Skip to main content
Top
Published in: Endocrine 3/2017

Open Access 01-03-2017 | Original Article

Proopiomelanocortin, glucocorticoid, and CRH receptor expression in human ACTH-secreting pituitary adenomas

Authors: Maria Francesca Cassarino, Antonella Sesta, Luca Pagliardini, Marco Losa, Giovanni Lasio, Francesco Cavagnini, Francesca Pecori Giraldi

Published in: Endocrine | Issue 3/2017

Login to get access

Abstract

ACTH-secreting pituitary tumors are by definition partially autonomous, i.e., secrete ACTH independent of physiological control. However, only few, small-sized studies on proopiomelanocortin (POMC) and its regulation by corticotropin-releasing hormone (CRH) or glucocorticoids are available. Objective of the present study was to report on constitutive and CRH- and dexamethasone-regulated POMC, CRH (CRH-R1), and glucocorticoid receptor (NR3C1) gene expression in a large series of human corticotrope adenomas. Fifty-three ACTH-secreting adenomas were incubated with 10 nM CRH or 10 nM dexamethasone for 24 h. POMC, CRH-R1, NR3C1, and its alpha and beta isoforms were quantified and medium ACTH measured. Constitutive POMC expression proved extremely variable, with macroadenomas exhibiting higher levels than microadenomas. POMC increased during CRH in most specimens; conversely, changes induced by dexamethasone were varied, ranging from decrease to paradoxical increase. No correlation between POMC and ACTH was detected in any experimental condition. CRH-R1 expression was not linked to the response to CRH while NR3C1 was expressed at greater levels in specimens who failed to inhibit during dexamethasone; glucocorticoid receptor α was the more abundant isoform and subject to down-regulation by dexamethasone. Our results demonstrate a considerable variability in POMC expression among tumors and no correlation between POMC and ACTH, suggesting that POMC peptide processing/transport plays a major role in modulating ACTH secretion. Further, CRH-R1 and NR3C1 expression were not linked to the expected ligand-induced outcome, indicating that receptor signaling rather than abundance determines corticotrope responses. Our findings pave the way to new avenues of research into Cushing’s disease pathophysiology.
Appendix
Available only for authorised users
Literature
1.
go back to reference F. Pecori Giraldi, Recent challenges in the diagnosis of Cushing’s syndrome. Horm. Res. Paediatr. 71(1), 123–127 (2009)CrossRef F. Pecori Giraldi, Recent challenges in the diagnosis of Cushing’s syndrome. Horm. Res. Paediatr. 71(1), 123–127 (2009)CrossRef
2.
go back to reference M. Karl, G. von Wichert, E. Kempter et al., Nelson’s syndrome associated with a somatic frame shift mutation in the glucocorticoid receptor gene. J. Clin. Endocrinol. Metab. 81, 124–129 (1996)PubMed M. Karl, G. von Wichert, E. Kempter et al., Nelson’s syndrome associated with a somatic frame shift mutation in the glucocorticoid receptor gene. J. Clin. Endocrinol. Metab. 81, 124–129 (1996)PubMed
3.
go back to reference S. Bilodeau, S. Vallette-Kasic, Y. Gauthier et al., Role of Brg1 and HDAC2 in GR trans-repression of the pituitary POMC gene and misexpression in Cushing disease. Genes Dev. 20, 2871–2886 (2006)CrossRefPubMedPubMedCentral S. Bilodeau, S. Vallette-Kasic, Y. Gauthier et al., Role of Brg1 and HDAC2 in GR trans-repression of the pituitary POMC gene and misexpression in Cushing disease. Genes Dev. 20, 2871–2886 (2006)CrossRefPubMedPubMedCentral
4.
go back to reference T. Ebisawa, K. Tojo, N. Tajima et al., Immunohistochemical analysis of 11-β-hydroxysteroid dehydrogenase type 2 and glucocorticoid receptor in subclinical Cushing’s disease due to pituitary macroadenoma. Endocr. Pathol. 19, 252–260 (2008)CrossRefPubMed T. Ebisawa, K. Tojo, N. Tajima et al., Immunohistochemical analysis of 11-β-hydroxysteroid dehydrogenase type 2 and glucocorticoid receptor in subclinical Cushing’s disease due to pituitary macroadenoma. Endocr. Pathol. 19, 252–260 (2008)CrossRefPubMed
5.
go back to reference K.D. Dieterich, E.D. Gundelfinger, D.K. Lüdecke, H. Lehnert, Mutation and expression analysis of corticotropin-releasing factor 1 receptor in adrenocorticotropin-secreting pituitary adenomas. J. Clin. Endocrinol. Metab. 83, 3327–3331 (1998)PubMed K.D. Dieterich, E.D. Gundelfinger, D.K. Lüdecke, H. Lehnert, Mutation and expression analysis of corticotropin-releasing factor 1 receptor in adrenocorticotropin-secreting pituitary adenomas. J. Clin. Endocrinol. Metab. 83, 3327–3331 (1998)PubMed
6.
go back to reference Y. De Keyzer, P. René, C. Beldjord, F. Lenne, X. Bertagna, Overexpression of vasopressin (V3) and corticotrophin-releasing hormone receptor genes in corticotroph tumours. Clin. Endocrinol. 49, 475–482 (1998)CrossRef Y. De Keyzer, P. René, C. Beldjord, F. Lenne, X. Bertagna, Overexpression of vasopressin (V3) and corticotrophin-releasing hormone receptor genes in corticotroph tumours. Clin. Endocrinol. 49, 475–482 (1998)CrossRef
7.
go back to reference M. Fehn, M.A. Farquharson, D. Sautner et al., Demonstration of pro-opiomelanocortin mRNA in pituitary adenomas and para-adenomatous gland in Cushing’s disease and Nelson’s syndrome. J. Pathol. 169, 335–339 (1993)CrossRefPubMed M. Fehn, M.A. Farquharson, D. Sautner et al., Demonstration of pro-opiomelanocortin mRNA in pituitary adenomas and para-adenomatous gland in Cushing’s disease and Nelson’s syndrome. J. Pathol. 169, 335–339 (1993)CrossRefPubMed
8.
go back to reference J.A. Evang, J. Bollerslev, O. Casar-Borota et al., Different levels of various glucocorticoid-regulated genes in corticotroph adenomas. Endocrine 44, 220–227 (2013)CrossRefPubMed J.A. Evang, J. Bollerslev, O. Casar-Borota et al., Different levels of various glucocorticoid-regulated genes in corticotroph adenomas. Endocrine 44, 220–227 (2013)CrossRefPubMed
9.
go back to reference F. PecoriGiraldi, L. Pagliardini, M.F. Cassarino et al., Responses to CRH and dexamethasone in a large series of human ACTH-secreting pituitary adenomas in vitro reveal manifold corticotroph tumoural phenotypes. J. Neuroendocrinol. 23, 1214–1221 (2011)CrossRef F. PecoriGiraldi, L. Pagliardini, M.F. Cassarino et al., Responses to CRH and dexamethasone in a large series of human ACTH-secreting pituitary adenomas in vitro reveal manifold corticotroph tumoural phenotypes. J. Neuroendocrinol. 23, 1214–1221 (2011)CrossRef
10.
go back to reference L.K. Nieman, B.M.K. Biller, J.W. Findling et al., Diagnosis of Cushing’s syndrome: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 93, 1526–1540 (2008)CrossRefPubMedPubMedCentral L.K. Nieman, B.M.K. Biller, J.W. Findling et al., Diagnosis of Cushing’s syndrome: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 93, 1526–1540 (2008)CrossRefPubMedPubMedCentral
11.
go back to reference L.K. Nieman, B.M. Biller, J.W. Findling et al., Treatment of Cushing’s syndrome: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 100, 2807–2831 (2015)CrossRefPubMedPubMedCentral L.K. Nieman, B.M. Biller, J.W. Findling et al., Treatment of Cushing’s syndrome: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 100, 2807–2831 (2015)CrossRefPubMedPubMedCentral
12.
go back to reference F. Pecori Giraldi, E. Marini, E. Torchiana et al., Corticotrophin-releasing activity of desmopressin in Cushing’s disease. Lack of correlation between in vivo and in vitro responsiveness. J. Endocrinol. 177, 373–379 (2003)CrossRefPubMed F. Pecori Giraldi, E. Marini, E. Torchiana et al., Corticotrophin-releasing activity of desmopressin in Cushing’s disease. Lack of correlation between in vivo and in vitro responsiveness. J. Endocrinol. 177, 373–379 (2003)CrossRefPubMed
13.
go back to reference F. Pecori Giraldi, F. Cavagnini, Corticotropin-releasing hormone is produced by rat corticotropes and modulates ACTH secretion in a paracrine/autocrine fashion. J. Clin. Investig. 101, 2478–2484 (1998)CrossRefPubMed F. Pecori Giraldi, F. Cavagnini, Corticotropin-releasing hormone is produced by rat corticotropes and modulates ACTH secretion in a paracrine/autocrine fashion. J. Clin. Investig. 101, 2478–2484 (1998)CrossRefPubMed
14.
go back to reference C.M. Berr, G. Di Dalmazi, A. Osswald et al., Time to recovery of adrenal function after curative surgery for Cushing’s syndrome depends on etiology. J. Clin. Endocrinol. Metab. 100, 1300–1308 (2015)CrossRefPubMed C.M. Berr, G. Di Dalmazi, A. Osswald et al., Time to recovery of adrenal function after curative surgery for Cushing’s syndrome depends on etiology. J. Clin. Endocrinol. Metab. 100, 1300–1308 (2015)CrossRefPubMed
15.
go back to reference P.C. Avgerinos, G.P. Chrousos, L.K. Nieman et al., The corticotropin-releasing hormone test in the post-operative evaluation of patients with Cushing’s syndrome. J. Clin. Endocrinol. Metab. 65, 906–913 (1987)CrossRefPubMed P.C. Avgerinos, G.P. Chrousos, L.K. Nieman et al., The corticotropin-releasing hormone test in the post-operative evaluation of patients with Cushing’s syndrome. J. Clin. Endocrinol. Metab. 65, 906–913 (1987)CrossRefPubMed
16.
go back to reference F. Pecori Giraldi, S. Pesce, P. Maroni et al., Inhibitory effect of preproTRH(178–199) on ACTH secretion by human corticotrope tumours. J. Neuroendocrinol. 22, 294–300 (2010)CrossRefPubMed F. Pecori Giraldi, S. Pesce, P. Maroni et al., Inhibitory effect of preproTRH(178–199) on ACTH secretion by human corticotrope tumours. J. Neuroendocrinol. 22, 294–300 (2010)CrossRefPubMed
17.
go back to reference L. Ma, M. Fang, Y. Liang et al., Low expression of glucocorticoid receptor alpha isoform in adult immune thrombocytopenia correlates with glucocorticoid resistance. Ann. Hematol. 92, 953–960 (2013)CrossRefPubMed L. Ma, M. Fang, Y. Liang et al., Low expression of glucocorticoid receptor alpha isoform in adult immune thrombocytopenia correlates with glucocorticoid resistance. Ann. Hematol. 92, 953–960 (2013)CrossRefPubMed
18.
go back to reference H. Fukuoka, O. Cooper, A. Ben-Shlomo et al., EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J. Clin. Investig. 121, 4712–4721 (2011)CrossRefPubMedPubMedCentral H. Fukuoka, O. Cooper, A. Ben-Shlomo et al., EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J. Clin. Investig. 121, 4712–4721 (2011)CrossRefPubMedPubMedCentral
19.
go back to reference L. Du, M. Bergsneider, L. Mirsadraei et al., Evidence for orphan nuclear receptor TR4 in the etiology of Cushing disease. Proc. Natl. Acad. Sci. U.S.A. 21, 8555–8560 (2013)CrossRef L. Du, M. Bergsneider, L. Mirsadraei et al., Evidence for orphan nuclear receptor TR4 in the etiology of Cushing disease. Proc. Natl. Acad. Sci. U.S.A. 21, 8555–8560 (2013)CrossRef
20.
go back to reference F.C. Amaral, N. Torres, F. Saggioro et al., MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J. Clin. Endocrinol. Metab. 94, 320–323 (2009)CrossRefPubMed F.C. Amaral, N. Torres, F. Saggioro et al., MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J. Clin. Endocrinol. Metab. 94, 320–323 (2009)CrossRefPubMed
21.
go back to reference L.G. Perez-Rivas, M. Theodoropoulou, F. Ferrau et al., The gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing Cushing’s disease. J. Clin. Endocrinol. Metab. 100, E997–E1004 (2015)CrossRefPubMedPubMedCentral L.G. Perez-Rivas, M. Theodoropoulou, F. Ferrau et al., The gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing Cushing’s disease. J. Clin. Endocrinol. Metab. 100, E997–E1004 (2015)CrossRefPubMedPubMedCentral
22.
go back to reference T. Suda, F. Tozawa, M. Yamada et al., Effects of corticotropin-releasing hormone and dexamethasone on proopiomelanocortin messenger RNA levels in human corticotroph adenoma cells in vitro. J. Clin. Investig. 82, 110–114 (1988)CrossRefPubMedPubMedCentral T. Suda, F. Tozawa, M. Yamada et al., Effects of corticotropin-releasing hormone and dexamethasone on proopiomelanocortin messenger RNA levels in human corticotroph adenoma cells in vitro. J. Clin. Investig. 82, 110–114 (1988)CrossRefPubMedPubMedCentral
23.
go back to reference M.C. White, E.F. Adams, M. Loizou, K. Mashiter, R. Fahlbusch, Corticotropin releasing factor stimulates ACTH release from human pituitary corticotropic tumour cells in culture. Lancet 1, 1251–1252 (1982)CrossRefPubMed M.C. White, E.F. Adams, M. Loizou, K. Mashiter, R. Fahlbusch, Corticotropin releasing factor stimulates ACTH release from human pituitary corticotropic tumour cells in culture. Lancet 1, 1251–1252 (1982)CrossRefPubMed
24.
go back to reference T. Shibasaki, M. Nakahara, K. Shizume et al., Pituitary adenomas that caused Cushing’s disease or Nelson’s syndrome are not responsive to ovine corticotropin-releasing factor in vitro. J. Clin. Endocrinol. Metab. 56, 414–416 (1983)CrossRefPubMed T. Shibasaki, M. Nakahara, K. Shizume et al., Pituitary adenomas that caused Cushing’s disease or Nelson’s syndrome are not responsive to ovine corticotropin-releasing factor in vitro. J. Clin. Endocrinol. Metab. 56, 414–416 (1983)CrossRefPubMed
25.
go back to reference T. Suda, N. Tomori, F. Tozawa, H. Demura, K. Shizume, Effects of corticotropin-releasing factor and other materials on adrenocorticotropin secretion from pituitary glands of patients with Cushing’s disease in vitro. J. Clin. Endocrinol. Metab. 59, 840–845 (1984)CrossRefPubMed T. Suda, N. Tomori, F. Tozawa, H. Demura, K. Shizume, Effects of corticotropin-releasing factor and other materials on adrenocorticotropin secretion from pituitary glands of patients with Cushing’s disease in vitro. J. Clin. Endocrinol. Metab. 59, 840–845 (1984)CrossRefPubMed
26.
go back to reference L. Senovilla, L. Núñez, J.M. De Campos et al., Multifunctional cells in human pituitary adenomas: implications for paradoxical secretion and tumorigenesis. J. Clin. Endocrinol. Metab. 89, 4545–4552 (2004)CrossRefPubMed L. Senovilla, L. Núñez, J.M. De Campos et al., Multifunctional cells in human pituitary adenomas: implications for paradoxical secretion and tumorigenesis. J. Clin. Endocrinol. Metab. 89, 4545–4552 (2004)CrossRefPubMed
27.
go back to reference L. Stefaneanu, K. Kovacs, E. Horvath, R.V. Lloyd, In situ hybridization study of pro-opiomelanocortin (POMC) gene expression in human pituitary corticotrophs and their adenomas. Virchows Arch. A Pathol. Anat. Histopathol. 419, 107–113 (1991)CrossRefPubMed L. Stefaneanu, K. Kovacs, E. Horvath, R.V. Lloyd, In situ hybridization study of pro-opiomelanocortin (POMC) gene expression in human pituitary corticotrophs and their adenomas. Virchows Arch. A Pathol. Anat. Histopathol. 419, 107–113 (1991)CrossRefPubMed
28.
go back to reference G. Raverot, A. Wierinckx, E. Jouanneau et al., Clinical, hormonal and molecular characterization of pituitary ACTH adenomas without (silent corticotroph adenomas) and with Cushing’s disease. Eur. J. Endocrinol. 163, 35–43 (2010)CrossRefPubMed G. Raverot, A. Wierinckx, E. Jouanneau et al., Clinical, hormonal and molecular characterization of pituitary ACTH adenomas without (silent corticotroph adenomas) and with Cushing’s disease. Eur. J. Endocrinol. 163, 35–43 (2010)CrossRefPubMed
29.
go back to reference G. Occhi, D. Regazzo, N.M. Albiger et al., Activation of the dopamine receptor type-2 (DRD2) promoter by 9-cis retinoic acid in a cellular model of Cushing’s disease mediates the inhibition of cell proliferation and ACTH secretion without a complete corticotroph-to-melanotroph transdifferentiation. Endocrinology 155, 3538–3549 (2014)CrossRefPubMed G. Occhi, D. Regazzo, N.M. Albiger et al., Activation of the dopamine receptor type-2 (DRD2) promoter by 9-cis retinoic acid in a cellular model of Cushing’s disease mediates the inhibition of cell proliferation and ACTH secretion without a complete corticotroph-to-melanotroph transdifferentiation. Endocrinology 155, 3538–3549 (2014)CrossRefPubMed
30.
go back to reference N.A. Liu, T. Araki, D. Cuevas-Ramos et al., Cyclin E-mediated human proopiomelanocortin regulation as a therapeutic target for Cushing disease. J. Clin. Endocrinol. Metab. 100, 2557–2564 (2015)CrossRefPubMed N.A. Liu, T. Araki, D. Cuevas-Ramos et al., Cyclin E-mediated human proopiomelanocortin regulation as a therapeutic target for Cushing disease. J. Clin. Endocrinol. Metab. 100, 2557–2564 (2015)CrossRefPubMed
31.
go back to reference S. Gibson, D.W. Ray, S.R. Crosby et al., Impaired processing of proopiomelanocortin in corticotroph macroadenomas. J. Clin. Endocrinol. Metab. 81, 497–502 (1996)PubMed S. Gibson, D.W. Ray, S.R. Crosby et al., Impaired processing of proopiomelanocortin in corticotroph macroadenomas. J. Clin. Endocrinol. Metab. 81, 497–502 (1996)PubMed
32.
go back to reference M. Losa, R. Barzaghi, P. Mortini et al., Determination of the proliferation and apoptotic index in adrenocorticotropin-secreting pituitary tumors—comparison between micro-and macroadenomas. Am. J. Pathol. 156, 245–251 (2000)CrossRefPubMedPubMedCentral M. Losa, R. Barzaghi, P. Mortini et al., Determination of the proliferation and apoptotic index in adrenocorticotropin-secreting pituitary tumors—comparison between micro-and macroadenomas. Am. J. Pathol. 156, 245–251 (2000)CrossRefPubMedPubMedCentral
33.
go back to reference T. Suda, F. Tozawa, I. Dobashi et al., Corticotropin-releasing hormone, proopiomelanocortin, and glucocorticoid receptor gene expression in adrenocorticotropin-producing tumors in vitro. J. Clin. Investig. 92, 2790–2795 (1993)CrossRefPubMedPubMedCentral T. Suda, F. Tozawa, I. Dobashi et al., Corticotropin-releasing hormone, proopiomelanocortin, and glucocorticoid receptor gene expression in adrenocorticotropin-producing tumors in vitro. J. Clin. Investig. 92, 2790–2795 (1993)CrossRefPubMedPubMedCentral
34.
go back to reference F.F. Wang, K.T. Tang, Y.S. Yen et al., Plasma corticotrophin response to desmopressin in patients with Cushing’s disease correlates with the expression of vasopressin receptor 2, but not with that of vasopressin receptor 1 or 3, in their pituitary tumors. Clin. Endocrinol. 76, 253–263 (2012)CrossRef F.F. Wang, K.T. Tang, Y.S. Yen et al., Plasma corticotrophin response to desmopressin in patients with Cushing’s disease correlates with the expression of vasopressin receptor 2, but not with that of vasopressin receptor 1 or 3, in their pituitary tumors. Clin. Endocrinol. 76, 253–263 (2012)CrossRef
35.
go back to reference G. Aguilera, M. Nikodemova, P.C. Wynn, K.J. Catt, Corticotropin releasing hormone receptors: two decades later. Peptides 25, 319–329 (2004)CrossRefPubMed G. Aguilera, M. Nikodemova, P.C. Wynn, K.J. Catt, Corticotropin releasing hormone receptors: two decades later. Peptides 25, 319–329 (2004)CrossRefPubMed
36.
go back to reference M. Grino, V. Guillaume, F. Boudouresque et al., Characterization of corticotropin-releasing hormone receptors on human pituitary corticotroph adenomas and their correlation with endogenous glucocorticoids. J. Clin. Endocrinol. Metab. 67, 279–283 (1988)CrossRefPubMed M. Grino, V. Guillaume, F. Boudouresque et al., Characterization of corticotropin-releasing hormone receptors on human pituitary corticotroph adenomas and their correlation with endogenous glucocorticoids. J. Clin. Endocrinol. Metab. 67, 279–283 (1988)CrossRefPubMed
37.
go back to reference R. Abs, G. Smets, G. Vauquelin et al., I-125-Tyr(0)-hCRH labelling characteristics of corticotropin- releasing hormone receptors: differences between normal and adenomatous corticotrophs. Neurochem. Int. 30, 291–297 (1997)CrossRefPubMed R. Abs, G. Smets, G. Vauquelin et al., I-125-Tyr(0)-hCRH labelling characteristics of corticotropin- releasing hormone receptors: differences between normal and adenomatous corticotrophs. Neurochem. Int. 30, 291–297 (1997)CrossRefPubMed
38.
go back to reference Y. Sakai, N. Horiba, K. Sakai et al., Corticotropin-releasing factor up-regulates its own receptor gene expression in corticotropin adenoma cells in vitro. J. Clin. Endocrinol. Metab. 82, 1229–1234 (1997)PubMed Y. Sakai, N. Horiba, K. Sakai et al., Corticotropin-releasing factor up-regulates its own receptor gene expression in corticotropin adenoma cells in vitro. J. Clin. Endocrinol. Metab. 82, 1229–1234 (1997)PubMed
39.
go back to reference M. Grino, F. Boudouresque, B. Conte-Devolx et al., In vitro corticotropin-releasing hormone (CRH) stimulation of adrenocorticotropin release from corticotroph adenoma cells: effect of prolonged exposure to CRH and its interaction with cortisol. J. Clin. Endocrinol. Metab. 66, 770–775 (1988)CrossRefPubMed M. Grino, F. Boudouresque, B. Conte-Devolx et al., In vitro corticotropin-releasing hormone (CRH) stimulation of adrenocorticotropin release from corticotroph adenoma cells: effect of prolonged exposure to CRH and its interaction with cortisol. J. Clin. Endocrinol. Metab. 66, 770–775 (1988)CrossRefPubMed
40.
go back to reference G. Pozzoli, L.M. Bilezikjian, M.H. Perrin, A.L. Blount, W.W. Vale, Corticotropin-releasing factor (CRF) and glucocorticoids modulate the expression of type 1 CRF receptor messenger ribonucleic acid in rat anterior pituitary cell cultures. Endocrinology 137, 65–71 (1996)PubMed G. Pozzoli, L.M. Bilezikjian, M.H. Perrin, A.L. Blount, W.W. Vale, Corticotropin-releasing factor (CRF) and glucocorticoids modulate the expression of type 1 CRF receptor messenger ribonucleic acid in rat anterior pituitary cell cultures. Endocrinology 137, 65–71 (1996)PubMed
41.
go back to reference M. Páez Pereda, P. Lohrer, D. Kovalovsky et al., Interleukin-6 is inihibited by glucocorticoids and stimulates ACTH secretion and POMC expression in human corticotroph pituitary adenomas. Exp. Clin. Endocrinol. Diabetes 108, 202–207 (2000)CrossRef M. Páez Pereda, P. Lohrer, D. Kovalovsky et al., Interleukin-6 is inihibited by glucocorticoids and stimulates ACTH secretion and POMC expression in human corticotroph pituitary adenomas. Exp. Clin. Endocrinol. Diabetes 108, 202–207 (2000)CrossRef
42.
go back to reference C. Invitti, F. PecoriGiraldi, M. De Martin, F. Cavagnini, the Study Group of the Italian Society of Endocrinology on the Pathophysiology of the Hypothalamic-Pituitary-Adrenal Axis, Diagnosis and management of Cushing’s syndrome: results of an Italian multicentre study. J. Clin. Endocrinol. Metab. 84, 440–448 (1999)PubMed C. Invitti, F. PecoriGiraldi, M. De Martin, F. Cavagnini, the Study Group of the Italian Society of Endocrinology on the Pathophysiology of the Hypothalamic-Pituitary-Adrenal Axis, Diagnosis and management of Cushing’s syndrome: results of an Italian multicentre study. J. Clin. Endocrinol. Metab. 84, 440–448 (1999)PubMed
43.
go back to reference D.P.M. van den Bogaert, W.W. De Herder, F.H. De Jong et al., The continuous 7-hour intravenous dexamethasone suppression test in the differential diagnosis of ACTH-dependent Cushing’s syndrome. Clin. Endocrinol. 51, 193–198 (1999)CrossRef D.P.M. van den Bogaert, W.W. De Herder, F.H. De Jong et al., The continuous 7-hour intravenous dexamethasone suppression test in the differential diagnosis of ACTH-dependent Cushing’s syndrome. Clin. Endocrinol. 51, 193–198 (1999)CrossRef
44.
go back to reference J.R. Lundblad, J.L. Roberts, Regulation of proopiomelanocortin gene expression in pituitary. Endocr. Rev. 9, 135–158 (1988)CrossRefPubMed J.R. Lundblad, J.L. Roberts, Regulation of proopiomelanocortin gene expression in pituitary. Endocr. Rev. 9, 135–158 (1988)CrossRefPubMed
45.
go back to reference M. Riebold, C. Kozany, L. Freiburger et al., A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease. Nat. Med. 21, 276–280 (2015)PubMed M. Riebold, C. Kozany, L. Freiburger et al., A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease. Nat. Med. 21, 276–280 (2015)PubMed
46.
go back to reference A. Roussel-Gervais, C. Couture, D. Langlais et al., The Cables1 gene in glucocorticoid regulation of pituitary corticotrope growth and Cushing disease. J. Clin. Endocrinol. Metab. 101, 513–520 (2016)CrossRefPubMed A. Roussel-Gervais, C. Couture, D. Langlais et al., The Cables1 gene in glucocorticoid regulation of pituitary corticotrope growth and Cushing disease. J. Clin. Endocrinol. Metab. 101, 513–520 (2016)CrossRefPubMed
47.
go back to reference L. Pujols, J. Mullol, J. Roca-Ferrer et al., Expression of glucocorticoid receptor α- and β-isoforms in human cells and tissues. Am. J. Physiol. Cell Physiol. 283, C1324–C1331 (2002)CrossRefPubMed L. Pujols, J. Mullol, J. Roca-Ferrer et al., Expression of glucocorticoid receptor α- and β-isoforms in human cells and tissues. Am. J. Physiol. Cell Physiol. 283, C1324–C1331 (2002)CrossRefPubMed
48.
go back to reference Y.M. Mu, R. Takayanagi, K. Imasaki et al., Low level of glucocorticoid receptor messenger ribonucleic acid in pituitary adenomas manifesting Cushing’s disease with resistance to a high dose-dexamethasone suppression test. Clin. Endocrinol. 49, 301–306 (1998)CrossRef Y.M. Mu, R. Takayanagi, K. Imasaki et al., Low level of glucocorticoid receptor messenger ribonucleic acid in pituitary adenomas manifesting Cushing’s disease with resistance to a high dose-dexamethasone suppression test. Clin. Endocrinol. 49, 301–306 (1998)CrossRef
49.
go back to reference P.L.M. Dahia, J. Honegger, M. Reincke et al., Expression of glucocorticoid receptor gene isoforms in corticotropin-secreting tumors. J. Clin. Endocrinol. Metab. 82, 1088–1093 (1997)PubMed P.L.M. Dahia, J. Honegger, M. Reincke et al., Expression of glucocorticoid receptor gene isoforms in corticotropin-secreting tumors. J. Clin. Endocrinol. Metab. 82, 1088–1093 (1997)PubMed
50.
go back to reference A. Hagendorf, J.W. Koper, F.H. De Jong et al., Expression of the human glucocorticoid receptor splice variants α, β and P in peripheral blood mononuclear leukocytes in healthy controls and in patients with hyper- and hypocortisolism. J. Clin. Endocrinol. Metab. 90, 6237–6243 (2005)CrossRefPubMed A. Hagendorf, J.W. Koper, F.H. De Jong et al., Expression of the human glucocorticoid receptor splice variants α, β and P in peripheral blood mononuclear leukocytes in healthy controls and in patients with hyper- and hypocortisolism. J. Clin. Endocrinol. Metab. 90, 6237–6243 (2005)CrossRefPubMed
51.
go back to reference J.D. Turner, S.R. Alt, L. Cao et al., Transcriptional control of the glucocorticoid receptor: CpG islands, epigenetics and more. Biochem. Pharmacol. 80, 1860–1868 (2010)CrossRefPubMed J.D. Turner, S.R. Alt, L. Cao et al., Transcriptional control of the glucocorticoid receptor: CpG islands, epigenetics and more. Biochem. Pharmacol. 80, 1860–1868 (2010)CrossRefPubMed
52.
go back to reference K.L. Burnstein, C.M. Jewell, J.A. Cidlowski, Human glucocorticoid receptor cDNA contains sequences sufficient for receptor down-regulation. J. Biol. Chem. 265, 7284–7291 (1990)PubMed K.L. Burnstein, C.M. Jewell, J.A. Cidlowski, Human glucocorticoid receptor cDNA contains sequences sufficient for receptor down-regulation. J. Biol. Chem. 265, 7284–7291 (1990)PubMed
53.
go back to reference M. Shimojo, N. Hiroi, F. Yakushiji et al., Differences in down-regulation of glucocorticoid receptor mRNA by cortisol, prednisolone and dexamethasone in HeLa cells. Endocr. J. 42, 629–636 (1995)CrossRefPubMed M. Shimojo, N. Hiroi, F. Yakushiji et al., Differences in down-regulation of glucocorticoid receptor mRNA by cortisol, prednisolone and dexamethasone in HeLa cells. Endocr. J. 42, 629–636 (1995)CrossRefPubMed
54.
go back to reference E. Vig, T.J. Barrett, W.V. Vedeckis, Coordinate regulation of glucocorticoid receptor and c-jun mRNA levels: evidence for cross-talk between two signaling pathways at the transcriptional level. Mol. Endocrinol. 8, 1336–1346 (1994)PubMed E. Vig, T.J. Barrett, W.V. Vedeckis, Coordinate regulation of glucocorticoid receptor and c-jun mRNA levels: evidence for cross-talk between two signaling pathways at the transcriptional level. Mol. Endocrinol. 8, 1336–1346 (1994)PubMed
55.
go back to reference M.D. Heitzer, I.M. Wolf, E.R. Sanchez, S.F. Witchel, D.B. DeFranco, Glucocorticoid receptor physiology. Rev. Endocr. Metab. Disord. 8, 321–330 (2007)CrossRefPubMed M.D. Heitzer, I.M. Wolf, E.R. Sanchez, S.F. Witchel, D.B. DeFranco, Glucocorticoid receptor physiology. Rev. Endocr. Metab. Disord. 8, 321–330 (2007)CrossRefPubMed
Metadata
Title
Proopiomelanocortin, glucocorticoid, and CRH receptor expression in human ACTH-secreting pituitary adenomas
Authors
Maria Francesca Cassarino
Antonella Sesta
Luca Pagliardini
Marco Losa
Giovanni Lasio
Francesco Cavagnini
Francesca Pecori Giraldi
Publication date
01-03-2017
Publisher
Springer US
Published in
Endocrine / Issue 3/2017
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-016-0990-x

Other articles of this Issue 3/2017

Endocrine 3/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.