Skip to main content
Top
Published in: Endocrine 1/2009

01-02-2009 | Original Paper

RUNX1 and RUNX2 upregulate Galectin-3 expression in human pituitary tumors

Authors: He-Yu Zhang, Long Jin, Gail A. Stilling, Katharina H. Ruebel, Kendra Coonse, Yoshinori Tanizaki, Avraham Raz, Ricardo V. Lloyd

Published in: Endocrine | Issue 1/2009

Login to get access

Abstract

Galectin-3 is expressed in a cell-type specific manner in human pituitary tumors and may have a role in pituitary tumor development. In this study, we hypothesized that Galectin-3 is regulated by RUNX proteins in pituitary tumors. Transcription factor prediction programs revealed several putative binding sites in the LGALS3 (Galectin-3 gene) promoter region. A human pituitary cell line HP75 was used as a model to study LGALS3 and RUNX interactions using Chromatin immunoprecipitation assay and electrophoresis mobility shift assay. Two binding sites for RUNX1 and one binding site for RUNX2 were identified in the LGALS3 promoter region. LGALS3 promoter was further cloned into a luciferase reporter, and the experiments showed that both RUNX1 and RUNX2 upregulated LGALS3. Knock-down of either RUNX1 or RUNX2 by siRNA resulted in a significant downregulation of Galectin-3 expression and decreased cell proliferation in the HP 75 cell line. Immunohistochemistry showed a close correlation between Galectin-3 expression and RUNX1/RUNX2 level in pituitary tumors. These results demonstrate a novel binding target for RUNX1 and RUNX2 proteins and suggest that Galectin-3 is regulated by RUNX1 and RUNX2 in human pituitary tumor cells by direct binding to the promoter region of LGALS3 and thus may contribute to pituitary tumor progression.
Literature
1.
go back to reference M.P. Shekhar, P. Nangia-Makker, L. Tait, F. Miller, A. Raz, Alterations in galectin-3 expression and distribution correlate with breast cancer progression: functional analysis of galectin-3 in breast epithelial-endothelial interactions. Am. J. Pathol. 165, 1931–1941 (2004)PubMed M.P. Shekhar, P. Nangia-Makker, L. Tait, F. Miller, A. Raz, Alterations in galectin-3 expression and distribution correlate with breast cancer progression: functional analysis of galectin-3 in breast epithelial-endothelial interactions. Am. J. Pathol. 165, 1931–1941 (2004)PubMed
2.
go back to reference H.C. Gong, Y. Honjo, P. Nangia-Makker, V. Hogan, N. Mazurak, R.S. Bresalier, A. Raz, The NH2 terminus of galectin-3 governs cellular compartmentalization and functions in cancer cells. Cancer Res. 59, 6239–6245 (1999)PubMed H.C. Gong, Y. Honjo, P. Nangia-Makker, V. Hogan, N. Mazurak, R.S. Bresalier, A. Raz, The NH2 terminus of galectin-3 governs cellular compartmentalization and functions in cancer cells. Cancer Res. 59, 6239–6245 (1999)PubMed
3.
go back to reference F.T. Liu, G.A. Rabinovich, Galectins as modulators of tumour progression. Nat. Rev. Cancer 5, 29–41 (2005)CrossRefPubMed F.T. Liu, G.A. Rabinovich, Galectins as modulators of tumour progression. Nat. Rev. Cancer 5, 29–41 (2005)CrossRefPubMed
4.
go back to reference K. Yamaoka, K. Mishima, Y. Nagashima, A. Asai, Y. Sanai, T. Kirino, Expression of galectin-1 mRNA correlates with the malignant potential of human gliomas and expression of antisense galectin-1 inhibits the growth of 9 glioma cells. J. Neurosci. Res. 59, 722–730 (2000)CrossRefPubMed K. Yamaoka, K. Mishima, Y. Nagashima, A. Asai, Y. Sanai, T. Kirino, Expression of galectin-1 mRNA correlates with the malignant potential of human gliomas and expression of antisense galectin-1 inhibits the growth of 9 glioma cells. J. Neurosci. Res. 59, 722–730 (2000)CrossRefPubMed
5.
go back to reference Y. Takenaka, H. Inohara, T. Yoshii, K. Oshima, S. Nakahara, S. Akahani, Y. Honjo, Y. Yamamoto, A. Raz, T. Kubo, Malignant transformation of thyroid follicular cells by galectin-3. Cancer Lett. 195, 111–119 (2003)CrossRefPubMed Y. Takenaka, H. Inohara, T. Yoshii, K. Oshima, S. Nakahara, S. Akahani, Y. Honjo, Y. Yamamoto, A. Raz, T. Kubo, Malignant transformation of thyroid follicular cells by galectin-3. Cancer Lett. 195, 111–119 (2003)CrossRefPubMed
6.
go back to reference R.C. Hughes, The galectin family of mammalian carbohydrate-binding molecules. Biochem. Soc. Trans. 25, 1194–1198 (1997)PubMed R.C. Hughes, The galectin family of mammalian carbohydrate-binding molecules. Biochem. Soc. Trans. 25, 1194–1198 (1997)PubMed
7.
go back to reference R.C. Hughes, Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim. Biophys. Acta 1473, 172–185 (1999)PubMed R.C. Hughes, Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim. Biophys. Acta 1473, 172–185 (1999)PubMed
8.
go back to reference D. Riss, L. Jin, X. Qian, J. Bayliss, B.W. Scheithauer, W.F. Young Jr., S. Vidal, K. Kovacs, A. Raz, R.V. Lloyd, Differential expression of galectin-3 in pituitary tumors. Cancer Res. 63, 2251–2255 (2003)PubMed D. Riss, L. Jin, X. Qian, J. Bayliss, B.W. Scheithauer, W.F. Young Jr., S. Vidal, K. Kovacs, A. Raz, R.V. Lloyd, Differential expression of galectin-3 in pituitary tumors. Cancer Res. 63, 2251–2255 (2003)PubMed
9.
go back to reference K.H. Ruebel, L. Jin, X. Qian, B.W. Scheithauer, K. Kovacs, N. Nakamura, H. Zhang, A. Raz, R.V. Lloyd, Effects of DNA methylation on galectin-3 expression in pituitary tumors. Cancer Res. 65, 1136–1140 (2005)CrossRefPubMed K.H. Ruebel, L. Jin, X. Qian, B.W. Scheithauer, K. Kovacs, N. Nakamura, H. Zhang, A. Raz, R.V. Lloyd, Effects of DNA methylation on galectin-3 expression in pituitary tumors. Cancer Res. 65, 1136–1140 (2005)CrossRefPubMed
10.
go back to reference M. Stock, H. Schafer, S. Stricker, G. Gross, S. Mundlos, F. Otto, Expression of galectin-3 in skeletal tissues is controlled by Runx2. J. Biol. Chem. 278, 17360–17367 (2003)CrossRefPubMed M. Stock, H. Schafer, S. Stricker, G. Gross, S. Mundlos, F. Otto, Expression of galectin-3 in skeletal tissues is controlled by Runx2. J. Biol. Chem. 278, 17360–17367 (2003)CrossRefPubMed
11.
go back to reference A. Costessi, A. Pines, P. D’Andrea, M. Romanello, G. Damante, L. Cesaratto, F. Quadrifoglio, L. Moro, G. Tell, Extracellular nucleotides activate Runx2 in the osteoblast-like HOBIT cell line: a possible molecular link between mechanical stress and osteoblasts’ response. Bone 36, 418–432 (2005)CrossRefPubMed A. Costessi, A. Pines, P. D’Andrea, M. Romanello, G. Damante, L. Cesaratto, F. Quadrifoglio, L. Moro, G. Tell, Extracellular nucleotides activate Runx2 in the osteoblast-like HOBIT cell line: a possible molecular link between mechanical stress and osteoblasts’ response. Bone 36, 418–432 (2005)CrossRefPubMed
12.
go back to reference L. Jin, E. Kulig, X. Qian, B.W. Scheithauer, N.L. Eberhardt, R.V. Lloyd, A human pituitary adenoma cell line proliferates and maintains some differentiated functions following expression of SV40 large T antigen. Endocr. Pathol. 9, 169–184 (1998)CrossRef L. Jin, E. Kulig, X. Qian, B.W. Scheithauer, N.L. Eberhardt, R.V. Lloyd, A human pituitary adenoma cell line proliferates and maintains some differentiated functions following expression of SV40 large T antigen. Endocr. Pathol. 9, 169–184 (1998)CrossRef
13.
go back to reference K. Cartharius, K. Frech, K. Grote, B. Klocke, M. Haltmeier, A. Klingenhoff, M. Frisch, M. Bayerlein, T. Werner, MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21, 2933–2942 (2005)CrossRefPubMed K. Cartharius, K. Frech, K. Grote, B. Klocke, M. Haltmeier, A. Klingenhoff, M. Frisch, M. Bayerlein, T. Werner, MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21, 2933–2942 (2005)CrossRefPubMed
14.
go back to reference T. Tsunoda, T. Takagi, Estimating transcription factor bindability on DNA. Bioinformatics 15, 622–630 (1999)CrossRefPubMed T. Tsunoda, T. Takagi, Estimating transcription factor bindability on DNA. Bioinformatics 15, 622–630 (1999)CrossRefPubMed
15.
go back to reference D. Levanon, V. Negreanu, Y. Bernstein, I. Bar-Am, L. Avivi, Y. Groner, AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics 23, 425–432 (1994)CrossRefPubMed D. Levanon, V. Negreanu, Y. Bernstein, I. Bar-Am, L. Avivi, Y. Groner, AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics 23, 425–432 (1994)CrossRefPubMed
16.
go back to reference Y. Kamachi, E. Ogawa, M. Asano, S. Ishida, Y. Murakami, M. Satake, Y. Ito, K. Shigesada, Purification of a mouse nuclear factor that binds to both the A and B cores of the polyomavirus enhancer. J. Virol. 64, 4808–4819 (1990)PubMed Y. Kamachi, E. Ogawa, M. Asano, S. Ishida, Y. Murakami, M. Satake, Y. Ito, K. Shigesada, Purification of a mouse nuclear factor that binds to both the A and B cores of the polyomavirus enhancer. J. Virol. 64, 4808–4819 (1990)PubMed
17.
go back to reference I.N. Melnikova, B.E. Crute, S. Wang, N.A. Speck, Sequence specificity of the core-binding factor. J. Virol. 67, 2408–2411 (1993)PubMed I.N. Melnikova, B.E. Crute, S. Wang, N.A. Speck, Sequence specificity of the core-binding factor. J. Virol. 67, 2408–2411 (1993)PubMed
18.
go back to reference A.L. Zaiman, A.F. Lewis, B.E. Crute, N.A. Speck, J. Lenz, Transcriptional activity of core binding factor-alpha (AML1) and beta subunits on murine leukemia virus enhancer cores. J. Virol. 69, 2898–2906 (1995)PubMed A.L. Zaiman, A.F. Lewis, B.E. Crute, N.A. Speck, J. Lenz, Transcriptional activity of core binding factor-alpha (AML1) and beta subunits on murine leukemia virus enhancer cores. J. Virol. 69, 2898–2906 (1995)PubMed
19.
go back to reference G. Huang, K. Shigesada, K. Ito, H.J. Wee, T. Yokomizo, Y. Ito, Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J. 20, 723–733 (2001)CrossRefPubMed G. Huang, K. Shigesada, K. Ito, H.J. Wee, T. Yokomizo, Y. Ito, Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J. 20, 723–733 (2001)CrossRefPubMed
20.
go back to reference Y.W. Zhang, N. Yasui, K. Ito, G. Huang, M. Fujii, J. Hanai, H. Nogami, T. Ochi, K. Miyazono, Y. Ito, A RUNX2/PEBP2alpha A/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc. Natl. Acad. Sci. USA 97, 10549–10554 (2000)CrossRefPubMed Y.W. Zhang, N. Yasui, K. Ito, G. Huang, M. Fujii, J. Hanai, H. Nogami, T. Ochi, K. Miyazono, Y. Ito, A RUNX2/PEBP2alpha A/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc. Natl. Acad. Sci. USA 97, 10549–10554 (2000)CrossRefPubMed
21.
go back to reference J. Kononen, L. Bubendorf, A. Kallioniemi, M. Barlund, P. Schraml, S. Leighton, J. Torhorst, M.J. Mihatsch, G. Sauter, O.P. Kallioniemi, Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 4, 844–847 (1998)CrossRefPubMed J. Kononen, L. Bubendorf, A. Kallioniemi, M. Barlund, P. Schraml, S. Leighton, J. Torhorst, M.J. Mihatsch, G. Sauter, O.P. Kallioniemi, Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 4, 844–847 (1998)CrossRefPubMed
22.
go back to reference H. Miyoshi, M. Ohira, K. Shimizu, K. Mitani, H. Hirai, T. Imai, K. Yokoyama, E. Soeda, M. Ohki, Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic Acids Res. 23, 2762–2769 (1995)CrossRefPubMed H. Miyoshi, M. Ohira, K. Shimizu, K. Mitani, H. Hirai, T. Imai, K. Yokoyama, E. Soeda, M. Ohki, Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic Acids Res. 23, 2762–2769 (1995)CrossRefPubMed
23.
go back to reference M.M. Kadrofske, K.P. Openo, J.L. Wang, The human LGALS3 (galectin-3) gene: determination of the gene structure and functional characterization of the promoter. Arch. Biochem. Biophys. 349, 7–20 (1998)CrossRefPubMed M.M. Kadrofske, K.P. Openo, J.L. Wang, The human LGALS3 (galectin-3) gene: determination of the gene structure and functional characterization of the promoter. Arch. Biochem. Biophys. 349, 7–20 (1998)CrossRefPubMed
24.
go back to reference Y. Yamaguchi, M. Kurokawa, Y. Imai, K. Izutsu, T. Asai, M. Ichikawa, G. Yamamoto, E. Nitta, T. Yamagata, K. Sasaki, K. Mitani, S. Ogawa, S. Chiba, H. Hirai, AML1 is functionally regulated through p300-mediated acetylation on specific lysine residues. J. Biol. Chem. 279, 15630–15638 (2004)CrossRefPubMed Y. Yamaguchi, M. Kurokawa, Y. Imai, K. Izutsu, T. Asai, M. Ichikawa, G. Yamamoto, E. Nitta, T. Yamagata, K. Sasaki, K. Mitani, S. Ogawa, S. Chiba, H. Hirai, AML1 is functionally regulated through p300-mediated acetylation on specific lysine residues. J. Biol. Chem. 279, 15630–15638 (2004)CrossRefPubMed
25.
go back to reference Y.W. Zhang, S.C. Bae, G. Huang, Y.X. Fu, J. Lu, M.Y. Ahn, Y. Kanno, T. Kanno, Y. Ito, A novel transcript encoding an N-terminally truncated AML1/PEBP2 alphaB protein interferes with transactivation and blocks granulocytic differentiation of 32Dcl3 myeloid cells. Mol. Cell. Biol. 17, 4133–4145 (1997)PubMed Y.W. Zhang, S.C. Bae, G. Huang, Y.X. Fu, J. Lu, M.Y. Ahn, Y. Kanno, T. Kanno, Y. Ito, A novel transcript encoding an N-terminally truncated AML1/PEBP2 alphaB protein interferes with transactivation and blocks granulocytic differentiation of 32Dcl3 myeloid cells. Mol. Cell. Biol. 17, 4133–4145 (1997)PubMed
26.
go back to reference T.K. Howcroft, J.D. Weissman, A. Gegonne, D.S. Singer, A T lymphocyte-specific transcription complex containing RUNX1 activates MHC class I expression. J. Immunol. 174, 2106–2115 (2005)PubMed T.K. Howcroft, J.D. Weissman, A. Gegonne, D.S. Singer, A T lymphocyte-specific transcription complex containing RUNX1 activates MHC class I expression. J. Immunol. 174, 2106–2115 (2005)PubMed
27.
go back to reference T. Fukumori, N. Oka, Y. Takenaka, P. Nangia-Makker, E. Elsamman, T. Kasai, M. Shono, H.O. Kanayama, J. Ellerhorst, R. Lotan, A. Raz, Galectin-3 regulates mitochondrial stability and antiapoptotic function in response to anticancer drug in prostate cancer. Cancer Res. 66, 3114–3119 (2006)CrossRefPubMed T. Fukumori, N. Oka, Y. Takenaka, P. Nangia-Makker, E. Elsamman, T. Kasai, M. Shono, H.O. Kanayama, J. Ellerhorst, R. Lotan, A. Raz, Galectin-3 regulates mitochondrial stability and antiapoptotic function in response to anticancer drug in prostate cancer. Cancer Res. 66, 3114–3119 (2006)CrossRefPubMed
28.
go back to reference N. Oka, S. Nakahara, Y. Takenaka, T. Fukumori, V. Hogan, H.O. Kanayama, T. Yanagawa, A. Raz, Galectin-3 inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by activating Akt in human bladder carcinoma cells. Cancer Res. 65, 7546–7553 (2005)PubMed N. Oka, S. Nakahara, Y. Takenaka, T. Fukumori, V. Hogan, H.O. Kanayama, T. Yanagawa, A. Raz, Galectin-3 inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by activating Akt in human bladder carcinoma cells. Cancer Res. 65, 7546–7553 (2005)PubMed
29.
go back to reference M. Volante, F. Bozzalla-Cassione, F. Orlandi, M. Papotti, Diagnostic role of galectin-3 in follicular thyroid tumors. Virchows Arch. 444, 309–312 (2004)CrossRefPubMed M. Volante, F. Bozzalla-Cassione, F. Orlandi, M. Papotti, Diagnostic role of galectin-3 in follicular thyroid tumors. Virchows Arch. 444, 309–312 (2004)CrossRefPubMed
30.
go back to reference F. Roncaroli, B.W. Scheithauer, G. Cenacchi, E. Horvath, K. Kovacs, R.V. Lloyd, P. Abell-Aleff, M. Santi, A.J. Yates, ‘Spindle cell oncocytoma’ of the adenohypophysis: a tumor of folliculostellate cells? Am. J. Surg. Pathol. 26, 1048–1055 (2002)CrossRefPubMed F. Roncaroli, B.W. Scheithauer, G. Cenacchi, E. Horvath, K. Kovacs, R.V. Lloyd, P. Abell-Aleff, M. Santi, A.J. Yates, ‘Spindle cell oncocytoma’ of the adenohypophysis: a tumor of folliculostellate cells? Am. J. Surg. Pathol. 26, 1048–1055 (2002)CrossRefPubMed
31.
go back to reference P. Ducy, T. Schinke, G. Karsenty, The osteoblast: a sophisticated fibroblast under central surveillance. Science 289, 1501–1504 (2000)CrossRefPubMed P. Ducy, T. Schinke, G. Karsenty, The osteoblast: a sophisticated fibroblast under central surveillance. Science 289, 1501–1504 (2000)CrossRefPubMed
32.
go back to reference B.E. Crute, A.F. Lewis, Z. Wu, J.H. Bushweller, N.A. Speck, Biochemical and biophysical properties of the core-binding factor alpha2 (AML1) DNA-binding domain. J. Biol. Chem. 271, 26251–26260 (1996)CrossRefPubMed B.E. Crute, A.F. Lewis, Z. Wu, J.H. Bushweller, N.A. Speck, Biochemical and biophysical properties of the core-binding factor alpha2 (AML1) DNA-binding domain. J. Biol. Chem. 271, 26251–26260 (1996)CrossRefPubMed
33.
go back to reference T. Kanno, Y. Kanno, L.F. Chen, E. Ogawa, W.Y. Kim, Y. Ito, Intrinsic transcriptional activation-inhibition domains of the polyomavirus enhancer binding protein 2/core binding factor alpha subunit revealed in the presence of the beta subunit. Mol. Cell. Biol. 18, 2444–2454 (1998)PubMed T. Kanno, Y. Kanno, L.F. Chen, E. Ogawa, W.Y. Kim, Y. Ito, Intrinsic transcriptional activation-inhibition domains of the polyomavirus enhancer binding protein 2/core binding factor alpha subunit revealed in the presence of the beta subunit. Mol. Cell. Biol. 18, 2444–2454 (1998)PubMed
34.
go back to reference H. Kagoshima, K. Shigesada, M. Satake, Y. Ito, H. Miyoshi, M. Ohki, M. Pepling, P. Gergen, The Runt domain identifies a new family of heteromeric transcriptional regulators. Trends Genet. 9, 338–341 (1993)CrossRefPubMed H. Kagoshima, K. Shigesada, M. Satake, Y. Ito, H. Miyoshi, M. Ohki, M. Pepling, P. Gergen, The Runt domain identifies a new family of heteromeric transcriptional regulators. Trends Genet. 9, 338–341 (1993)CrossRefPubMed
35.
go back to reference Q. Wang, T. Stacy, M. Binder, M. Marin-Padilla, A.H. Sharpe, N.A. Speck, Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. USA 93, 3444–3449 (1996)CrossRefPubMed Q. Wang, T. Stacy, M. Binder, M. Marin-Padilla, A.H. Sharpe, N.A. Speck, Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. USA 93, 3444–3449 (1996)CrossRefPubMed
36.
go back to reference T. Okuda, J. van Deursen, S.W. Hiebert, G. Grosveld, J.R. Downing, AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–330 (1996)CrossRefPubMed T. Okuda, J. van Deursen, S.W. Hiebert, G. Grosveld, J.R. Downing, AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–330 (1996)CrossRefPubMed
37.
go back to reference T. Komori, H. Yagi, S. Nomura, A. Yamaguchi, K. Sasaki, K. Deguchi, Y. Shimizu, R.T. Bronson, Y.H. Gao, M. Inada, M. Sato, R. Okamoto, Y. Kitamura, S. Yoshiki, T. Kishimoto, Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755–764 (1997)CrossRefPubMed T. Komori, H. Yagi, S. Nomura, A. Yamaguchi, K. Sasaki, K. Deguchi, Y. Shimizu, R.T. Bronson, Y.H. Gao, M. Inada, M. Sato, R. Okamoto, Y. Kitamura, S. Yoshiki, T. Kishimoto, Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755–764 (1997)CrossRefPubMed
38.
go back to reference F. Otto, A.P. Thornell, T. Crompton, A. Denzel, K.C. Gilmour, I.R. Rosewell, G.W. Stamp, R.S. Beddington, S. Mundlos, B.R. Olsen, P.B. Selby, M.J. Owen, Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765–771 (1997)CrossRefPubMed F. Otto, A.P. Thornell, T. Crompton, A. Denzel, K.C. Gilmour, I.R. Rosewell, G.W. Stamp, R.S. Beddington, S. Mundlos, B.R. Olsen, P.B. Selby, M.J. Owen, Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765–771 (1997)CrossRefPubMed
39.
go back to reference D. Levanon, D. Bettoun, C. Harris-Cerruti, E. Woolf, V. Negreanu, R. Eilam, Y. Bernstein, D. Goldenberg, C. Xiao, M. Fliegauf, E. Kremer, F. Otto, O. Brenner, A. Lev-Tov, Y. Groner, The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J. 21, 3454–3463 (2002)CrossRefPubMed D. Levanon, D. Bettoun, C. Harris-Cerruti, E. Woolf, V. Negreanu, R. Eilam, Y. Bernstein, D. Goldenberg, C. Xiao, M. Fliegauf, E. Kremer, F. Otto, O. Brenner, A. Lev-Tov, Y. Groner, The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J. 21, 3454–3463 (2002)CrossRefPubMed
40.
go back to reference K. Inoue, S. Ozaki, T. Shiga, K. Ito, T. Masuda, N. Okado, T. Iseda, S. Kawaguchi, M. Ogawa, S.C. Bae, N. Yamashita, S. Itohara, N. Kudo, Y. Ito, Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat. Neurosci. 5, 946–954 (2002)CrossRefPubMed K. Inoue, S. Ozaki, T. Shiga, K. Ito, T. Masuda, N. Okado, T. Iseda, S. Kawaguchi, M. Ogawa, S.C. Bae, N. Yamashita, S. Itohara, N. Kudo, Y. Ito, Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat. Neurosci. 5, 946–954 (2002)CrossRefPubMed
41.
go back to reference H.M. Robinson, Z.J. Broadfield, K.L. Cheung, L. Harewood, R.L. Harris, G.R. Jalali, M. Martineau, A.V. Moorman, K.E. Taylor, S. Richards, C. Mitchell, C.J. Harrison, Amplification of AML1 in acute lymphoblastic leukemia is associated with a poor outcome. Leukemia 17, 2249–2250 (2003)CrossRefPubMed H.M. Robinson, Z.J. Broadfield, K.L. Cheung, L. Harewood, R.L. Harris, G.R. Jalali, M. Martineau, A.V. Moorman, K.E. Taylor, S. Richards, C. Mitchell, C.J. Harrison, Amplification of AML1 in acute lymphoblastic leukemia is associated with a poor outcome. Leukemia 17, 2249–2250 (2003)CrossRefPubMed
42.
go back to reference G.L. Barnes, K.E. Hebert, M. Kamal, A. Javed, T.A. Einhorn, J.B. Lian, G.S. Stein, L.C. Gerstenfeld, Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer Res. 64, 4506–4513 (2004)CrossRefPubMed G.L. Barnes, K.E. Hebert, M. Kamal, A. Javed, T.A. Einhorn, J.B. Lian, G.S. Stein, L.C. Gerstenfeld, Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer Res. 64, 4506–4513 (2004)CrossRefPubMed
43.
go back to reference A. Kilbey, K. Blyth, S. Wotton, A. Terry, A. Jenkins, M. Bell, L. Hanlon, E.R. Cameron, J.C. Neil, Runx2 disruption promotes immortalization and confers resistance to oncogene-induced senescence in primary murine fibroblasts. Cancer Res. 67, 11263–11271 (2007)CrossRefPubMed A. Kilbey, K. Blyth, S. Wotton, A. Terry, A. Jenkins, M. Bell, L. Hanlon, E.R. Cameron, J.C. Neil, Runx2 disruption promotes immortalization and confers resistance to oncogene-induced senescence in primary murine fibroblasts. Cancer Res. 67, 11263–11271 (2007)CrossRefPubMed
44.
go back to reference V. Vladimirova, A. Waha, K. Luckerath, P. Pesheva, R. Probstmeier, Runx2 is expressed in human glioma cells and mediates the expression of galectin-3. J. Neurosci. Res. 86, 2450–2461 (2008)CrossRefPubMed V. Vladimirova, A. Waha, K. Luckerath, P. Pesheva, R. Probstmeier, Runx2 is expressed in human glioma cells and mediates the expression of galectin-3. J. Neurosci. Res. 86, 2450–2461 (2008)CrossRefPubMed
Metadata
Title
RUNX1 and RUNX2 upregulate Galectin-3 expression in human pituitary tumors
Authors
He-Yu Zhang
Long Jin
Gail A. Stilling
Katharina H. Ruebel
Kendra Coonse
Yoshinori Tanizaki
Avraham Raz
Ricardo V. Lloyd
Publication date
01-02-2009
Publisher
Springer US
Published in
Endocrine / Issue 1/2009
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-008-9129-z

Other articles of this Issue 1/2009

Endocrine 1/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.