Skip to main content
Top
Published in: Cardiovascular Toxicology 4/2013

01-12-2013

Interaction Between AT1 Receptor and NF-κB in Hypothalamic Paraventricular Nucleus Contributes to Oxidative Stress and Sympathoexcitation by Modulating Neurotransmitters in Heart Failure

Authors: Xiao-Jing Yu, Yu-Ping Suo, Jie Qi, Qing Yang, Hui-Hua Li, Dong-Mei Zhang, Qiu-Yue Yi, Jian Zhang, Guo-Qing Zhu, Zhiming Zhu, Yu-Ming Kang

Published in: Cardiovascular Toxicology | Issue 4/2013

Login to get access

Abstract

Angiotensin II type 1 receptor (AT1-R) and nuclear factor-kappaB (NF-κB) in the paraventricular nucleus (PVN) play important roles in heart failure (HF); however, the central mechanisms by which AT1-R and NF-κB contribute to sympathoexcitation in HF are yet unclear. In this study, we determined whether interaction between AT1-R and NF-κB in the PVN modulates neurotransmitters and contributes to NAD(P)H oxidase-dependent oxidative stress and sympathoexcitation in HF. Rats were implanted with bilateral PVN cannulae and subjected to coronary artery ligation or sham surgery (SHAM). Subsequently, animals were treated for 4 weeks through bilateral PVN infusion with either vehicle or losartan (LOS, 10 μg/h), an AT1-R antagonist; or pyrrolidine dithiocarbamate (PDTC, 5 μg/h), a NF-κB inhibitor via osmotic minipump. Myocardial infarction (MI) rats had higher levels of glutamate (Glu), norepinephrine (NE) and NF-κB p65 activity, lower levels of gamma-aminobutyric acid (GABA), and more positive neurons for phosphorylated IKKβ and gp91phox (a subunit of NAD(P)H oxidase) in the PVN when compared to SHAM rats. MI rats also had higher levels of renal sympathetic nerve activity (RSNA) and plasma proinflammatory cytokines (PICs), NE and epinephrine. PVN infusions of LOS or PDTC attenuated the decreases in GABA and the increases in gp91phox, NF-κB activity, Glu and NE, in the PVN of HF rats. PVN infusions of LOS or PDTC also attenuated the increases in RSNA and plasma PICs, NE and epinephrine in MI rats. These findings suggest that interaction between AT1 receptor and NF-κB in the PVN contributes to oxidative stress and sympathoexcitation by modulating neurotransmitters in heart failure.
Literature
1.
go back to reference Dampney, R. A., Fontes, M. A., Hirooka, Y., Horiuchi, J., Potts, P. D., & Tagawa, T. (2002). Role of angiotensin II receptors in the regulation of vasomotor neurons in the ventrolateral medulla. Clinical and Experimental Pharmacology and Physiology, 29, 467–472.PubMedCrossRef Dampney, R. A., Fontes, M. A., Hirooka, Y., Horiuchi, J., Potts, P. D., & Tagawa, T. (2002). Role of angiotensin II receptors in the regulation of vasomotor neurons in the ventrolateral medulla. Clinical and Experimental Pharmacology and Physiology, 29, 467–472.PubMedCrossRef
2.
go back to reference Zhu, G. Q., Gao, L., Li, Y., Patel, K. P., Zucker, I. H., & Wang, W. (2004). AT1 receptor mRNA antisense normalizes enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 287, H1828–H1835.PubMedCrossRef Zhu, G. Q., Gao, L., Li, Y., Patel, K. P., Zucker, I. H., & Wang, W. (2004). AT1 receptor mRNA antisense normalizes enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 287, H1828–H1835.PubMedCrossRef
3.
go back to reference Francis, J., Wei, S. G., Weiss, R. M., & Felder, R. B. (2004). Brain angiotensin-converting enzyme activity and autonomic regulation in heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 287, H2138–H2146.PubMedCrossRef Francis, J., Wei, S. G., Weiss, R. M., & Felder, R. B. (2004). Brain angiotensin-converting enzyme activity and autonomic regulation in heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 287, H2138–H2146.PubMedCrossRef
4.
go back to reference Wang, H., Huang, B. S., Ganten, D., & Leenen, F. H. (2004). Prevention of sympathetic and cardiac dysfunction after myocardial infarction in transgenic rats deficient in brain angiotensinogen. Circulation Research, 94, 843–849.PubMedCrossRef Wang, H., Huang, B. S., Ganten, D., & Leenen, F. H. (2004). Prevention of sympathetic and cardiac dysfunction after myocardial infarction in transgenic rats deficient in brain angiotensinogen. Circulation Research, 94, 843–849.PubMedCrossRef
5.
go back to reference Zhang, Z. H., Wei, S. G., Francis, J., & Felder, R. B. (2003). Cardiovascular and renal sympathetic activation by blood-borne TNF-alpha in rat: The role of central prostaglandins. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 284, R916–R927.PubMed Zhang, Z. H., Wei, S. G., Francis, J., & Felder, R. B. (2003). Cardiovascular and renal sympathetic activation by blood-borne TNF-alpha in rat: The role of central prostaglandins. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 284, R916–R927.PubMed
6.
go back to reference Agarwal, D., Welsch, M. A., Keller, J. N., & Francis, J. (2011). Chronic exercise modulates RAS components and improves balance between pro- and anti-inflammatory cytokines in the brain of SHR. Basic Research in Cardiology, 106, 1069–1085.PubMedCrossRef Agarwal, D., Welsch, M. A., Keller, J. N., & Francis, J. (2011). Chronic exercise modulates RAS components and improves balance between pro- and anti-inflammatory cytokines in the brain of SHR. Basic Research in Cardiology, 106, 1069–1085.PubMedCrossRef
7.
go back to reference Chappell, D., Hofmann-Kiefer, K., Jacob, M., Rehm, M., Briegel, J., Welsch, U., et al. (2009). TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Research in Cardiology, 104, 78–89.PubMedCrossRef Chappell, D., Hofmann-Kiefer, K., Jacob, M., Rehm, M., Briegel, J., Welsch, U., et al. (2009). TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Research in Cardiology, 104, 78–89.PubMedCrossRef
8.
go back to reference Chorianopoulos, E., Heger, T., Lutz, M., Frank, D., Bea, F., Katus, H. A., et al. (2010). FGF-inducible 14-kDa protein (Fn14) is regulated via the RhoA/ROCK kinase pathway in cardiomyocytes and mediates nuclear factor-kappaB activation by TWEAK. Basic Research in Cardiology, 105, 301–313.PubMedCrossRef Chorianopoulos, E., Heger, T., Lutz, M., Frank, D., Bea, F., Katus, H. A., et al. (2010). FGF-inducible 14-kDa protein (Fn14) is regulated via the RhoA/ROCK kinase pathway in cardiomyocytes and mediates nuclear factor-kappaB activation by TWEAK. Basic Research in Cardiology, 105, 301–313.PubMedCrossRef
9.
go back to reference Lacerda, L., McCarthy, J., Mungly, S. F., Lynn, E. G., Sack, M. N., Opie, L. H., et al. (2010). TNFα protects cardiac mitochondria independently of its cell surface receptors. Basic Research in Cardiology, 105, 751–762.PubMedCrossRef Lacerda, L., McCarthy, J., Mungly, S. F., Lynn, E. G., Sack, M. N., Opie, L. H., et al. (2010). TNFα protects cardiac mitochondria independently of its cell surface receptors. Basic Research in Cardiology, 105, 751–762.PubMedCrossRef
10.
go back to reference Li, S., Zhong, S., Zeng, K., Luo, Y., Zhang, F., Sun, X., et al. (2010). Blockade of NF-kappaB by pyrrolidine dithiocarbamate attenuates myocardial inflammatory response and ventricular dysfunction following coronary microembolization induced by homologous microthrombi in rats. Basic Research in Cardiology, 105, 139–150.PubMedCrossRef Li, S., Zhong, S., Zeng, K., Luo, Y., Zhang, F., Sun, X., et al. (2010). Blockade of NF-kappaB by pyrrolidine dithiocarbamate attenuates myocardial inflammatory response and ventricular dysfunction following coronary microembolization induced by homologous microthrombi in rats. Basic Research in Cardiology, 105, 139–150.PubMedCrossRef
11.
go back to reference Zhang, C., Wu, J., Xu, X., Potter, B. J., & Gao, X. (2010). Direct relationship between levels of TNF-alpha expression and endothelial dysfunction in reperfusion injury. Basic Research in Cardiology, 105, 453–464.PubMedCrossRef Zhang, C., Wu, J., Xu, X., Potter, B. J., & Gao, X. (2010). Direct relationship between levels of TNF-alpha expression and endothelial dysfunction in reperfusion injury. Basic Research in Cardiology, 105, 453–464.PubMedCrossRef
12.
go back to reference Valen, G., Yan, Z. Q., & Hansson, G. K. (2001). Nuclear factor kappa-B and the heart. Journal of the American College of Cardiology, 38, 307–314.PubMedCrossRef Valen, G., Yan, Z. Q., & Hansson, G. K. (2001). Nuclear factor kappa-B and the heart. Journal of the American College of Cardiology, 38, 307–314.PubMedCrossRef
13.
go back to reference Bhakar, A. L., Tannis, L. L., Zeindler, C., Russo, M. P., Jobin, C., Park, D. S., et al. (2002). Constitutive NF-κB activity is required for central neuron survival. Journal of Neuroscience, 22, 8466–8475.PubMed Bhakar, A. L., Tannis, L. L., Zeindler, C., Russo, M. P., Jobin, C., Park, D. S., et al. (2002). Constitutive NF-κB activity is required for central neuron survival. Journal of Neuroscience, 22, 8466–8475.PubMed
14.
go back to reference Gloire, G., Legrand-Poels, S., & Piette, J. (2006). NF-kappaB activation by reactive oxygen species: Fifteen years later. Biochemical Pharmacology, 72, 1493–1505.PubMedCrossRef Gloire, G., Legrand-Poels, S., & Piette, J. (2006). NF-kappaB activation by reactive oxygen species: Fifteen years later. Biochemical Pharmacology, 72, 1493–1505.PubMedCrossRef
15.
go back to reference Kang, Y. M., Ma, Y., Elks, C., Zheng, J. P., Yang, Z. M., & Francis, J. (2008). Cross-talk between cytokines and renin-angiotensin in hypothalamic paraventricular nucleus in heart failure: Role of nuclear factor-kappaB. Cardiovascular Research, 79, 671–678.PubMedCrossRef Kang, Y. M., Ma, Y., Elks, C., Zheng, J. P., Yang, Z. M., & Francis, J. (2008). Cross-talk between cytokines and renin-angiotensin in hypothalamic paraventricular nucleus in heart failure: Role of nuclear factor-kappaB. Cardiovascular Research, 79, 671–678.PubMedCrossRef
16.
go back to reference Kang, Y. M., He, R. L., Yang, L. M., Qin, D. N., Guggilam, A., Elks, C., et al. (2009). Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovascular Research, 83, 737–746.PubMedCrossRef Kang, Y. M., He, R. L., Yang, L. M., Qin, D. N., Guggilam, A., Elks, C., et al. (2009). Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovascular Research, 83, 737–746.PubMedCrossRef
17.
go back to reference Francis, J., MohanKumar, S. M., & MohanKumar, P. S. (2000). Correlations of norepinephrine release in the paraventricular nucleus with plasma corticosterone and leptin after systemic lipopolysaccharide: Blockade by soluble IL-1 receptor. Brain Research, 867, 180–187.PubMedCrossRef Francis, J., MohanKumar, S. M., & MohanKumar, P. S. (2000). Correlations of norepinephrine release in the paraventricular nucleus with plasma corticosterone and leptin after systemic lipopolysaccharide: Blockade by soluble IL-1 receptor. Brain Research, 867, 180–187.PubMedCrossRef
18.
go back to reference Paxinos, G., Watson, C. R., & Emson, P. C. (1986). The rat brain in stereotaxic coordinates. San Diego, CA: Academic. Paxinos, G., Watson, C. R., & Emson, P. C. (1986). The rat brain in stereotaxic coordinates. San Diego, CA: Academic.
19.
go back to reference Kang, Y. M., Zhang, Z. H., Johnson, R. F., Yu, Y., Beltz, T., Johnson, A. K., et al. (2006). Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circulation Research, 99, 758–766.PubMedCrossRef Kang, Y. M., Zhang, Z. H., Johnson, R. F., Yu, Y., Beltz, T., Johnson, A. K., et al. (2006). Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circulation Research, 99, 758–766.PubMedCrossRef
20.
go back to reference Francis, J., Weiss, R. M., Wei, S. G., Johnson, A. K., Beltz, T. G., Zimmerman, K., et al. (2001). Central mineralocorticoid receptor blockade improves volume regulation and reduces sympathetic drive in heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 281, H2241–H2251.PubMed Francis, J., Weiss, R. M., Wei, S. G., Johnson, A. K., Beltz, T. G., Zimmerman, K., et al. (2001). Central mineralocorticoid receptor blockade improves volume regulation and reduces sympathetic drive in heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 281, H2241–H2251.PubMed
21.
go back to reference Nagura, S., Sakagami, T., Kakiichi, A., Yoshimoto, M., & Miki, K. (2004). Acute shifts in baroreflex control of renal sympathetic nerve activity induced by REM sleep and grooming in rats. Journal of Physiology, 558, 975–983.PubMedCrossRef Nagura, S., Sakagami, T., Kakiichi, A., Yoshimoto, M., & Miki, K. (2004). Acute shifts in baroreflex control of renal sympathetic nerve activity induced by REM sleep and grooming in rats. Journal of Physiology, 558, 975–983.PubMedCrossRef
22.
go back to reference Guggilam, A., Haque, M., Kerut, E. K., McIlwain, E., Lucchesi, P., Seghal, I., et al. (2007). TNF-alpha blockade decreases oxidative stress in the paraventricular nucleus and attenuates sympathoexcitation in heart failure rats. American Journal of Physiology-Heart and Circulatory Physiology, 293, H599–H609.PubMedCrossRef Guggilam, A., Haque, M., Kerut, E. K., McIlwain, E., Lucchesi, P., Seghal, I., et al. (2007). TNF-alpha blockade decreases oxidative stress in the paraventricular nucleus and attenuates sympathoexcitation in heart failure rats. American Journal of Physiology-Heart and Circulatory Physiology, 293, H599–H609.PubMedCrossRef
23.
go back to reference Liu, J. L., Irvine, S., Reid, I. A., Patel, K. P., & Zucker, I. H. (2000). Chronic exercise reduces sympathetic nerve activity in rabbits with pacing-induced heart failure: A role for angiotensin II. Circulation, 102, 1854–1862.PubMedCrossRef Liu, J. L., Irvine, S., Reid, I. A., Patel, K. P., & Zucker, I. H. (2000). Chronic exercise reduces sympathetic nerve activity in rabbits with pacing-induced heart failure: A role for angiotensin II. Circulation, 102, 1854–1862.PubMedCrossRef
24.
go back to reference Kang, Y. M., Wang, Y., Yang, L. M., Elks, C., Cardinale, J., Yu, X. J., et al. (2010). TNF-α in hypothalamic paraventricular nucleus contributes to sympathoexcitation in heart failure by modulating AT1 receptor and neurotransmitters. Tohoku Journal of Experimental Medicine, 222, 251–263.PubMedCrossRef Kang, Y. M., Wang, Y., Yang, L. M., Elks, C., Cardinale, J., Yu, X. J., et al. (2010). TNF-α in hypothalamic paraventricular nucleus contributes to sympathoexcitation in heart failure by modulating AT1 receptor and neurotransmitters. Tohoku Journal of Experimental Medicine, 222, 251–263.PubMedCrossRef
25.
go back to reference MohanKumar, S. M., MohanKumar, P. S., & Quadri, S. K. (1998). Specificity of interleukin-1beta-induced changes in monoamine concentrations in hypothalamic nuclei: Blockade by interleukin-1 receptor antagonist. Brain Research Bulletin, 47, 29–34.PubMedCrossRef MohanKumar, S. M., MohanKumar, P. S., & Quadri, S. K. (1998). Specificity of interleukin-1beta-induced changes in monoamine concentrations in hypothalamic nuclei: Blockade by interleukin-1 receptor antagonist. Brain Research Bulletin, 47, 29–34.PubMedCrossRef
26.
go back to reference Barber, M., Kasturi, B. S., Austin, M. E., Patel, K. P., MohanKumar, S. M., & MohanKumar, P. S. (2003). Diabetes-induced neuroendocrine changes in rats: Role of brain monoamines, insulin and leptin. Brain Research, 964, 128–135.PubMedCrossRef Barber, M., Kasturi, B. S., Austin, M. E., Patel, K. P., MohanKumar, S. M., & MohanKumar, P. S. (2003). Diabetes-induced neuroendocrine changes in rats: Role of brain monoamines, insulin and leptin. Brain Research, 964, 128–135.PubMedCrossRef
27.
go back to reference Yang, L. M., Hu, B., Xia, Y. H., Zhang, B. L., & Zhao, H. (2008). Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus. Behavioural Brain Research, 188, 84–90.PubMedCrossRef Yang, L. M., Hu, B., Xia, Y. H., Zhang, B. L., & Zhao, H. (2008). Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus. Behavioural Brain Research, 188, 84–90.PubMedCrossRef
28.
go back to reference Guggilam, A., Patel, K. P., Haque, M., Ebenezer, P. J., Kapusta, D. R., & Francis, J. (2008). Cytokine blockade attenuates sympathoexcitation in heart failure: Cross-talk between nNOS, AT-1R and cytokines in the hypothalamic paraventricular nucleus. European Journal of Heart Failure, 10, 625–634.PubMedCrossRef Guggilam, A., Patel, K. P., Haque, M., Ebenezer, P. J., Kapusta, D. R., & Francis, J. (2008). Cytokine blockade attenuates sympathoexcitation in heart failure: Cross-talk between nNOS, AT-1R and cytokines in the hypothalamic paraventricular nucleus. European Journal of Heart Failure, 10, 625–634.PubMedCrossRef
29.
go back to reference Kang, Y. M., Zhang, A. Q., Zhao, X. F., Cardinale, J. P., Elks, C., Cao, X. M., et al. (2011). Paraventricular nucleus corticotrophin releasing hormone contributes to sympathoexcitation via interaction with neurotransmitters in heart failure. Basic Research in Cardiology, 106, 473–483.PubMedCrossRef Kang, Y. M., Zhang, A. Q., Zhao, X. F., Cardinale, J. P., Elks, C., Cao, X. M., et al. (2011). Paraventricular nucleus corticotrophin releasing hormone contributes to sympathoexcitation via interaction with neurotransmitters in heart failure. Basic Research in Cardiology, 106, 473–483.PubMedCrossRef
30.
go back to reference Qi, J., Zhang, D. M., Suo, Y. P., Song, X. A., Yu, X. J., Elks, C., et al. (2013). Renin-Angiotensin System Modulates Neurotransmitters in the Paraventricular Nucleus and Contributes to Angiotensin II-Induced Hypertensive Response. Cardiovascular Toxicology, 13, 48–54.PubMedCrossRef Qi, J., Zhang, D. M., Suo, Y. P., Song, X. A., Yu, X. J., Elks, C., et al. (2013). Renin-Angiotensin System Modulates Neurotransmitters in the Paraventricular Nucleus and Contributes to Angiotensin II-Induced Hypertensive Response. Cardiovascular Toxicology, 13, 48–54.PubMedCrossRef
31.
go back to reference Zheng, M., Kang, Y. M., Liu, W., Zang, W. J., Bao, C. Y., & Qin, D. N. (2012). Inhibition of cyclooxygenase-2 reduces hypothalamic excitation in rats with adriamycin-induced heart failure. PLoS ONE, 7, e48771.PubMedCrossRef Zheng, M., Kang, Y. M., Liu, W., Zang, W. J., Bao, C. Y., & Qin, D. N. (2012). Inhibition of cyclooxygenase-2 reduces hypothalamic excitation in rats with adriamycin-induced heart failure. PLoS ONE, 7, e48771.PubMedCrossRef
32.
go back to reference Kang, Y. M., Ma, Y., Zheng, J. P., Elks, C., Sriramula, S., Yang, Z. M., et al. (2009). Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovascular Research, 82, 503–512.PubMedCrossRef Kang, Y. M., Ma, Y., Zheng, J. P., Elks, C., Sriramula, S., Yang, Z. M., et al. (2009). Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovascular Research, 82, 503–512.PubMedCrossRef
33.
go back to reference Kang, Y. M., Zhang, Z. H., Xue, B., Weiss, R. M., & Felder, R. B. (2008). Inhibition of brain proinflammatory cytokine synthesis reduces hypothalamic excitation in rats with ischemia-induced heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 295, H227–H236.PubMedCrossRef Kang, Y. M., Zhang, Z. H., Xue, B., Weiss, R. M., & Felder, R. B. (2008). Inhibition of brain proinflammatory cytokine synthesis reduces hypothalamic excitation in rats with ischemia-induced heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 295, H227–H236.PubMedCrossRef
34.
go back to reference Aguilera, G., Young, W. S., Kiss, A., & Bathia, A. (1995). Direct regulation of hypothalamic corticotropin-releasing-hormone neurons by angiotensin II. Neuroendocrinology, 61, 437–444.PubMedCrossRef Aguilera, G., Young, W. S., Kiss, A., & Bathia, A. (1995). Direct regulation of hypothalamic corticotropin-releasing-hormone neurons by angiotensin II. Neuroendocrinology, 61, 437–444.PubMedCrossRef
35.
go back to reference Jezova, D., Ochedalski, T., Kiss, A., & Aguilera, G. (1998). Brain angiotensin II modulates sympathoadrenal and hypothalamic pituitary adrenocortical activation during stress. Journal of Neuroendocrinology, 10, 67–72.PubMedCrossRef Jezova, D., Ochedalski, T., Kiss, A., & Aguilera, G. (1998). Brain angiotensin II modulates sympathoadrenal and hypothalamic pituitary adrenocortical activation during stress. Journal of Neuroendocrinology, 10, 67–72.PubMedCrossRef
36.
go back to reference Schwarz, M., Schmitt, T., Pergande, G., & Block, F. (1995). N-methyl-D-aspartate and alpha 2-adrenergic mechanisms are involved in the depressant action of flupirtine on spinal reflexes in rats. European Journal of Pharmacology, 276, 247–255.PubMedCrossRef Schwarz, M., Schmitt, T., Pergande, G., & Block, F. (1995). N-methyl-D-aspartate and alpha 2-adrenergic mechanisms are involved in the depressant action of flupirtine on spinal reflexes in rats. European Journal of Pharmacology, 276, 247–255.PubMedCrossRef
37.
go back to reference Swanson, L. W., & Sawchenko, P. E. (1983). Hypothalamic integration: Organization of the paraventricular and supraoptic nuclei. Annual Review of Neuroscience, 6, 269–324.PubMedCrossRef Swanson, L. W., & Sawchenko, P. E. (1983). Hypothalamic integration: Organization of the paraventricular and supraoptic nuclei. Annual Review of Neuroscience, 6, 269–324.PubMedCrossRef
38.
go back to reference Zucker, I. H. (2006). Novel mechanisms of sympathetic regulation in chronic heart failure. Hypertension, 48, 1005–1011.PubMedCrossRef Zucker, I. H. (2006). Novel mechanisms of sympathetic regulation in chronic heart failure. Hypertension, 48, 1005–1011.PubMedCrossRef
39.
go back to reference Cowling, R. T., Gurantz, D., Peng, J., Dillmann, W. H., & Greenberg, B. H. (2002). Transcription factor NF-kappa B is necessary for up-regulation of type 1 angiotensin II receptor mRNA in rat cardiac fibroblasts treated with tumor necrosis factor-alpha or interleukin-1 beta. Journal of Biological Chemistry, 277, 5719–5724.PubMedCrossRef Cowling, R. T., Gurantz, D., Peng, J., Dillmann, W. H., & Greenberg, B. H. (2002). Transcription factor NF-kappa B is necessary for up-regulation of type 1 angiotensin II receptor mRNA in rat cardiac fibroblasts treated with tumor necrosis factor-alpha or interleukin-1 beta. Journal of Biological Chemistry, 277, 5719–5724.PubMedCrossRef
40.
go back to reference Chen, Z. J., Parent, L., & Maniatis, T. (1996). Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell, 84, 853–862.PubMedCrossRef Chen, Z. J., Parent, L., & Maniatis, T. (1996). Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell, 84, 853–862.PubMedCrossRef
41.
go back to reference van den, B. R., Haenen, G. R., van den, B. H., & Bast, A. (2001). Transcription factor NF-κB as a potential biomarker for oxidative stress. British Journal of Nutrition, 86, S121–S127.CrossRef van den, B. R., Haenen, G. R., van den, B. H., & Bast, A. (2001). Transcription factor NF-κB as a potential biomarker for oxidative stress. British Journal of Nutrition, 86, S121–S127.CrossRef
42.
go back to reference Swanson, L. W., & Sawchenko, P. E. (1980). Paraventricular nucleus: A site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology, 31, 410–417.PubMedCrossRef Swanson, L. W., & Sawchenko, P. E. (1980). Paraventricular nucleus: A site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology, 31, 410–417.PubMedCrossRef
43.
go back to reference Hermes, M. L., Coderre, E. M., Buijs, R. M., & Renaud, L. P. (1996). GABA and glutamate mediate rapid neurotransmission from suprachiasmatic nucleus to hypothalamic paraventricular nucleus in rat. Journal of Physiology, 496, 749–757.PubMed Hermes, M. L., Coderre, E. M., Buijs, R. M., & Renaud, L. P. (1996). GABA and glutamate mediate rapid neurotransmission from suprachiasmatic nucleus to hypothalamic paraventricular nucleus in rat. Journal of Physiology, 496, 749–757.PubMed
44.
go back to reference Tasker, J. G., Boudaba, C., & Schrader, L. A. (1998). Local glutamatergic and GABAergic synaptic circuits and metabotropic glutamate receptors in the hypothalamic paraventricular and supraoptic nuclei. Advances in Experimental Medicine and Biology, 449, 117–121.PubMedCrossRef Tasker, J. G., Boudaba, C., & Schrader, L. A. (1998). Local glutamatergic and GABAergic synaptic circuits and metabotropic glutamate receptors in the hypothalamic paraventricular and supraoptic nuclei. Advances in Experimental Medicine and Biology, 449, 117–121.PubMedCrossRef
45.
go back to reference Antonaccio, M. J., Kerwin, L., & Taylor, D. G. (1978). Reductions in blood pressure, heart rate and renal sympathetic nerve discharge in cats after the central administration of muscimol, a GABA agonist. Neuropharmacology, 17, 783–791.PubMedCrossRef Antonaccio, M. J., Kerwin, L., & Taylor, D. G. (1978). Reductions in blood pressure, heart rate and renal sympathetic nerve discharge in cats after the central administration of muscimol, a GABA agonist. Neuropharmacology, 17, 783–791.PubMedCrossRef
46.
go back to reference Brennan, T. J., Haywood, J. R., & Ticku, M. K. (1983). GABA receptor binding and hemodynamic responses to ICV GABA in adult spontaneously hypertensive rats. Life Sciences, 33, 701–709.PubMedCrossRef Brennan, T. J., Haywood, J. R., & Ticku, M. K. (1983). GABA receptor binding and hemodynamic responses to ICV GABA in adult spontaneously hypertensive rats. Life Sciences, 33, 701–709.PubMedCrossRef
47.
go back to reference Arabia, A. M., Catapano, L., Storini, C., Perego, C., De Luigi, A., Head, G. A., et al. (2002). Impaired central stress-induced release of noradrenaline in rats with heart failure: A microdialysis study. Neuroscience, 114, 591–599.PubMedCrossRef Arabia, A. M., Catapano, L., Storini, C., Perego, C., De Luigi, A., Head, G. A., et al. (2002). Impaired central stress-induced release of noradrenaline in rats with heart failure: A microdialysis study. Neuroscience, 114, 591–599.PubMedCrossRef
48.
go back to reference Basu, S., Sinha, S. K., Shao, Q., Ganguly, P. K., & Dhalla, N. S. (1996). Neuropeptide Y modulation of sympathetic activity in myocardial infarction. Journal of the American College of Cardiology, 27, 1796–1803.PubMedCrossRef Basu, S., Sinha, S. K., Shao, Q., Ganguly, P. K., & Dhalla, N. S. (1996). Neuropeptide Y modulation of sympathetic activity in myocardial infarction. Journal of the American College of Cardiology, 27, 1796–1803.PubMedCrossRef
49.
go back to reference Chen, Q. H., Haywood, J. R., & Toney, G. M. (2003). Sympathoexcitation by PVN-injected bicuculline requires activation of excitatory amino acid receptors. Hypertension, 42, 725–731.PubMedCrossRef Chen, Q. H., Haywood, J. R., & Toney, G. M. (2003). Sympathoexcitation by PVN-injected bicuculline requires activation of excitatory amino acid receptors. Hypertension, 42, 725–731.PubMedCrossRef
50.
go back to reference Cole, R. L., & Sawchenko, P. E. (2002). Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of the hypothalamus. Journal of Neuroscience, 22, 959–969.PubMed Cole, R. L., & Sawchenko, P. E. (2002). Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of the hypothalamus. Journal of Neuroscience, 22, 959–969.PubMed
51.
go back to reference Zhang, K., Li, Y. F., & Patel, K. P. (2002). Reduced endogenous GABA-mediated inhibition in the PVN on renal nerve discharge in rats with heart failure. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 282, R1006–R1015.PubMed Zhang, K., Li, Y. F., & Patel, K. P. (2002). Reduced endogenous GABA-mediated inhibition in the PVN on renal nerve discharge in rats with heart failure. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 282, R1006–R1015.PubMed
52.
go back to reference Kleiber, A. C., Zheng, H., Schultz, H. D., Peuler, J. D., & Patel, K. P. (2008). Exercise training normalizes enhanced glutamate-mediated sympathetic activation from the PVN in heart failure. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 294, R1863–R1872.PubMedCrossRef Kleiber, A. C., Zheng, H., Schultz, H. D., Peuler, J. D., & Patel, K. P. (2008). Exercise training normalizes enhanced glutamate-mediated sympathetic activation from the PVN in heart failure. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 294, R1863–R1872.PubMedCrossRef
53.
go back to reference Patel, K. P. (2000). Role of paraventricular nucleus in mediating sympathetic outflow in heart failure. Heart Failure Reviews, 5, 73–86.PubMedCrossRef Patel, K. P. (2000). Role of paraventricular nucleus in mediating sympathetic outflow in heart failure. Heart Failure Reviews, 5, 73–86.PubMedCrossRef
54.
go back to reference Dampney, R. A., Horiuchi, J., Killinger, S., Sheriff, M. J., Tan, P. S., & McDowall, L. M. (2005). Long-term regulation of arterial blood pressure by hypothalamic nuclei: Some critical questions. Clinical and Experimental Pharmacology and Physiology, 32, 419–425.PubMedCrossRef Dampney, R. A., Horiuchi, J., Killinger, S., Sheriff, M. J., Tan, P. S., & McDowall, L. M. (2005). Long-term regulation of arterial blood pressure by hypothalamic nuclei: Some critical questions. Clinical and Experimental Pharmacology and Physiology, 32, 419–425.PubMedCrossRef
Metadata
Title
Interaction Between AT1 Receptor and NF-κB in Hypothalamic Paraventricular Nucleus Contributes to Oxidative Stress and Sympathoexcitation by Modulating Neurotransmitters in Heart Failure
Authors
Xiao-Jing Yu
Yu-Ping Suo
Jie Qi
Qing Yang
Hui-Hua Li
Dong-Mei Zhang
Qiu-Yue Yi
Jian Zhang
Guo-Qing Zhu
Zhiming Zhu
Yu-Ming Kang
Publication date
01-12-2013
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 4/2013
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-013-9219-x

Other articles of this Issue 4/2013

Cardiovascular Toxicology 4/2013 Go to the issue