule CD81 in B and T cells

Author: Shoshana Levy

Published in: Immunologic Research | Issue 2-3/2014

Login to get access

Abstract

A case of a young girl diagnosed with an antibody deficiency syndrome serves to highlight the role of CD81 in B cell biology. Moreover, this case illustrates a fundamental function of the tetraspanin family, namely their association with partner proteins. Characterization of the patient’s B cells revealed lack of surface CD19 although both of her CD19 alleles were normal. Further analysis determined that her antibody deficiency syndrome was due to a mutation in the CD81 gene, which did not enable expression of CD19 on the surface of the patient’s B cells. Actually, the partnership of CD81 with CD19 and the dependency of CD19 for its trafficking to the cell surface expression were first documented in CD81-deficient mice. CD81 is a widely expressed protein, yet the mutation in the antibody-deficient patient impaired mostly her B cell function. CD81 is required for multiple normal physiological functions, which have been subverted by major human pathogens, such as hepatitis C virus. However, this review will focus on the function of CD81 in cells of the adaptive immune system. Specifically, it will highlight studies focusing on the different roles of CD81 in B and T cells and on its function in B–T cell interactions.
Literature
1.
go back to reference Oren R, Takahashi S, Doss C, Levy R, Levy S. TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol Cell Biol. 1990;10(8):4007–15.PubMedCentralCrossRefPubMed Oren R, Takahashi S, Doss C, Levy R, Levy S. TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol Cell Biol. 1990;10(8):4007–15.PubMedCentralCrossRefPubMed
2.
go back to reference Takahashi S, Doss C, Levy S, Levy R. TAPA-1, the target of an antiproliferative antibody, is associated on the cell surface with the Leu-13 antigen. J Immunol (Baltimore, MD: 1950). 1990;145(7):2207–13. Takahashi S, Doss C, Levy S, Levy R. TAPA-1, the target of an antiproliferative antibody, is associated on the cell surface with the Leu-13 antigen. J Immunol (Baltimore, MD: 1950). 1990;145(7):2207–13.
3.
go back to reference Garcia-Espana A, Chung PJ, Sarkar IN, Stiner E, Sun TT, Desalle R. Appearance of new tetraspanin genes during vertebrate evolution. Genomics. 2008;91(4):326–34.CrossRefPubMed Garcia-Espana A, Chung PJ, Sarkar IN, Stiner E, Sun TT, Desalle R. Appearance of new tetraspanin genes during vertebrate evolution. Genomics. 2008;91(4):326–34.CrossRefPubMed
4.
go back to reference Garcia-Espana A, Chung PJ, Zhao X, Lee A, Pellicer A, Yu J, Sun TT, Desalle R. Origin of the tetraspanin uroplakins and their co-evolution with associated proteins: implications for uroplakin structure and function. Mol Phylogenet Evol. 2006;41(2):355–67.CrossRefPubMed Garcia-Espana A, Chung PJ, Zhao X, Lee A, Pellicer A, Yu J, Sun TT, Desalle R. Origin of the tetraspanin uroplakins and their co-evolution with associated proteins: implications for uroplakin structure and function. Mol Phylogenet Evol. 2006;41(2):355–67.CrossRefPubMed
5.
go back to reference Kitadokoro K, Bordo D, Galli G, Petracca R, Falugi F, Abrignani S, Grandi G, Bolognesi M. CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. EMBO J. 2001;20(1–2):12–8.PubMedCentralCrossRefPubMed Kitadokoro K, Bordo D, Galli G, Petracca R, Falugi F, Abrignani S, Grandi G, Bolognesi M. CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. EMBO J. 2001;20(1–2):12–8.PubMedCentralCrossRefPubMed
6.
go back to reference Hemler ME. Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol. 2005;6(10):801–11.CrossRefPubMed Hemler ME. Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol. 2005;6(10):801–11.CrossRefPubMed
7.
go back to reference Levy S, Shoham T. The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol. 2005;5(2):136–48.CrossRefPubMed Levy S, Shoham T. The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol. 2005;5(2):136–48.CrossRefPubMed
8.
go back to reference Nydegger S, Khurana S, Krementsov DN, Foti M, Thali M. Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J Cell Biol. 2006;173(5):795–807.PubMedCentralCrossRefPubMed Nydegger S, Khurana S, Krementsov DN, Foti M, Thali M. Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J Cell Biol. 2006;173(5):795–807.PubMedCentralCrossRefPubMed
9.
go back to reference Bradbury LE, Kansas GS, Levy S, Evans RL, Tedder TF. The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. J Immunol. 1992;149(9):2841–50.PubMed Bradbury LE, Kansas GS, Levy S, Evans RL, Tedder TF. The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. J Immunol. 1992;149(9):2841–50.PubMed
10.
go back to reference Fournier M, Peyrou M, Bourgoin L, Maeder C, Tchou I, Foti M. CD4 dimerization requires two cysteines in the cytoplasmic domain of the molecule and occurs in microdomains distinct from lipid rafts. Mol Immunol. 2010;47(16):2594–603.CrossRefPubMed Fournier M, Peyrou M, Bourgoin L, Maeder C, Tchou I, Foti M. CD4 dimerization requires two cysteines in the cytoplasmic domain of the molecule and occurs in microdomains distinct from lipid rafts. Mol Immunol. 2010;47(16):2594–603.CrossRefPubMed
11.
go back to reference Imai T, Kakizaki M, Nishimura M, Yoshie O. Molecular analyses of the association of CD4 with two members of the transmembrane 4 superfamily, CD81 and CD82. J Immunol. 1995;155(3):1229–39.PubMed Imai T, Kakizaki M, Nishimura M, Yoshie O. Molecular analyses of the association of CD4 with two members of the transmembrane 4 superfamily, CD81 and CD82. J Immunol. 1995;155(3):1229–39.PubMed
12.
go back to reference Todd SC, Lipps SG, Crisa L, Salomon DR, Tsoukas CD. CD81 expressed on human thymocytes mediates integrin activation and interleukin 2-dependent proliferation. J Exp Med. 1996;184(5):2055–60.CrossRefPubMed Todd SC, Lipps SG, Crisa L, Salomon DR, Tsoukas CD. CD81 expressed on human thymocytes mediates integrin activation and interleukin 2-dependent proliferation. J Exp Med. 1996;184(5):2055–60.CrossRefPubMed
13.
go back to reference Charrin S, Manie S, Billard M, Ashman L, Gerlier D, Boucheix C, Rubinstein E. Multiple levels of interactions within the tetraspanin web. Biochem Biophys Res Commun. 2003;304(1):107–12.CrossRefPubMed Charrin S, Manie S, Billard M, Ashman L, Gerlier D, Boucheix C, Rubinstein E. Multiple levels of interactions within the tetraspanin web. Biochem Biophys Res Commun. 2003;304(1):107–12.CrossRefPubMed
14.
go back to reference Berditchevski F, Tolias KF, Wong K, Carpenter CL, Hemler ME. A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase. J Biol Chem. 1997;272(5):2595–8.CrossRefPubMed Berditchevski F, Tolias KF, Wong K, Carpenter CL, Hemler ME. A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase. J Biol Chem. 1997;272(5):2595–8.CrossRefPubMed
15.
go back to reference Mannion BA, Berditchevski F, Kraeft SK, Chen LB, Hemler ME. Transmembrane-4 superfamily proteins CD81 (TAPA-1), CD82, CD63, and CD53 specifically associated with integrin alpha 4 beta 1 (CD49d/CD29). J Immunol. 1996;157(5):2039–47.PubMed Mannion BA, Berditchevski F, Kraeft SK, Chen LB, Hemler ME. Transmembrane-4 superfamily proteins CD81 (TAPA-1), CD82, CD63, and CD53 specifically associated with integrin alpha 4 beta 1 (CD49d/CD29). J Immunol. 1996;157(5):2039–47.PubMed
16.
go back to reference Stipp CS, Kolesnikova TV, Hemler ME. EWI-2 is a major CD9 and CD81 partner and member of a novel Ig protein subfamily. J Biol Chem. 2001;276(44):40545–54.CrossRefPubMed Stipp CS, Kolesnikova TV, Hemler ME. EWI-2 is a major CD9 and CD81 partner and member of a novel Ig protein subfamily. J Biol Chem. 2001;276(44):40545–54.CrossRefPubMed
17.
go back to reference Charrin S, Le Naour F, Labas V, Billard M, Le Caer JP, Emile JF, Petit MA, Boucheix C, Rubinstein E. EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochem J. 2003;373(Pt 2):409–21.PubMedCentralCrossRefPubMed Charrin S, Le Naour F, Labas V, Billard M, Le Caer JP, Emile JF, Petit MA, Boucheix C, Rubinstein E. EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochem J. 2003;373(Pt 2):409–21.PubMedCentralCrossRefPubMed
18.
go back to reference Sala-Valdes M, Ursa A, Charrin S, Rubinstein E, Hemler ME, Sanchez-Madrid F, Yanez-Mo M. EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin–radixin–moesin proteins. J Biol Chem. 2006;281(28):19665–75.CrossRefPubMed Sala-Valdes M, Ursa A, Charrin S, Rubinstein E, Hemler ME, Sanchez-Madrid F, Yanez-Mo M. EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin–radixin–moesin proteins. J Biol Chem. 2006;281(28):19665–75.CrossRefPubMed
19.
go back to reference Coffey G, Rajapaksa R, Liu R, Sharpe O, Kuo C-C, Krauss S, Sagi Y, Davis R, Staudt L, Sharman J, Robinson W, Levy S. Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin. J Cell Sci. 2009;122(Pt 17):3137–44.PubMedCentralCrossRefPubMed Coffey G, Rajapaksa R, Liu R, Sharpe O, Kuo C-C, Krauss S, Sagi Y, Davis R, Staudt L, Sharman J, Robinson W, Levy S. Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin. J Cell Sci. 2009;122(Pt 17):3137–44.PubMedCentralCrossRefPubMed
20.
go back to reference Gordon-Alonso M, Sala-Valdes M, Rocha-Perugini V, Perez-Hernandez D, Lopez-Martin S, Ursa A, Alvarez S, Kolesnikova TV, Vazquez J, Sanchez-Madrid F, Yanez-Mo M. EWI-2 association with alpha-actinin regulates T cell immune synapses and HIV viral infection. J Immunol. 2012;189(2):689–700.CrossRefPubMed Gordon-Alonso M, Sala-Valdes M, Rocha-Perugini V, Perez-Hernandez D, Lopez-Martin S, Ursa A, Alvarez S, Kolesnikova TV, Vazquez J, Sanchez-Madrid F, Yanez-Mo M. EWI-2 association with alpha-actinin regulates T cell immune synapses and HIV viral infection. J Immunol. 2012;189(2):689–700.CrossRefPubMed
21.
go back to reference Fearon DT, Carroll MC. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu Rev Immunol. 2000;18:393–422.CrossRefPubMed Fearon DT, Carroll MC. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu Rev Immunol. 2000;18:393–422.CrossRefPubMed
22.
go back to reference Dempsey PW, Allison ME, Akkaraju S, Goodnow CC, Fearon DT. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science. 1996;271(5247):348–50.CrossRefPubMed Dempsey PW, Allison ME, Akkaraju S, Goodnow CC, Fearon DT. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science. 1996;271(5247):348–50.CrossRefPubMed
23.
go back to reference Mattila PK, Feest C, Depoil D, Treanor B, Montaner B, Otipoby KL, Carter R, Justement LB, Bruckbauer A, Batista FD. The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity. 2013;38(3):461–74.CrossRefPubMed Mattila PK, Feest C, Depoil D, Treanor B, Montaner B, Otipoby KL, Carter R, Justement LB, Bruckbauer A, Batista FD. The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity. 2013;38(3):461–74.CrossRefPubMed
24.
go back to reference Matsumoto AK, Martin DR, Carter RH, Klickstein LB, Ahearn JM, Fearon DT. Functional dissection of the CD21/CD19/TAPA-1/Leu-13 complex of B lymphocytes. J Exp Med. 1993;178(4):1407–17.CrossRefPubMed Matsumoto AK, Martin DR, Carter RH, Klickstein LB, Ahearn JM, Fearon DT. Functional dissection of the CD21/CD19/TAPA-1/Leu-13 complex of B lymphocytes. J Exp Med. 1993;178(4):1407–17.CrossRefPubMed
26.
go back to reference Miyazaki T, Muller U, Campbell KS. Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81. EMBO J. 1997;16(14):4217–25.PubMedCentralCrossRefPubMed Miyazaki T, Muller U, Campbell KS. Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81. EMBO J. 1997;16(14):4217–25.PubMedCentralCrossRefPubMed
27.
go back to reference Tsitsikov EN, Gutierrez-Ramos JC, Geha RS. Impaired CD19 expression and signaling, enhanced antibody response to type II T independent antigen and reduction of B-1 cells in CD81-deficient mice. Proc Natl Acad Sci USA. 1997;94(20):10844–9.PubMedCentralCrossRefPubMed Tsitsikov EN, Gutierrez-Ramos JC, Geha RS. Impaired CD19 expression and signaling, enhanced antibody response to type II T independent antigen and reduction of B-1 cells in CD81-deficient mice. Proc Natl Acad Sci USA. 1997;94(20):10844–9.PubMedCentralCrossRefPubMed
28.
go back to reference van Zelm MC, Smet J, Adams B, Mascart F, Schandene L, Janssen F, Ferster A, Kuo CC, Levy S, van Dongen JJ, van der Burg M. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest. 2010;120(4):1265–74 PMCID: PMC2846042.PubMedCentralCrossRefPubMed van Zelm MC, Smet J, Adams B, Mascart F, Schandene L, Janssen F, Ferster A, Kuo CC, Levy S, van Dongen JJ, van der Burg M. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest. 2010;120(4):1265–74 PMCID: PMC2846042.PubMedCentralCrossRefPubMed
29.
go back to reference Shoham T, Rajapaksa R, Boucheix C, Rubinstein E, Poe JC, Tedder TF, Levy S. The tetraspanin CD81 regulates the expression of CD19 during B cell development in a postendoplasmic reticulum compartment. J Immunol. 2003;171(8):4062–72.CrossRefPubMed Shoham T, Rajapaksa R, Boucheix C, Rubinstein E, Poe JC, Tedder TF, Levy S. The tetraspanin CD81 regulates the expression of CD19 during B cell development in a postendoplasmic reticulum compartment. J Immunol. 2003;171(8):4062–72.CrossRefPubMed
30.
go back to reference Shoham T, Rajapaksa R, Kuo CC, Haimovich J, Levy S. Building of the tetraspanin web: distinct structural domains of CD81 function in different cellular compartments. Mol Cell Biol. 2006;26(4):1373–85 PMCID: 1367195.PubMedCentralCrossRefPubMed Shoham T, Rajapaksa R, Kuo CC, Haimovich J, Levy S. Building of the tetraspanin web: distinct structural domains of CD81 function in different cellular compartments. Mol Cell Biol. 2006;26(4):1373–85 PMCID: 1367195.PubMedCentralCrossRefPubMed
31.
go back to reference Schick M, Nguyen V, Levy S. Anti-TAPA-1 antibodies induce protein tyrosine phosphorylation that is prevented by increasing intracellular thiol levels. J Immunol (Baltimore, MD: 1950). 1993;151(4):1918–25. Schick M, Nguyen V, Levy S. Anti-TAPA-1 antibodies induce protein tyrosine phosphorylation that is prevented by increasing intracellular thiol levels. J Immunol (Baltimore, MD: 1950). 1993;151(4):1918–25.
32.
go back to reference Cherukuri A, Shoham T, Sohn H, Levy S, Brooks S, Carter R, Pierce S. The tetraspanin CD81 is necessary for partitioning of coligated CD19/CD21-B cell antigen receptor complexes into signaling-active lipid rafts. J Immunol (Baltimore, MD: 1950). 2004;172(1):370–80.CrossRef Cherukuri A, Shoham T, Sohn H, Levy S, Brooks S, Carter R, Pierce S. The tetraspanin CD81 is necessary for partitioning of coligated CD19/CD21-B cell antigen receptor complexes into signaling-active lipid rafts. J Immunol (Baltimore, MD: 1950). 2004;172(1):370–80.CrossRef
33.
go back to reference Sanyal M, Fernandez R, Levy S. Enhanced B cell activation in the absence of CD81. Int Immunol. 2009;21(11):1225–37.CrossRefPubMed Sanyal M, Fernandez R, Levy S. Enhanced B cell activation in the absence of CD81. Int Immunol. 2009;21(11):1225–37.CrossRefPubMed
34.
go back to reference Schick MR, Levy S. The TAPA-1 molecule is associated on the surface of B cells with HLA-DR molecules. J Immunol. 1993;151(8):4090–7.PubMed Schick MR, Levy S. The TAPA-1 molecule is associated on the surface of B cells with HLA-DR molecules. J Immunol. 1993;151(8):4090–7.PubMed
35.
go back to reference Rubinstein E, Le Naour F, Lagaudriere-Gesbert C, Billard M, Conjeaud H, Boucheix C. CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins. Eur J Immunol. 1996;26(11):2657–65.CrossRefPubMed Rubinstein E, Le Naour F, Lagaudriere-Gesbert C, Billard M, Conjeaud H, Boucheix C. CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins. Eur J Immunol. 1996;26(11):2657–65.CrossRefPubMed
36.
go back to reference Angelisova P, Hilgert I, Horejsi V. Association of four antigens of the tetraspans family (CD37, CD53, TAPA-1, and R2/C33) with MHC class II glycoproteins. Immunogenetics. 1994;39:249–56.CrossRefPubMed Angelisova P, Hilgert I, Horejsi V. Association of four antigens of the tetraspans family (CD37, CD53, TAPA-1, and R2/C33) with MHC class II glycoproteins. Immunogenetics. 1994;39:249–56.CrossRefPubMed
37.
go back to reference Szollosi J, Horejsi V, Bene L, Angelisova P, Damjanovich S. Supramolecular complexes of MHC class I, MHC class II, CD20, and teraspan molecules (CD53, CD81 and CD82) at the surface of a B cell line JY. J Immunol. 1996;157:2939–46.PubMed Szollosi J, Horejsi V, Bene L, Angelisova P, Damjanovich S. Supramolecular complexes of MHC class I, MHC class II, CD20, and teraspan molecules (CD53, CD81 and CD82) at the surface of a B cell line JY. J Immunol. 1996;157:2939–46.PubMed
38.
go back to reference Hoorn T, Paul P, Janssen L, Janssen H, Neefjes J. Dynamics within tetraspanin pairs affect MHC class II expression. J Cell Sci. 2012;125(Pt 2):328–39.CrossRefPubMed Hoorn T, Paul P, Janssen L, Janssen H, Neefjes J. Dynamics within tetraspanin pairs affect MHC class II expression. J Cell Sci. 2012;125(Pt 2):328–39.CrossRefPubMed
39.
go back to reference Fukudome K, Furuse M, Imai T, Nishimura M, Takagi S, Hinuma Y, Yoshie O. Identification of membrane antigen C33 recognized by monoclonal antibodies inhibitory to human T-cell leukemia virus type 1 (HTLV-1)-induced syncytium formation: altered glycosylation of C33 antigen in HTLV-1-positive T cells. J Virol. 1992;66(3):1394–401 PMCID: PMC240862.PubMedCentralPubMed Fukudome K, Furuse M, Imai T, Nishimura M, Takagi S, Hinuma Y, Yoshie O. Identification of membrane antigen C33 recognized by monoclonal antibodies inhibitory to human T-cell leukemia virus type 1 (HTLV-1)-induced syncytium formation: altered glycosylation of C33 antigen in HTLV-1-positive T cells. J Virol. 1992;66(3):1394–401 PMCID: PMC240862.PubMedCentralPubMed
40.
go back to reference Gordon-Alonso M, Yanez-Mo M, Barreiro O, Alvarez S, Munoz-Fernandez MA, Valenzuela-Fernandez A, Sanchez-Madrid F. Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion. J Immunol. 2006;177(8):5129–37.CrossRefPubMed Gordon-Alonso M, Yanez-Mo M, Barreiro O, Alvarez S, Munoz-Fernandez MA, Valenzuela-Fernandez A, Sanchez-Madrid F. Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion. J Immunol. 2006;177(8):5129–37.CrossRefPubMed
41.
go back to reference Rubinstein E, Ziyyat A, Prenant M, Wrobel E, Wolf J-P, Levy S, Le Naour Fß, Boucheix C. Reduced fertility of female mice lacking CD81. Dev Biol. 2006;290(2):351–8.CrossRefPubMed Rubinstein E, Ziyyat A, Prenant M, Wrobel E, Wolf J-P, Levy S, Le Naour Fß, Boucheix C. Reduced fertility of female mice lacking CD81. Dev Biol. 2006;290(2):351–8.CrossRefPubMed
42.
go back to reference Charrin S, Latil M, Soave S, Polesskaya A, Chretien F, Boucheix C, Rubinstein E. Normal muscle regeneration requires tight control of muscle cell fusion by tetraspanins CD9 and CD81. Nat Commun. 2013;4:1674.CrossRefPubMed Charrin S, Latil M, Soave S, Polesskaya A, Chretien F, Boucheix C, Rubinstein E. Normal muscle regeneration requires tight control of muscle cell fusion by tetraspanins CD9 and CD81. Nat Commun. 2013;4:1674.CrossRefPubMed
43.
go back to reference Potel J, Rassam P, Montpellier C, Kaestner L, Werkmeister E, Tews BA, Couturier C, Popescu CI, Baumert TF, Rubinstein E, Dubuisson J, Milhiet PE, Cocquerel L. EWI-2wint promotes CD81 clustering that abrogates Hepatitis C Virus entry. Cell Microbiol. 2013;15(7):1234–52.CrossRefPubMed Potel J, Rassam P, Montpellier C, Kaestner L, Werkmeister E, Tews BA, Couturier C, Popescu CI, Baumert TF, Rubinstein E, Dubuisson J, Milhiet PE, Cocquerel L. EWI-2wint promotes CD81 clustering that abrogates Hepatitis C Virus entry. Cell Microbiol. 2013;15(7):1234–52.CrossRefPubMed
44.
go back to reference Boismenu R, Rhein M, Fischer WH, Havran WL. A role for CD81 in early T cell development. Science. 1996;271(5246):198–200.CrossRefPubMed Boismenu R, Rhein M, Fischer WH, Havran WL. A role for CD81 in early T cell development. Science. 1996;271(5246):198–200.CrossRefPubMed
45.
go back to reference Maecker H, Todd S, Kim E, Levy S. Differential expression of murine CD81 highlighted by new anti-mouse CD81 monoclonal antibodies. Hybridoma. 2000;19(1):15–22.CrossRefPubMed Maecker H, Todd S, Kim E, Levy S. Differential expression of murine CD81 highlighted by new anti-mouse CD81 monoclonal antibodies. Hybridoma. 2000;19(1):15–22.CrossRefPubMed
46.
go back to reference Witherden DA, Boismenu R, Havran WL. CD81 and CD28 costimulate T cells through distinct pathways. J Immunol. 2000;165(4):1902–9.CrossRefPubMed Witherden DA, Boismenu R, Havran WL. CD81 and CD28 costimulate T cells through distinct pathways. J Immunol. 2000;165(4):1902–9.CrossRefPubMed
47.
go back to reference Sagi Y, Landrigan A, Levy R, Levy S. Complementary costimulation of human T-cell subpopulations by cluster of differentiation 28 (CD28) and CD81. Proc Natl Acad Sci USA. 2012;109(5):1613–8.PubMedCentralCrossRefPubMed Sagi Y, Landrigan A, Levy R, Levy S. Complementary costimulation of human T-cell subpopulations by cluster of differentiation 28 (CD28) and CD81. Proc Natl Acad Sci USA. 2012;109(5):1613–8.PubMedCentralCrossRefPubMed
48.
go back to reference Soldaini E, Wack A, D’Oro U, Nuti S, Ulivieri C, Baldari CT, Abrignani S. T cell costimulation by the hepatitis C virus envelope protein E2 binding to CD81 is mediated by Lck. Eur J Immunol. 2003;33(2):455–64.CrossRefPubMed Soldaini E, Wack A, D’Oro U, Nuti S, Ulivieri C, Baldari CT, Abrignani S. T cell costimulation by the hepatitis C virus envelope protein E2 binding to CD81 is mediated by Lck. Eur J Immunol. 2003;33(2):455–64.CrossRefPubMed
49.
go back to reference Crotta S, Stilla A, Wack A, D’Andrea A, Nuti S, D’Oro U, Mosca M, Filliponi F, Brunetto RM, Bonino F, Abrignani S, Valiante NM. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J Exp Med. 2002;195(1):35–41.PubMedCentralCrossRefPubMed Crotta S, Stilla A, Wack A, D’Andrea A, Nuti S, D’Oro U, Mosca M, Filliponi F, Brunetto RM, Bonino F, Abrignani S, Valiante NM. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J Exp Med. 2002;195(1):35–41.PubMedCentralCrossRefPubMed
50.
go back to reference Crotta S, Ronconi V, Ulivieri C, Baldari CT, Valiante NM, Abrignani S, Wack A. Cytoskeleton rearrangement induced by tetraspanin engagement modulates the activation of T and NK cells. Eur J Immunol. 2006;36(4):919–29.CrossRefPubMed Crotta S, Ronconi V, Ulivieri C, Baldari CT, Valiante NM, Abrignani S, Wack A. Cytoskeleton rearrangement induced by tetraspanin engagement modulates the activation of T and NK cells. Eur J Immunol. 2006;36(4):919–29.CrossRefPubMed
51.
go back to reference Tseng CT, Klimpel GR. Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J Exp Med. 2002;195(1):43–9.PubMedCentralCrossRefPubMed Tseng CT, Klimpel GR. Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J Exp Med. 2002;195(1):43–9.PubMedCentralCrossRefPubMed
52.
go back to reference Clark KL, Zeng Z, Langford AL, Bowen SM, Todd SC. PGRL is a major CD81-associated protein on lymphocytes and distinguishes a new family of cell surface proteins. J Immunol. 2001;167(9):5115–21.CrossRefPubMed Clark KL, Zeng Z, Langford AL, Bowen SM, Todd SC. PGRL is a major CD81-associated protein on lymphocytes and distinguishes a new family of cell surface proteins. J Immunol. 2001;167(9):5115–21.CrossRefPubMed
53.
go back to reference Clark KL, Oelke A, Johnson ME, Eilert KD, Simpson PC, Todd SC. CD81 associates with 14-3-3 in a redox-regulated palmitoylation-dependent manner. J Biol Chem. 2004;279(19):19401–6.CrossRefPubMed Clark KL, Oelke A, Johnson ME, Eilert KD, Simpson PC, Todd SC. CD81 associates with 14-3-3 in a redox-regulated palmitoylation-dependent manner. J Biol Chem. 2004;279(19):19401–6.CrossRefPubMed
54.
go back to reference Mittelbrunn M, Yanez-Mo M, Sancho D, Ursa A, Sanchez-Madrid F. Cutting edge: dynamic redistribution of tetraspanin CD81 at the central zone of the immune synapse in both T lymphocytes and APC. J Immunol. 2002;169(12):6691–5.CrossRefPubMed Mittelbrunn M, Yanez-Mo M, Sancho D, Ursa A, Sanchez-Madrid F. Cutting edge: dynamic redistribution of tetraspanin CD81 at the central zone of the immune synapse in both T lymphocytes and APC. J Immunol. 2002;169(12):6691–5.CrossRefPubMed
55.
go back to reference Rocha-Perugini V, Zamai M, Gonzalez-Granado JM, Barreiro O, Tejera E, Yanez-Mo M, Caiolfa VR, Sanchez-Madrid F. CD81 controls sustained T cell activation signaling and defines the maturation stages of cognate immunological synapses. Mol Cell Biol. 2013;33(18):3644–58 PMCID: PMC3753866.PubMedCentralCrossRefPubMed Rocha-Perugini V, Zamai M, Gonzalez-Granado JM, Barreiro O, Tejera E, Yanez-Mo M, Caiolfa VR, Sanchez-Madrid F. CD81 controls sustained T cell activation signaling and defines the maturation stages of cognate immunological synapses. Mol Cell Biol. 2013;33(18):3644–58 PMCID: PMC3753866.PubMedCentralCrossRefPubMed
56.
go back to reference Secrist H, Levy S, DeKruyff R, Umetsu D. Ligation of TAPA-1 (CD81) or major histocompatibility complex class II in co-cultures of human B and T lymphocytes enhances interleukin-4 synthesis by antigen-specific CD4 + T cells. Eur J Immunol. 1996;26(7):1435–42.CrossRefPubMed Secrist H, Levy S, DeKruyff R, Umetsu D. Ligation of TAPA-1 (CD81) or major histocompatibility complex class II in co-cultures of human B and T lymphocytes enhances interleukin-4 synthesis by antigen-specific CD4 + T cells. Eur J Immunol. 1996;26(7):1435–42.CrossRefPubMed
57.
go back to reference Maecker H, Do M, Levy S. CD81 on B cells promotes interleukin 4 secretion and antibody production during T helper type 2 immune responses. Proc Natl Acad Sci USA. 1998;95(5):2458–62.PubMedCentralCrossRefPubMed Maecker H, Do M, Levy S. CD81 on B cells promotes interleukin 4 secretion and antibody production during T helper type 2 immune responses. Proc Natl Acad Sci USA. 1998;95(5):2458–62.PubMedCentralCrossRefPubMed
58.
go back to reference Deng J, Yeung V, Tsitoura D, DeKruyff R, Umetsu D, Levy S. Allergen-induced airway hyperreactivity is diminished in CD81-deficient mice. J Immunol (Baltimore, MD: 1950). 2000;165(9):5054–61.CrossRef Deng J, Yeung V, Tsitoura D, DeKruyff R, Umetsu D, Levy S. Allergen-induced airway hyperreactivity is diminished in CD81-deficient mice. J Immunol (Baltimore, MD: 1950). 2000;165(9):5054–61.CrossRef
59.
go back to reference Deng J, Dekruyff R, Freeman G, Umetsu D, Levy S. Critical role of CD81 in cognate T–B cell interactions leading to Th2 responses. Int Immunol. 2002;14(5):513–23.CrossRefPubMed Deng J, Dekruyff R, Freeman G, Umetsu D, Levy S. Critical role of CD81 in cognate T–B cell interactions leading to Th2 responses. Int Immunol. 2002;14(5):513–23.CrossRefPubMed
Metadata
Title
Function of the tetraspanin molecule CD81 in B and T cells
Author
Shoshana Levy
Publication date
01-05-2014
Publisher
Springer US
Published in
Immunologic Research / Issue 2-3/2014
Print ISSN: 0257-277X
Electronic ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-014-8490-7

Other articles of this Issue 2-3/2014

Immunologic Research 2-3/2014 Go to the issue

IMMUNOLOGY AT STANFORD UNIVERSITY

NK cells after transplantation: friend or foe

IMMUNOLOGY AT STANFORD UNIVERSITY

The early history of Stanford Immunology