Skip to main content
Top
Published in: Cardiovascular Toxicology 1/2018

01-02-2018

Sodium Butyrate Controls Cardiac Hypertrophy in Experimental Models of Rats

Author: Bhoomika M. Patel

Published in: Cardiovascular Toxicology | Issue 1/2018

Login to get access

Abstract

The aim of the present research was to study the effect of sodium butyrate (SB) on partial abdominal aorta constriction (PAAC)-induced cardiac hypertrophy and determine its mechanism of action. Healthy Wistar rats were exposed to PAAC for eight weeks. After eight weeks, we carried out hypertrophic and hemodynamic evaluation and measured oxidative stress parameters and mitochondrial DNA concentration. PAAC control animals exhibited cardiac hypertrophy, decreased hemodynamic functions and oxidative stress. Treatment with SB reduced hypertrophic indices, LV wall thickness, LV collagen levels, cardiomyocyte diameter, serum lipid levels and serum cardiac biomarkers. Treatment with SB also improved hemodynamic functions, prevented oxidative stress and increased mitochondrial DNA concentration. Improvement in hypertrophy due to HDAC inhibition was further confirmed by HDAC mRNA expression studies which revealed that SB decreases expression of prohypertrophic HDAC, i.e., HDAC2, without altering the expression of anti-hypertrophic HDAC5. Sodium butyrate produces beneficial effect on cardiac hypertrophy as is evident, specifically from reduction in hypertrophic parameters including collagen levels, improvement in mitochondrial DNA concentration and preservation of LV systolic and diastolic dysfunction. This beneficial effect of sodium butyrate is mediated through downregulation of class I HDACs, specifically HDAC2 without any effect on class II HDAC, i.e., HDAC5. Thus, selective class I HDAC inhibition is required for controlling cardiac hypertrophy. Newer HDAC inhibitors which are class I inhibitor and class II promoter can be designed to obtain a ‘pan’ or ‘dual’ natural HDAC ‘regulators.’
Literature
1.
go back to reference Frey, N., & Olson, E. N. (2003). Cardiac hypertrophy: The good, the bad, and the ugly. Annual Review of Physiology, 65, 45–79.CrossRefPubMed Frey, N., & Olson, E. N. (2003). Cardiac hypertrophy: The good, the bad, and the ugly. Annual Review of Physiology, 65, 45–79.CrossRefPubMed
2.
go back to reference Goyal, B. R., & Mehta, A. A. (2013). Diabetic cardiomyopathy: Pathophysiological mechanisms and cardiac dysfunction. Human and Experimental Toxicology, 32(6), 571–590.CrossRefPubMed Goyal, B. R., & Mehta, A. A. (2013). Diabetic cardiomyopathy: Pathophysiological mechanisms and cardiac dysfunction. Human and Experimental Toxicology, 32(6), 571–590.CrossRefPubMed
3.
go back to reference Patel, B. M., & Mehta, A. A. (2013). The choice of anti-hypertensive agents in diabetic subjects. Diabetes and Vascular Disease Research, 10(50), 385–396.CrossRefPubMed Patel, B. M., & Mehta, A. A. (2013). The choice of anti-hypertensive agents in diabetic subjects. Diabetes and Vascular Disease Research, 10(50), 385–396.CrossRefPubMed
4.
go back to reference Patel, B. M., & Mehta, A. A. (2012). Aldosterone and angiotensin: Role in diabetes and cardiovascular diseases. European Journal of Pharmacology, 697(1–3), 1–12.CrossRefPubMed Patel, B. M., & Mehta, A. A. (2012). Aldosterone and angiotensin: Role in diabetes and cardiovascular diseases. European Journal of Pharmacology, 697(1–3), 1–12.CrossRefPubMed
5.
go back to reference Raghunathan, S., & Patel, B. M. (2013). Therapeutic implications of small interfering RNA in cardiovascular diseases. Fundamental and Clinical Pharmacology, 27(1), 1–20.CrossRefPubMed Raghunathan, S., & Patel, B. M. (2013). Therapeutic implications of small interfering RNA in cardiovascular diseases. Fundamental and Clinical Pharmacology, 27(1), 1–20.CrossRefPubMed
6.
go back to reference Schreiber, S. L., & Bernstein, B. E. (2002). Signaling network model of chromatin. Cell, 111, 771–778.CrossRefPubMed Schreiber, S. L., & Bernstein, B. E. (2002). Signaling network model of chromatin. Cell, 111, 771–778.CrossRefPubMed
7.
go back to reference Wade, P. A. (2001). Transcriptional control at regulatory checkpoints by histone deacetylases: Molecular connections between cancer and chromatin. Human Molecular Genetics, 10(7), 693–698.CrossRefPubMed Wade, P. A. (2001). Transcriptional control at regulatory checkpoints by histone deacetylases: Molecular connections between cancer and chromatin. Human Molecular Genetics, 10(7), 693–698.CrossRefPubMed
8.
go back to reference Gusterson, R. J., Jazrawi, E., Adcock, I. M., & Latchman, D. S. (2003). The transcriptional co-activators CREB binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. Journal of Biological Chemistry, 278, 6838–6847.CrossRefPubMed Gusterson, R. J., Jazrawi, E., Adcock, I. M., & Latchman, D. S. (2003). The transcriptional co-activators CREB binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. Journal of Biological Chemistry, 278, 6838–6847.CrossRefPubMed
9.
go back to reference de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S., & van Kuilenburg, A. B. (2003). Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochemical Journal, 370(3), 737–749.CrossRefPubMedPubMedCentral de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S., & van Kuilenburg, A. B. (2003). Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochemical Journal, 370(3), 737–749.CrossRefPubMedPubMedCentral
10.
go back to reference Gregoretti, I. V., Lee, Y. M., & Goodson, H. V. (2004). Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. Journal of Molecular Biology, 338(1), 17–31.CrossRefPubMed Gregoretti, I. V., Lee, Y. M., & Goodson, H. V. (2004). Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. Journal of Molecular Biology, 338(1), 17–31.CrossRefPubMed
11.
12.
go back to reference Marks, P. A. (2010). Histone deacetylase inhibitors: A chemical genetics approach to understanding cellular functions. Biochimica et Biophysica Acta, 1799(10–12), 717–725.CrossRefPubMedPubMedCentral Marks, P. A. (2010). Histone deacetylase inhibitors: A chemical genetics approach to understanding cellular functions. Biochimica et Biophysica Acta, 1799(10–12), 717–725.CrossRefPubMedPubMedCentral
13.
go back to reference Gao, L., Cueto, M. A., Asselbergs, F., & Atadja, P. (2002). Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. Journal of Biological Chemistry, 277(28), 25748–25755.CrossRefPubMed Gao, L., Cueto, M. A., Asselbergs, F., & Atadja, P. (2002). Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. Journal of Biological Chemistry, 277(28), 25748–25755.CrossRefPubMed
14.
go back to reference Kee, H. J., & Kook, H. (2011). Roles and targets of class I and IIa histone deacetylases in cardiac hypertrophy. BioMed Research International, 2011, 928326. Kee, H. J., & Kook, H. (2011). Roles and targets of class I and IIa histone deacetylases in cardiac hypertrophy. BioMed Research International, 2011, 928326.
15.
go back to reference Carducci, M. A., Gilbert, J., Bowling, M. K., Noe, D., Eisenberger, M. A., Sinibaldi, V., et al. (2001). A phase I clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clinical Cancer Research, 7, 3047–3055.PubMed Carducci, M. A., Gilbert, J., Bowling, M. K., Noe, D., Eisenberger, M. A., Sinibaldi, V., et al. (2001). A phase I clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clinical Cancer Research, 7, 3047–3055.PubMed
16.
go back to reference Bolden, J. E., Peart, M. J., & Johnstokeene, R. W. (2006). Anticancer activities of histone deacetylase inhibitors. Nature Reviews Drug Discovery, 5, 769–784.CrossRefPubMed Bolden, J. E., Peart, M. J., & Johnstokeene, R. W. (2006). Anticancer activities of histone deacetylase inhibitors. Nature Reviews Drug Discovery, 5, 769–784.CrossRefPubMed
17.
go back to reference Daosukho, C., Chen, Y., Noel, T., Sompol, P., Nithipongvanitch, R., Velez, J. M., et al. (2007). Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury. Free Radical Biology and Medicine, 42(12), 1818–1825.CrossRefPubMedPubMedCentral Daosukho, C., Chen, Y., Noel, T., Sompol, P., Nithipongvanitch, R., Velez, J. M., et al. (2007). Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury. Free Radical Biology and Medicine, 42(12), 1818–1825.CrossRefPubMedPubMedCentral
18.
go back to reference Chen, Y., Du, J., Zhao, Y. T., Zhang, L., Lv, G., Zhuang, S., et al. (2015). Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice. Cardiovascular Diabetology, 14, 99.CrossRefPubMedPubMedCentral Chen, Y., Du, J., Zhao, Y. T., Zhang, L., Lv, G., Zhuang, S., et al. (2015). Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice. Cardiovascular Diabetology, 14, 99.CrossRefPubMedPubMedCentral
19.
go back to reference Patel, B. M., & Desai, V. J. (2014). Beneficial role of tamoxifen in experimentally induced cardiac hypertrophy. Pharmacological Reports, 66(2), 264–272.CrossRefPubMed Patel, B. M., & Desai, V. J. (2014). Beneficial role of tamoxifen in experimentally induced cardiac hypertrophy. Pharmacological Reports, 66(2), 264–272.CrossRefPubMed
20.
go back to reference Goyal, B. R., Mesariya, P., Goyal, R. K., & Mehta, A. A. (2008). Effect of telmisartan on cardiovascular complications associated with STZ-diabetic rats. Molecular and Cellular Biochemistry, 314(1–2), 123–131.CrossRefPubMed Goyal, B. R., Mesariya, P., Goyal, R. K., & Mehta, A. A. (2008). Effect of telmisartan on cardiovascular complications associated with STZ-diabetic rats. Molecular and Cellular Biochemistry, 314(1–2), 123–131.CrossRefPubMed
21.
go back to reference Goyal, B. R., Solanki, N., Goyal, R. K., & Mehta, A. A. (2009). Investigation into the cardiac effects of spironolactone in the experimental model of type 1 diabetes. Journal of Cardiovascular Pharmacology, 54(6), 502–509.CrossRefPubMed Goyal, B. R., Solanki, N., Goyal, R. K., & Mehta, A. A. (2009). Investigation into the cardiac effects of spironolactone in the experimental model of type 1 diabetes. Journal of Cardiovascular Pharmacology, 54(6), 502–509.CrossRefPubMed
22.
go back to reference Goyal, B. R., Parmar, K., Goyal, R. K., & Mehta, A. A. (2011). Beneficial role of telmisartan on cardiovascular complications associated with STZ-induced type-2 diabetic rats. Pharmacological Reports, 63(4), 956–966.CrossRefPubMed Goyal, B. R., Parmar, K., Goyal, R. K., & Mehta, A. A. (2011). Beneficial role of telmisartan on cardiovascular complications associated with STZ-induced type-2 diabetic rats. Pharmacological Reports, 63(4), 956–966.CrossRefPubMed
23.
go back to reference Patel, B. M., Kakadiya, J., Goyal, R. K., & Mehta, A. A. (2013). Effect of spironolactone on cardiovascular complications associated with type-2 diabetes in rats. Experimental and Clinical Endocrinology and Diabetes, 121(08), 441–447.CrossRefPubMed Patel, B. M., Kakadiya, J., Goyal, R. K., & Mehta, A. A. (2013). Effect of spironolactone on cardiovascular complications associated with type-2 diabetes in rats. Experimental and Clinical Endocrinology and Diabetes, 121(08), 441–447.CrossRefPubMed
24.
go back to reference Goyal, B. R., Patel, M. M., & Bhadada, S. V. (2011). Comparative evaluation of spironolactone, atenolol, metoprolol, ramipril and perindopril on diabetes induced cardiovascular complications in type 1 diabetes in rats. International Journal of Diabetes and Metabolism, 19(1), 11–18. Goyal, B. R., Patel, M. M., & Bhadada, S. V. (2011). Comparative evaluation of spironolactone, atenolol, metoprolol, ramipril and perindopril on diabetes induced cardiovascular complications in type 1 diabetes in rats. International Journal of Diabetes and Metabolism, 19(1), 11–18.
25.
go back to reference Patel, B. M., & Bhadada, S. V. (2014). Type 2 diabetes induced cardiovascular complications: Comparative evaluation of spironolactone, atenolol, metoprolol, ramipril and perindopril. Clinical and Experimental Hypertension, 36(5), 340–347.CrossRefPubMed Patel, B. M., & Bhadada, S. V. (2014). Type 2 diabetes induced cardiovascular complications: Comparative evaluation of spironolactone, atenolol, metoprolol, ramipril and perindopril. Clinical and Experimental Hypertension, 36(5), 340–347.CrossRefPubMed
26.
go back to reference Raghunathan, S., Goyal, R. K., & Patel, B. M. (2017). Selective inhibition of HDAC2 by magnesium valproate attenuates cardiac hypertrophy. Canadian Journal of Physiology and Pharmacology, 95(3), 260–267.CrossRefPubMed Raghunathan, S., Goyal, R. K., & Patel, B. M. (2017). Selective inhibition of HDAC2 by magnesium valproate attenuates cardiac hypertrophy. Canadian Journal of Physiology and Pharmacology, 95(3), 260–267.CrossRefPubMed
27.
go back to reference Rayabarapu, N., & Patel, B. M. (2014). Beneficial role of tamoxifen in isoproterenol induced myocardial infarction. Canadian Journal of Physiology and Pharmacology, 92(10), 849–857.CrossRefPubMed Rayabarapu, N., & Patel, B. M. (2014). Beneficial role of tamoxifen in isoproterenol induced myocardial infarction. Canadian Journal of Physiology and Pharmacology, 92(10), 849–857.CrossRefPubMed
28.
go back to reference Patel, B. M., Raghunathan, S., & Porwal, U. (2014). Cardioprotective effects of magnesium valproate in type 2 diabetes mellitus. European Journal of Pharmacology, 728, 128–134.CrossRefPubMed Patel, B. M., Raghunathan, S., & Porwal, U. (2014). Cardioprotective effects of magnesium valproate in type 2 diabetes mellitus. European Journal of Pharmacology, 728, 128–134.CrossRefPubMed
29.
30.
go back to reference Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMed Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMed
31.
go back to reference Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.CrossRefPubMed Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.CrossRefPubMed
32.
go back to reference Beutler, E., Duron, O., & Kelly, B. (1963). Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine, 61, 882–888.PubMed Beutler, E., Duron, O., & Kelly, B. (1963). Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine, 61, 882–888.PubMed
33.
go back to reference Misra, H. P., & Frodvich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247, 3170–3175.PubMed Misra, H. P., & Frodvich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247, 3170–3175.PubMed
34.
go back to reference Barja, G., & Herrero, A. (2000). Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heat and brain of mammals. FASEB Journal, 14, 312–318.PubMed Barja, G., & Herrero, A. (2000). Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heat and brain of mammals. FASEB Journal, 14, 312–318.PubMed
35.
go back to reference Patel, B. M., Agarwal, S. S., & Bhadada, S. V. (2012). Perindopril protects against streptozotocin induced hyperglycemic myocardial damage/alterations. Human and Experimental Toxicology, 31(11), 1138–1149.CrossRef Patel, B. M., Agarwal, S. S., & Bhadada, S. V. (2012). Perindopril protects against streptozotocin induced hyperglycemic myocardial damage/alterations. Human and Experimental Toxicology, 31(11), 1138–1149.CrossRef
36.
go back to reference Goyal, B. R., & Mehta, A. A. (2012). Beneficial role of spironolactone, telmisartan and their combination on isoproterenol induced cardiac hypertrophy. Acta Cardiologica, 67(2), 203–211.CrossRefPubMed Goyal, B. R., & Mehta, A. A. (2012). Beneficial role of spironolactone, telmisartan and their combination on isoproterenol induced cardiac hypertrophy. Acta Cardiologica, 67(2), 203–211.CrossRefPubMed
37.
go back to reference Chang, S., McKinsey, T. A., Zhang, C. L., Richardson, J. A., Hill, J. A., & Olson, E. N. (2004). Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Molecular and Cellular Biology, 24(19), 8467–8476.CrossRefPubMedPubMedCentral Chang, S., McKinsey, T. A., Zhang, C. L., Richardson, J. A., Hill, J. A., & Olson, E. N. (2004). Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Molecular and Cellular Biology, 24(19), 8467–8476.CrossRefPubMedPubMedCentral
39.
go back to reference Rishikof, D. C., Ricupero, D. A., Liu, H., & Goldstein, R. H. (2004). Phenylbutyrate decreases type I collagen production in human lung fibroblasts. Journal of Cellular Biochemistry, 91(4), 740–748.CrossRefPubMed Rishikof, D. C., Ricupero, D. A., Liu, H., & Goldstein, R. H. (2004). Phenylbutyrate decreases type I collagen production in human lung fibroblasts. Journal of Cellular Biochemistry, 91(4), 740–748.CrossRefPubMed
40.
go back to reference Shapiro, L. M., & Sugden, P. H. (1996). Left ventricular hypertrophy. In D. G. Julian, A. J. Camm, K. M. Fox, R. T. C. Hall, & P. A. Poole-Wilson (Eds.), Diseases of the heart (2nd ed.). London: Saunders. Shapiro, L. M., & Sugden, P. H. (1996). Left ventricular hypertrophy. In D. G. Julian, A. J. Camm, K. M. Fox, R. T. C. Hall, & P. A. Poole-Wilson (Eds.), Diseases of the heart (2nd ed.). London: Saunders.
41.
go back to reference Davila-Roman, V. G., Vedala, G., Herrero, P., de las Fuentes, L., Rogers, J. G., Kelly, D. P., et al. (2002). Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. Journal of the American College of Cardiology, 40(2), 271–277.CrossRefPubMed Davila-Roman, V. G., Vedala, G., Herrero, P., de las Fuentes, L., Rogers, J. G., Kelly, D. P., et al. (2002). Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. Journal of the American College of Cardiology, 40(2), 271–277.CrossRefPubMed
42.
go back to reference Cesselli, D., Jakoniuk, I., Barlucchi, L., Beltrami, A. P., Hintze, T. H., Nadal-GInard, B., et al. (2001). Oxidative stress-mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circulation Research, 89(3), 279–286.CrossRefPubMed Cesselli, D., Jakoniuk, I., Barlucchi, L., Beltrami, A. P., Hintze, T. H., Nadal-GInard, B., et al. (2001). Oxidative stress-mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circulation Research, 89(3), 279–286.CrossRefPubMed
43.
go back to reference Anan, R., Nakagawa, M., Miyata, M., Higuchi, I., Nakao, S., Suehara, M., et al. (1995). Cardiac involvement in mitochondrial diseases: A study on 17 patients with documented mitochondrial DNA defects. Circulation, 91(4), 955–961.CrossRefPubMed Anan, R., Nakagawa, M., Miyata, M., Higuchi, I., Nakao, S., Suehara, M., et al. (1995). Cardiac involvement in mitochondrial diseases: A study on 17 patients with documented mitochondrial DNA defects. Circulation, 91(4), 955–961.CrossRefPubMed
44.
go back to reference Candido, E. P., Reeves, R., & Davie, J. R. (1978). Sodium butyrate inhibits histone deacetylation in cultured cells. Cell, 14(1), 105–113.CrossRefPubMed Candido, E. P., Reeves, R., & Davie, J. R. (1978). Sodium butyrate inhibits histone deacetylation in cultured cells. Cell, 14(1), 105–113.CrossRefPubMed
45.
go back to reference Boffa, L. C., Vidali, G., Mann, R. S., & Allfrey, V. G. (1978). Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. Journal of Biological Chemistry, 253(10), 3364–3366.PubMed Boffa, L. C., Vidali, G., Mann, R. S., & Allfrey, V. G. (1978). Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. Journal of Biological Chemistry, 253(10), 3364–3366.PubMed
46.
go back to reference Davie, J. R. (2003). Inhibition of histone deacetylase activity by butyrate. Journal of Nutrition, 133(7 Suppl), 2485S–2493S.PubMed Davie, J. R. (2003). Inhibition of histone deacetylase activity by butyrate. Journal of Nutrition, 133(7 Suppl), 2485S–2493S.PubMed
47.
go back to reference Kook, H., Lepore, J. J., Gitler, A. D., Lu, M. M., Wing-Man Yung, W., Mackay, J., et al. (2003). Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. The Journal of Clinical Investigation, 112(6), 863–871.CrossRefPubMedPubMedCentral Kook, H., Lepore, J. J., Gitler, A. D., Lu, M. M., Wing-Man Yung, W., Mackay, J., et al. (2003). Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. The Journal of Clinical Investigation, 112(6), 863–871.CrossRefPubMedPubMedCentral
48.
go back to reference Trivedi, C. M., Luo, Y., Yin, Z., Zhang, M., Zhu, W., Wang, T., et al. (2007). Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3β activity. Nature Medicine, 13(3), 324–331.CrossRefPubMed Trivedi, C. M., Luo, Y., Yin, Z., Zhang, M., Zhu, W., Wang, T., et al. (2007). Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3β activity. Nature Medicine, 13(3), 324–331.CrossRefPubMed
Metadata
Title
Sodium Butyrate Controls Cardiac Hypertrophy in Experimental Models of Rats
Author
Bhoomika M. Patel
Publication date
01-02-2018
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 1/2018
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-017-9406-2

Other articles of this Issue 1/2018

Cardiovascular Toxicology 1/2018 Go to the issue