Skip to main content
Top
Published in: Cardiovascular Toxicology 1/2022

01-01-2022 | Myocardial Infarction

In Vivo and In Vitro Cardioprotective Effect of Gossypin Against Isoproterenol-Induced Myocardial Infarction Injury

Authors: Irfan Cinar, Muhammed Yayla, Taha Tavaci, Erdem Toktay, Rustem Anil Ugan, Pınar Bayram, Hamza Halici

Published in: Cardiovascular Toxicology | Issue 1/2022

Login to get access

Abstract

The aim of the study was to examine the protective effects and possible mechanism of gossypin against isoproterenol (ISO)-mediated myocardial damage in vivo and H9c2 cell damage in vitro. H9c2 cells were categorized into five groups. Viability was evaluated with MTT and LDH release in H9c2 cells. Apoptotic parameter analysis was performed with cytochrome c (Cyt-c), caspase-3 (CASP-3), and BCL2/Bax mRNA expression levels. In vivo, gossypin was administered orally to mice at doses of 5, 10, and 20 mg/kg for 7 days. ISO groups were injected with isoproterenol (150 mg/kg) subcutaneously (on 8th and 9th) for 2 days. Afterward, lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB) levels and Troponin-I (Tn-I) amount from their serum, oxidative stress parameters superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) levels, and tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1 β), and NF-kB mRNA expression levels with inflammatory markers from heart tissue were evaluated. In addition, IL-1B, BCL-2, and cas-3 immunohistochemical staining was performed from heart tissue and TNF-a level was measured by ELISA method. Administration of Gossypin protected the cells by dose-dependent, eliminating the reduced cell viability and increased LDH release of ISO in H9c2 cells. In mice serum analyses, increased LDH, CK-MB levels, and Tn-I levels were normalized by gossypin. ISO administration in heart tissue is regulated by gossypin with increased SOD activity, GSH amount, TNF-α, IL-6, IL-1β, and NF-kB mRNA expression levels and decreased MDA amount. Overall, the present results demonstrated that gossypin has a potential cardioprotective treatment for ischemic heart disease on in vivo and in vitro.
Literature
1.
go back to reference Yang, H., Carasso, S., Woo, A., Jamorski, M., Nikonova, A., Wigle, E. D., & Rakowski, H. (2010). Hypertrophy pattern and regional myocardial mechanics are related in septal and apical hypertrophic cardiomyopathy. Journal of the American Society of Echocardiography, 23, 1081–1089.PubMedCrossRef Yang, H., Carasso, S., Woo, A., Jamorski, M., Nikonova, A., Wigle, E. D., & Rakowski, H. (2010). Hypertrophy pattern and regional myocardial mechanics are related in septal and apical hypertrophic cardiomyopathy. Journal of the American Society of Echocardiography, 23, 1081–1089.PubMedCrossRef
2.
go back to reference Chiong, M., Wang, Z. V., Pedrozo, Z., Cao, D. J., Troncoso, R., Ibacache, M., Criollo, A., Nemchenko, A., Hill, J. A., & Lavandero, S. (2011). Cardiomyocyte death: Mechanisms and translational implications. Cell Death Disease, 2, e244.PubMedPubMedCentralCrossRef Chiong, M., Wang, Z. V., Pedrozo, Z., Cao, D. J., Troncoso, R., Ibacache, M., Criollo, A., Nemchenko, A., Hill, J. A., & Lavandero, S. (2011). Cardiomyocyte death: Mechanisms and translational implications. Cell Death Disease, 2, e244.PubMedPubMedCentralCrossRef
3.
go back to reference Ong, S. B., Hernandez-Resendiz, S., Crespo-Avilan, G. E., Mukhametshina, R. T., Kwek, X. Y., Cabrera-Fuentes, H. A., & Hausenloy, D. J. (2018). Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacology & Therapeutics, 186, 73–87.CrossRef Ong, S. B., Hernandez-Resendiz, S., Crespo-Avilan, G. E., Mukhametshina, R. T., Kwek, X. Y., Cabrera-Fuentes, H. A., & Hausenloy, D. J. (2018). Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacology & Therapeutics, 186, 73–87.CrossRef
4.
go back to reference Sawyer, D. B., Siwik, D. A., Xiao, L., Pimentel, D. R., Singh, K., & Colucci, W. S. (2002). Role of oxidative stress in myocardial hypertrophy and failure. Journal of Molecular and Cellular Cardiology, 34, 379–388.PubMedCrossRef Sawyer, D. B., Siwik, D. A., Xiao, L., Pimentel, D. R., Singh, K., & Colucci, W. S. (2002). Role of oxidative stress in myocardial hypertrophy and failure. Journal of Molecular and Cellular Cardiology, 34, 379–388.PubMedCrossRef
5.
go back to reference Neri, M., Fineschi, V., Di Paolo, M., Pomara, C., Riezzo, I., Turillazzi, E., & Cerretani, D. (2015). Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction. Current Vascular Pharmacology, 13, 26–36.PubMedCrossRef Neri, M., Fineschi, V., Di Paolo, M., Pomara, C., Riezzo, I., Turillazzi, E., & Cerretani, D. (2015). Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction. Current Vascular Pharmacology, 13, 26–36.PubMedCrossRef
6.
go back to reference Cinar, I., Halici, Z., Dincer, B., Sirin, B., & Cadirci, E. (2020). The role of 5-HT7 receptors on isoproterenol-induced myocardial infarction in rats with high-fat diet exacerbated coronary endothelial dysfunction. Human and Experimental Toxicology, 1, 96032712. Cinar, I., Halici, Z., Dincer, B., Sirin, B., & Cadirci, E. (2020). The role of 5-HT7 receptors on isoproterenol-induced myocardial infarction in rats with high-fat diet exacerbated coronary endothelial dysfunction. Human and Experimental Toxicology, 1, 96032712.
7.
go back to reference Krishnamurthy, P., Subramanian, V., Singh, M., & Singh, K. (2007). Beta1 integrins modulate beta-adrenergic receptor-stimulated cardiac myocyte apoptosis and myocardial remodeling. Hypertension, 49, 865–872.PubMedCrossRef Krishnamurthy, P., Subramanian, V., Singh, M., & Singh, K. (2007). Beta1 integrins modulate beta-adrenergic receptor-stimulated cardiac myocyte apoptosis and myocardial remodeling. Hypertension, 49, 865–872.PubMedCrossRef
8.
go back to reference Gabriel, A. S., Martinsson, A., Wretlind, B., & Ahnve, S. (2004). IL-6 levels in acute and post myocardial infarction: Their relation to CRP levels, infarction size, left ventricular systolic function, and heart failure. European Journal of Internal Medicine, 15, 523–528.PubMedCrossRef Gabriel, A. S., Martinsson, A., Wretlind, B., & Ahnve, S. (2004). IL-6 levels in acute and post myocardial infarction: Their relation to CRP levels, infarction size, left ventricular systolic function, and heart failure. European Journal of Internal Medicine, 15, 523–528.PubMedCrossRef
9.
go back to reference Yang, J., Wang, Z., & Chen, D. L. (2017). Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress. Biomedicine & Pharmacotherapy, 93, 1343–1357.CrossRef Yang, J., Wang, Z., & Chen, D. L. (2017). Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress. Biomedicine & Pharmacotherapy, 93, 1343–1357.CrossRef
10.
go back to reference Karin, M., & Delhase, M. (2000). The I kappa B kinase (IKK) and NF-kappa B: Key elements of proinflammatory signalling. Seminars in Immunology, 12, 85–98.PubMedCrossRef Karin, M., & Delhase, M. (2000). The I kappa B kinase (IKK) and NF-kappa B: Key elements of proinflammatory signalling. Seminars in Immunology, 12, 85–98.PubMedCrossRef
11.
go back to reference Xu, F., Sun, S., Wang, X., Ni, E., Zhao, L., & Zhu, W. (2017). GRK2 mediates arginine vasopressin-induced interleukin-6 production via nuclear factor-kappaB signaling neonatal rat cardiac fibroblast. Molecular Pharmacology, 92, 278–284.PubMedCrossRef Xu, F., Sun, S., Wang, X., Ni, E., Zhao, L., & Zhu, W. (2017). GRK2 mediates arginine vasopressin-induced interleukin-6 production via nuclear factor-kappaB signaling neonatal rat cardiac fibroblast. Molecular Pharmacology, 92, 278–284.PubMedCrossRef
12.
go back to reference Du, G., Sun, L., Zhao, R., Du, L., Song, J., Zhang, L., He, G., Zhang, Y., & Zhang, J. (2016). Polyphenols: Potential source of drugs for the treatment of ischaemic heart disease. Pharmacology & Therapeutics, 162, 23–34.CrossRef Du, G., Sun, L., Zhao, R., Du, L., Song, J., Zhang, L., He, G., Zhang, Y., & Zhang, J. (2016). Polyphenols: Potential source of drugs for the treatment of ischaemic heart disease. Pharmacology & Therapeutics, 162, 23–34.CrossRef
13.
go back to reference Sedighi, M., Sewell, R. D. E., Nazari, A., Abbaszadeh, S., Cheraghi, M., Amini, A., Heydari, Z., & Rafieian-Kopaei, M. (2019). A review on the most important medicinal plants effective in cardiac ischemia-reperfusion injury. Current Pharmaceutical Design, 25, 352–358.PubMedCrossRef Sedighi, M., Sewell, R. D. E., Nazari, A., Abbaszadeh, S., Cheraghi, M., Amini, A., Heydari, Z., & Rafieian-Kopaei, M. (2019). A review on the most important medicinal plants effective in cardiac ischemia-reperfusion injury. Current Pharmaceutical Design, 25, 352–358.PubMedCrossRef
14.
go back to reference Cinar, I. (2020). Apoptosis-inducing activity and antiproliferative effect of gossypin on PC-3 prostate cancer cells. Anti-Cancer Agents in Medicinal Chemistry, 21(4), 445–450.CrossRef Cinar, I. (2020). Apoptosis-inducing activity and antiproliferative effect of gossypin on PC-3 prostate cancer cells. Anti-Cancer Agents in Medicinal Chemistry, 21(4), 445–450.CrossRef
15.
go back to reference Viswanathan, S., Thirugnanasambantham, P., Ramaswamy, S., & Bapna, J. S. (1993). A study on the role of cholinergic and gamma amino butyric acid systems in the anti-nociceptive effect of gossypin. Clinical and Experimental Pharmacology and Physiology, 20, 193–196.PubMedCrossRef Viswanathan, S., Thirugnanasambantham, P., Ramaswamy, S., & Bapna, J. S. (1993). A study on the role of cholinergic and gamma amino butyric acid systems in the anti-nociceptive effect of gossypin. Clinical and Experimental Pharmacology and Physiology, 20, 193–196.PubMedCrossRef
16.
go back to reference Cinar, I., Sirin, B., Aydin, P., Toktay, E., Cadirci, E., Halici, I., & Halici, Z. (2019). Ameliorative effect of gossypin against acute lung injury in experimental sepsis model of rats. Life Sciences, 221, 327–334.PubMedCrossRef Cinar, I., Sirin, B., Aydin, P., Toktay, E., Cadirci, E., Halici, I., & Halici, Z. (2019). Ameliorative effect of gossypin against acute lung injury in experimental sepsis model of rats. Life Sciences, 221, 327–334.PubMedCrossRef
17.
go back to reference Gautam, P., & Flora, S. J. (2010). Oral supplementation of gossypin during lead exposure protects alteration in heme synthesis pathway and brain oxidative stress in rats. Nutrition, 26, 563–570.PubMedCrossRef Gautam, P., & Flora, S. J. (2010). Oral supplementation of gossypin during lead exposure protects alteration in heme synthesis pathway and brain oxidative stress in rats. Nutrition, 26, 563–570.PubMedCrossRef
18.
go back to reference Ugan, R. A., Cadirci, E., Halici, Z., Toktay, E., & Cinar, I. (2018). The role of urotensin-II and its receptors in sepsis-induced lung injury under diabetic conditions. European Journal of Pharmacology, 818, 457–469.PubMedCrossRef Ugan, R. A., Cadirci, E., Halici, Z., Toktay, E., & Cinar, I. (2018). The role of urotensin-II and its receptors in sepsis-induced lung injury under diabetic conditions. European Journal of Pharmacology, 818, 457–469.PubMedCrossRef
19.
go back to reference Cadirci, E., Ugan, R. A., Dincer, B., Gundogdu, B., Cinar, I., Akpinar, E., & Halici, Z. (2019). Urotensin receptors as a new target for CLP induced septic lung injury in mice. Naunyn-Schmiedeberg’s Archives of Pharmacology, 392, 135–145.PubMedCrossRef Cadirci, E., Ugan, R. A., Dincer, B., Gundogdu, B., Cinar, I., Akpinar, E., & Halici, Z. (2019). Urotensin receptors as a new target for CLP induced septic lung injury in mice. Naunyn-Schmiedeberg’s Archives of Pharmacology, 392, 135–145.PubMedCrossRef
20.
go back to reference Lobo Filho, H. G., Ferreira, N. L., Sousa, R. B., Carvalho, E. R., Lobo, P. L., & Lobo Filho, J. G. (2011). Experimental model of myocardial infarction induced by isoproterenol in rats. Revista Brasileira de Cirurgia Cardiovascular, 26, 469–476.PubMed Lobo Filho, H. G., Ferreira, N. L., Sousa, R. B., Carvalho, E. R., Lobo, P. L., & Lobo Filho, J. G. (2011). Experimental model of myocardial infarction induced by isoproterenol in rats. Revista Brasileira de Cirurgia Cardiovascular, 26, 469–476.PubMed
21.
go back to reference Granata, R., Trovato, L., Gallo, M. P., Destefanis, S., Settanni, F., Scarlatti, F., Brero, A., Ramella, R., Volante, M., Isgaard, J., Levi, R., Papotti, M., Alloatti, G., & Ghigo, E. (2009). Growth hormone-releasing hormone promotes survival of cardiac myocytes in vitro and protects against ischaemia-reperfusion injury in rat heart. Cardiovascular Research, 83, 303–312.PubMedCrossRef Granata, R., Trovato, L., Gallo, M. P., Destefanis, S., Settanni, F., Scarlatti, F., Brero, A., Ramella, R., Volante, M., Isgaard, J., Levi, R., Papotti, M., Alloatti, G., & Ghigo, E. (2009). Growth hormone-releasing hormone promotes survival of cardiac myocytes in vitro and protects against ischaemia-reperfusion injury in rat heart. Cardiovascular Research, 83, 303–312.PubMedCrossRef
22.
go back to reference Zaugg, M., Xu, W., Lucchinetti, E., Shafiq, S. A., Jamali, N. Z., & Siddiqui, M. A. (2000). Beta-adrenergic receptor subtypes differentially affect apoptosis in adult rat ventricular myocytes. Circulation, 102, 344–350.PubMedCrossRef Zaugg, M., Xu, W., Lucchinetti, E., Shafiq, S. A., Jamali, N. Z., & Siddiqui, M. A. (2000). Beta-adrenergic receptor subtypes differentially affect apoptosis in adult rat ventricular myocytes. Circulation, 102, 344–350.PubMedCrossRef
23.
go back to reference Ning, B. B., Zhang, Y., Wu, D. D., Cui, J. G., Liu, L., Wang, P. W., Wang, W. J., Zhu, W. L., Chen, Y., & Zhang, T. (2017). Luteolin-7-diglucuronide attenuates isoproterenol-induced myocardial injury and fibrosis in mice. Acta Pharmacologica Sinica, 38, 331–341.PubMedPubMedCentralCrossRef Ning, B. B., Zhang, Y., Wu, D. D., Cui, J. G., Liu, L., Wang, P. W., Wang, W. J., Zhu, W. L., Chen, Y., & Zhang, T. (2017). Luteolin-7-diglucuronide attenuates isoproterenol-induced myocardial injury and fibrosis in mice. Acta Pharmacologica Sinica, 38, 331–341.PubMedPubMedCentralCrossRef
24.
go back to reference Sahu, B. D., Putcha, U. K., Kuncha, M., Rachamalla, S. S., & Sistla, R. (2014). Carnosic acid promotes myocardial antioxidant response and prevents isoproterenol-induced myocardial oxidative stress and apoptosis in mice. Molecular and Cellular Biochemistry, 394, 163–176.PubMedCrossRef Sahu, B. D., Putcha, U. K., Kuncha, M., Rachamalla, S. S., & Sistla, R. (2014). Carnosic acid promotes myocardial antioxidant response and prevents isoproterenol-induced myocardial oxidative stress and apoptosis in mice. Molecular and Cellular Biochemistry, 394, 163–176.PubMedCrossRef
25.
go back to reference Zhang, H. J., Chen, R. C., Sun, G. B., Yang, L. P., Zhu, Y. D., Xu, X. D., & Sun, X. B. (2018). Protective effects of total flavonoids from Clinopodium chinense (Benth.) O. Ktze on myocardial injury in vivo and in vitro via regulation of Akt/Nrf2/HO-1 pathway. Phytomedicine, 40, 88–97.PubMedCrossRef Zhang, H. J., Chen, R. C., Sun, G. B., Yang, L. P., Zhu, Y. D., Xu, X. D., & Sun, X. B. (2018). Protective effects of total flavonoids from Clinopodium chinense (Benth.) O. Ktze on myocardial injury in vivo and in vitro via regulation of Akt/Nrf2/HO-1 pathway. Phytomedicine, 40, 88–97.PubMedCrossRef
26.
go back to reference Meeran, M. F., & Prince, P. S. (2012). Protective effects of thymol on altered plasma lipid peroxidation and nonenzymic antioxidants in isoproterenol-induced myocardial infarcted rats. Journal of Biochemical and Molecular Toxicology, 26, 368–373.PubMedCrossRef Meeran, M. F., & Prince, P. S. (2012). Protective effects of thymol on altered plasma lipid peroxidation and nonenzymic antioxidants in isoproterenol-induced myocardial infarcted rats. Journal of Biochemical and Molecular Toxicology, 26, 368–373.PubMedCrossRef
27.
go back to reference Kannan, M. M., & Quine, S. D. (2013). Ellagic acid inhibits cardiac arrhythmias, hypertrophy and hyperlipidaemia during myocardial infarction in rats. Metabolism Clinical and Experimental, 62, 52–61.PubMedCrossRef Kannan, M. M., & Quine, S. D. (2013). Ellagic acid inhibits cardiac arrhythmias, hypertrophy and hyperlipidaemia during myocardial infarction in rats. Metabolism Clinical and Experimental, 62, 52–61.PubMedCrossRef
28.
go back to reference Evran, B., Karpuzoglu, H., Develi, S., Kalaz, E. B., Soluk-Tekkesin, M., Olgac, V., Dogru-Abbasoglu, S., & Uysal, M. (2014). Effects of carnosine on prooxidant-antioxidant status in heart tissue, plasma and erythrocytes of rats with isoproterenol-induced myocardial infarction. Pharmacological Reports, 66, 81–86.PubMedCrossRef Evran, B., Karpuzoglu, H., Develi, S., Kalaz, E. B., Soluk-Tekkesin, M., Olgac, V., Dogru-Abbasoglu, S., & Uysal, M. (2014). Effects of carnosine on prooxidant-antioxidant status in heart tissue, plasma and erythrocytes of rats with isoproterenol-induced myocardial infarction. Pharmacological Reports, 66, 81–86.PubMedCrossRef
29.
go back to reference Fernandez, S. P., Nguyen, M., Yow, T. T., Chu, C., Johnston, G. A., Hanrahan, J. R., & Chebib, M. (2009). The flavonoid glycosides, myricitrin, gossypin and naringin exert anxiolytic action in mice. Neurochemical Research, 34, 1867–1875.PubMedCrossRef Fernandez, S. P., Nguyen, M., Yow, T. T., Chu, C., Johnston, G. A., Hanrahan, J. R., & Chebib, M. (2009). The flavonoid glycosides, myricitrin, gossypin and naringin exert anxiolytic action in mice. Neurochemical Research, 34, 1867–1875.PubMedCrossRef
30.
go back to reference Thangaiyan, R., Robert, B. M., Arjunan, S., Govindasamy, K., & Nagarajan, R. P. (2018). Preventive effect of apigenin against isoproterenol-induced apoptosis in cardiomyoblasts. Journal of Biochemical and Molecular Toxicology, 32, e22213.PubMedCrossRef Thangaiyan, R., Robert, B. M., Arjunan, S., Govindasamy, K., & Nagarajan, R. P. (2018). Preventive effect of apigenin against isoproterenol-induced apoptosis in cardiomyoblasts. Journal of Biochemical and Molecular Toxicology, 32, e22213.PubMedCrossRef
31.
go back to reference Konukoglu, D., Serin, O., Demiriz Kemerli, G., Serin, E., Hayirhoglu, A., & Oner, B. (1998). A study on the carotid artery intima-media thickness and its association with lipid peroxidation. Clinica Chimica Acta, 277, 91–98.CrossRef Konukoglu, D., Serin, O., Demiriz Kemerli, G., Serin, E., Hayirhoglu, A., & Oner, B. (1998). A study on the carotid artery intima-media thickness and its association with lipid peroxidation. Clinica Chimica Acta, 277, 91–98.CrossRef
32.
go back to reference Hanukoglu, I. (2006). Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug Metabolism Reviews, 38, 171–196.PubMedCrossRef Hanukoglu, I. (2006). Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug Metabolism Reviews, 38, 171–196.PubMedCrossRef
33.
go back to reference Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5, 9–19.CrossRef Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5, 9–19.CrossRef
34.
go back to reference Yilmaz, S., Atessahin, A., Sahna, E., Karahan, I., & Ozer, S. (2006). Protective effect of lycopene on adriamycin-induced cardiotoxicity and nephrotoxicity. Toxicology, 218, 164–171.PubMedCrossRef Yilmaz, S., Atessahin, A., Sahna, E., Karahan, I., & Ozer, S. (2006). Protective effect of lycopene on adriamycin-induced cardiotoxicity and nephrotoxicity. Toxicology, 218, 164–171.PubMedCrossRef
35.
go back to reference Gautam, A., & Vijayaraghavan, R. (2007). Prophylactic effect of gossypin against percutaneously administered sulfur mustard. Biomedical and Environmental Sciences, 20, 250–259.PubMed Gautam, A., & Vijayaraghavan, R. (2007). Prophylactic effect of gossypin against percutaneously administered sulfur mustard. Biomedical and Environmental Sciences, 20, 250–259.PubMed
36.
go back to reference Zhao, L., Wu, D., Sang, M., Xu, Y., Liu, Z., & Wu, Q. (2017). Stachydrine ameliorates isoproterenol-induced cardiac hypertrophy and fibrosis by suppressing inflammation and oxidative stress through inhibiting NF-kappaB and JAK/STAT signaling pathways in rats. International Immunopharmacology, 48, 102–109.PubMedCrossRef Zhao, L., Wu, D., Sang, M., Xu, Y., Liu, Z., & Wu, Q. (2017). Stachydrine ameliorates isoproterenol-induced cardiac hypertrophy and fibrosis by suppressing inflammation and oxidative stress through inhibiting NF-kappaB and JAK/STAT signaling pathways in rats. International Immunopharmacology, 48, 102–109.PubMedCrossRef
37.
go back to reference Baldissera, M. D., Souza, C. F., Grando, T. H., Stefani, L. M., & Monteiro, S. G. (2017). beta-caryophyllene reduces atherogenic index and coronary risk index in hypercholesterolemic rats: The involvement of cardiac oxidative damage. Chemico-Biological Interactions, 270, 9–14.PubMedCrossRef Baldissera, M. D., Souza, C. F., Grando, T. H., Stefani, L. M., & Monteiro, S. G. (2017). beta-caryophyllene reduces atherogenic index and coronary risk index in hypercholesterolemic rats: The involvement of cardiac oxidative damage. Chemico-Biological Interactions, 270, 9–14.PubMedCrossRef
38.
go back to reference Hu, K., Gong, X., Ai, Q., Lin, L., Dai, J., Cai, L., Jiang, R., Ge, P., & Zhang, L. (2017). Endogenous AMPK acts as a detrimental factor in fulminant hepatitis via potentiating JNK-dependent hepatocyte apoptosis. Cell Death Disease, 8, e2637.PubMedPubMedCentralCrossRef Hu, K., Gong, X., Ai, Q., Lin, L., Dai, J., Cai, L., Jiang, R., Ge, P., & Zhang, L. (2017). Endogenous AMPK acts as a detrimental factor in fulminant hepatitis via potentiating JNK-dependent hepatocyte apoptosis. Cell Death Disease, 8, e2637.PubMedPubMedCentralCrossRef
39.
go back to reference Campbell, K. J., & Tait, S. W. G. (2018). Targeting BCL-2 regulated apoptosis in cancer. Open Biology, 8, 15002.CrossRef Campbell, K. J., & Tait, S. W. G. (2018). Targeting BCL-2 regulated apoptosis in cancer. Open Biology, 8, 15002.CrossRef
40.
go back to reference Maes, M. E., Schlamp, C. L., & Nickells, R. W. (2017). BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Progress in Retinal and Eye Research, 57, 1–25.PubMedPubMedCentralCrossRef Maes, M. E., Schlamp, C. L., & Nickells, R. W. (2017). BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Progress in Retinal and Eye Research, 57, 1–25.PubMedPubMedCentralCrossRef
41.
go back to reference Cui, C., Cui, N., Wang, P., Song, S., Liang, H., & Ji, A. (2015). Sulfated polysaccharide isolated from the sea cucumber Stichopus japonicus against PC12 hypoxia/reoxygenation injury by inhibition of the MAPK signaling pathway. Cellular and Molecular Neurobiology, 35, 1081–1092.PubMedCrossRef Cui, C., Cui, N., Wang, P., Song, S., Liang, H., & Ji, A. (2015). Sulfated polysaccharide isolated from the sea cucumber Stichopus japonicus against PC12 hypoxia/reoxygenation injury by inhibition of the MAPK signaling pathway. Cellular and Molecular Neurobiology, 35, 1081–1092.PubMedCrossRef
42.
go back to reference Yan, S. H., Zhao, N. W., Geng, Z. R., Shen, J. Y., Liu, F. M., Yan, D., Zhou, J., Nie, C., Huang, C. C., & Fang, Z. Y. (2018). Modulations of Keap1-Nrf2 signaling axis by TIIA ameliorated the oxidative stress-induced myocardial apoptosis. Free Radical Biology & Medicine, 115, 191–201.CrossRef Yan, S. H., Zhao, N. W., Geng, Z. R., Shen, J. Y., Liu, F. M., Yan, D., Zhou, J., Nie, C., Huang, C. C., & Fang, Z. Y. (2018). Modulations of Keap1-Nrf2 signaling axis by TIIA ameliorated the oxidative stress-induced myocardial apoptosis. Free Radical Biology & Medicine, 115, 191–201.CrossRef
43.
go back to reference Wang, L., Wang, X., Chen, H., Zu, X., Ma, F., Liu, K., Bode, A. M., Dong, Z., & Kim, D. J. (2019). Gossypin inhibits gastric cancer growth by direct targeting of AURKA and RSK2. Phytotherapy Research, 33, 640–650.PubMed Wang, L., Wang, X., Chen, H., Zu, X., Ma, F., Liu, K., Bode, A. M., Dong, Z., & Kim, D. J. (2019). Gossypin inhibits gastric cancer growth by direct targeting of AURKA and RSK2. Phytotherapy Research, 33, 640–650.PubMed
44.
go back to reference Bhaskaran, S., Dileep, K. V., Deepa, S. S., Sadasivan, C., Klausner, M., Krishnegowda, N. K., Tekmal, R. R., VandeBerg, J. L., & Nair, H. B. (2013). Gossypin as a novel selective dual inhibitor of v-raf murine sarcoma viral oncogene homolog B1 and cyclin-dependent kinase 4 for melanoma. Molecular Cancer Therapeutics, 12, 361–372.PubMedCrossRef Bhaskaran, S., Dileep, K. V., Deepa, S. S., Sadasivan, C., Klausner, M., Krishnegowda, N. K., Tekmal, R. R., VandeBerg, J. L., & Nair, H. B. (2013). Gossypin as a novel selective dual inhibitor of v-raf murine sarcoma viral oncogene homolog B1 and cyclin-dependent kinase 4 for melanoma. Molecular Cancer Therapeutics, 12, 361–372.PubMedCrossRef
45.
go back to reference Kunnumakkara, A. B., Nair, A. S., & Ahn, K. S. (2013). Gossypin, a pentahydroxy glucosyl flavone, inhibits the transforming growth factor beta-activated kinase-1-mediated NF-kappa B activation pathway, leading to potentiation of apoptosis, suppression of invasion, and abrogation of osteoclastogenesis (vol 109, pg 5112, 2007). Blood, 122, 1327–1328. Kunnumakkara, A. B., Nair, A. S., & Ahn, K. S. (2013). Gossypin, a pentahydroxy glucosyl flavone, inhibits the transforming growth factor beta-activated kinase-1-mediated NF-kappa B activation pathway, leading to potentiation of apoptosis, suppression of invasion, and abrogation of osteoclastogenesis (vol 109, pg 5112, 2007). Blood, 122, 1327–1328.
Metadata
Title
In Vivo and In Vitro Cardioprotective Effect of Gossypin Against Isoproterenol-Induced Myocardial Infarction Injury
Authors
Irfan Cinar
Muhammed Yayla
Taha Tavaci
Erdem Toktay
Rustem Anil Ugan
Pınar Bayram
Hamza Halici
Publication date
01-01-2022
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 1/2022
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-021-09698-3

Other articles of this Issue 1/2022

Cardiovascular Toxicology 1/2022 Go to the issue