Skip to main content
Top
Published in: Cardiovascular Toxicology 2/2007

01-06-2007

Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis

Author: Kendall B. Wallace

Published in: Cardiovascular Toxicology | Issue 2/2007

Login to get access

Abstract

Adriamycin (doxorubicin) is a potent and broad-spectrum antineoplastic agent, the clinical utility of which is limited by the development of a cumulative and irreversible cardiomyopathy. Although the drug affects numerous structures in different cell types, the mitochondrion appears to a principal subcellular target for the development of cardiomyopathy. This review describes evidence demonstrating that adriamycin redox cycles on complex I of the mitochondrial electron transport chain to liberate highly reactive free radical species of molecular oxygen. The primary effect of adriamycin on mitochondrial performance is the interference with oxidative phosphorylation and inhibition of ATP synthesis. Free radicals liberated from adriamycin redox cycling are thought to be responsible for many of the secondary effects of adriamycin, including lipid peroxidation, the oxidation of both proteins and DNA, and the depletion of glutathione and pyridine nucleotide reducing equivalents in the cell. It is this altered redox status that is believed to cause assorted changes in intracellular regulation, including the induction of the mitochondrial permeability transition and complete loss of mitochondrial integrity and function. Associated with this is the interference with mitochondrial-mediated cell calcium signaling, which is implicated as essential to the capacity of mitochondria to participate in bioenergetic regulation in response to external signals reflecting changes in metabolic demand. If taken to an extreme, this loss of mitochondrial plasticity may manifest in the liberation of signals mediating either oncotic or necrotic cell death, further perpetuating the cardiac failure associated with adriamycin-induced mitochondrial cardiomyopathy.
Literature
1.
go back to reference Lefrak, E. A., Pitha, J., Rosenheim, S., & Gottlieb J. A. (1973). A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer, 32(2), 302–314.PubMedCrossRef Lefrak, E. A., Pitha, J., Rosenheim, S., & Gottlieb J. A. (1973). A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer, 32(2), 302–314.PubMedCrossRef
2.
go back to reference Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57(7), 727–741.PubMedCrossRef Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57(7), 727–741.PubMedCrossRef
3.
go back to reference Ferrans, V. J., Clark, J. R., Zhang, J., Yu, Z. X., & Herman, E. H. (1997). Pathogenesis and prevention of doxorubicin cardiomyopathy. Tsitologiia, 39(10), 928–937.PubMed Ferrans, V. J., Clark, J. R., Zhang, J., Yu, Z. X., & Herman, E. H. (1997). Pathogenesis and prevention of doxorubicin cardiomyopathy. Tsitologiia, 39(10), 928–937.PubMed
4.
go back to reference Olson, R. D., & Mushlin, P. S. (1990). Doxorubicin cardiotoxicity: Analysis of prevailing hypotheses [see comments]. FASEB Journal, 4(13), 3076–3086.PubMed Olson, R. D., & Mushlin, P. S. (1990). Doxorubicin cardiotoxicity: Analysis of prevailing hypotheses [see comments]. FASEB Journal, 4(13), 3076–3086.PubMed
5.
go back to reference Singal, P. K., & Iliskovic N. (1998). Doxorubicin-induced cardiomyopathy [see comments]. New England Journal of Medicine, 339(13), 900–905.PubMedCrossRef Singal, P. K., & Iliskovic N. (1998). Doxorubicin-induced cardiomyopathy [see comments]. New England Journal of Medicine, 339(13), 900–905.PubMedCrossRef
6.
go back to reference Lou, H., Kaur, K., Sharma, A. K., & Singal, P. K. (2006). Adriamycin-induced oxidative stress, activation of MAP kinases and apoptosis in isolated cardiomyocytes. Pathophysiology, 13, 103–109.PubMedCrossRef Lou, H., Kaur, K., Sharma, A. K., & Singal, P. K. (2006). Adriamycin-induced oxidative stress, activation of MAP kinases and apoptosis in isolated cardiomyocytes. Pathophysiology, 13, 103–109.PubMedCrossRef
7.
go back to reference Tokarska-Schlattner, M., Wallimann, T., & Schlattner, U. (2006). Alterations in myocardial energy metabolism induced by the anti-cancer drug doxorubicin. Comptes Rendus Biology, 329, 657–668.CrossRef Tokarska-Schlattner, M., Wallimann, T., & Schlattner, U. (2006). Alterations in myocardial energy metabolism induced by the anti-cancer drug doxorubicin. Comptes Rendus Biology, 329, 657–668.CrossRef
8.
go back to reference Mailer, K., & Petering, D. H. (1976). Inhibition of oxidative phosphorylation in tumor cells and mitochondria by daunomycin and adriamycin. Biochemical Pharmacology, 25(18), 2085–2089.PubMedCrossRef Mailer, K., & Petering, D. H. (1976). Inhibition of oxidative phosphorylation in tumor cells and mitochondria by daunomycin and adriamycin. Biochemical Pharmacology, 25(18), 2085–2089.PubMedCrossRef
9.
go back to reference Herman, E. H., el-Hage, A. N., Creighton, A. M., Witiak, D. T., & Ferrans, V. J. (1985). Comparison of the protective effect of ICRF-187 and structurally related analogues against acute daunorubicin toxicity in Syrian golden hamsters. Research Communications in Chemical Pathology and Pharmacology, 48(1), 39–55.PubMed Herman, E. H., el-Hage, A. N., Creighton, A. M., Witiak, D. T., & Ferrans, V. J. (1985). Comparison of the protective effect of ICRF-187 and structurally related analogues against acute daunorubicin toxicity in Syrian golden hamsters. Research Communications in Chemical Pathology and Pharmacology, 48(1), 39–55.PubMed
10.
go back to reference Lebrecht, D., Kokkori, A., Ketelsen, U. P., Setzer, B., & Walker, U. A. (2005). Tissue-specific mtDNA lesions and radical-associated mitochondrial dysfunction in human hearts exposed to doxorubicin. Journal of Pathology, 207, 436–444.PubMedCrossRef Lebrecht, D., Kokkori, A., Ketelsen, U. P., Setzer, B., & Walker, U. A. (2005). Tissue-specific mtDNA lesions and radical-associated mitochondrial dysfunction in human hearts exposed to doxorubicin. Journal of Pathology, 207, 436–444.PubMedCrossRef
11.
go back to reference Wallace, K. B. (2003). Doxorubicin-induced cardiac mitochondrionopathy. Pharmacology & Toxicology, 93, 105–115.CrossRef Wallace, K. B. (2003). Doxorubicin-induced cardiac mitochondrionopathy. Pharmacology & Toxicology, 93, 105–115.CrossRef
12.
go back to reference Berthiaume, J. M., & Wallace K. B. (2007). Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biology and Toxicology, 23, 15–25.PubMedCrossRef Berthiaume, J. M., & Wallace K. B. (2007). Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biology and Toxicology, 23, 15–25.PubMedCrossRef
13.
go back to reference Brown, H. R., Ni, H., Benavides, G., Yoon, L., Hyder, K., Giridhar, J., Gardner, G., Tyler, R. D., & Morgan, K. T. (2002). Correlation of simultaneous differential gene expression in the blood and heart with known mechanisms of adriamycin-induced cardiomyopathy in the rat. Toxicologic Pathology, 30, 452–469.PubMedCrossRef Brown, H. R., Ni, H., Benavides, G., Yoon, L., Hyder, K., Giridhar, J., Gardner, G., Tyler, R. D., & Morgan, K. T. (2002). Correlation of simultaneous differential gene expression in the blood and heart with known mechanisms of adriamycin-induced cardiomyopathy in the rat. Toxicologic Pathology, 30, 452–469.PubMedCrossRef
14.
go back to reference Marcillat, O., Zhang, Y., & Davies, K. J. (1989). Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin. Biochemical Journal, 259, 181–189.PubMed Marcillat, O., Zhang, Y., & Davies, K. J. (1989). Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin. Biochemical Journal, 259, 181–189.PubMed
15.
go back to reference Neri, B., Cini-Neri, G., & D’Alterio, M. (1984). Effect of anthracyclines and mitoxantrone on oxygen uptake and ATP intracellular concentration in rat heart slices. Biochemical and Biophysical Research Communications, 125, 954–960.PubMedCrossRef Neri, B., Cini-Neri, G., & D’Alterio, M. (1984). Effect of anthracyclines and mitoxantrone on oxygen uptake and ATP intracellular concentration in rat heart slices. Biochemical and Biophysical Research Communications, 125, 954–960.PubMedCrossRef
16.
go back to reference Aversano, R. C., & Boor, P. J. (1983). Histochemical alterations of acute and chronic doxorubicin cardiotoxicity. Journal of Molecular and Cellular Cardiology, 15(8), 543–553.PubMedCrossRef Aversano, R. C., & Boor, P. J. (1983). Histochemical alterations of acute and chronic doxorubicin cardiotoxicity. Journal of Molecular and Cellular Cardiology, 15(8), 543–553.PubMedCrossRef
17.
go back to reference Davies, K. J., & Doroshow, J. H. (1986). Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. Journal of Biological Chemistry, 261(7), 3060–3067.PubMed Davies, K. J., & Doroshow, J. H. (1986). Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. Journal of Biological Chemistry, 261(7), 3060–3067.PubMed
18.
go back to reference Doroshow, J. H., & Davies K. J. (1986). Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. Journal of Biological Chemistry, 261(7), 3068–3074.PubMed Doroshow, J. H., & Davies K. J. (1986). Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. Journal of Biological Chemistry, 261(7), 3068–3074.PubMed
19.
go back to reference Solem, L. E., Henry, T. R., & Wallace, K. B. (1994). Disruption of mitochondrial calcium homeostasis following chronic doxorubicin administration. Toxicology and Applied Pharmacology, 129(2), 214–222.PubMedCrossRef Solem, L. E., Henry, T. R., & Wallace, K. B. (1994). Disruption of mitochondrial calcium homeostasis following chronic doxorubicin administration. Toxicology and Applied Pharmacology, 129(2), 214–222.PubMedCrossRef
20.
go back to reference Santos, D. L., Moreno, A. J. M. , Leino, R. L., Froberg, M. K., & Wallace, K. B. (2002). Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy. Toxicology and Applied Pharmacology, 184, 218–227.CrossRef Santos, D. L., Moreno, A. J. M. , Leino, R. L., Froberg, M. K., & Wallace, K. B. (2002). Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy. Toxicology and Applied Pharmacology, 184, 218–227.CrossRef
21.
go back to reference Mimnaugh, E. G., Trush, M. A., Bhatnagar, M., & Gram T. E. (1985). Enhancement of reactive oxygen-dependent mitochondrial membrane lipid peroxidation by the anticancer drug adriamycin. Biochemical Pharmacology, 34(6), 847–856.PubMedCrossRef Mimnaugh, E. G., Trush, M. A., Bhatnagar, M., & Gram T. E. (1985). Enhancement of reactive oxygen-dependent mitochondrial membrane lipid peroxidation by the anticancer drug adriamycin. Biochemical Pharmacology, 34(6), 847–856.PubMedCrossRef
22.
go back to reference Boucek, R. J. Jr., Olson, R. D., Brenner, D. E., Ogunbunmi, E. M., Inui, M., & Fleischer, S. (1987). The major metabolite of doxorubicin is a potent inhibitor of membrane-associated ion pumps. A correlative study of cardiac muscle with isolated membrane fractions. Journal of Biological Chemistry, 262(33), 15851–15856.PubMed Boucek, R. J. Jr., Olson, R. D., Brenner, D. E., Ogunbunmi, E. M., Inui, M., & Fleischer, S. (1987). The major metabolite of doxorubicin is a potent inhibitor of membrane-associated ion pumps. A correlative study of cardiac muscle with isolated membrane fractions. Journal of Biological Chemistry, 262(33), 15851–15856.PubMed
23.
go back to reference Goormaghtigh, E., Huart, P., Praet, M., Brasseur, R., & Ruysschaert, J. M. (1990). Structure of the adriamycin-cardiolipin complex. Role in mitochondrial toxicity. Biophysical Chemistry, 35(2–3), 247–257.PubMedCrossRef Goormaghtigh, E., Huart, P., Praet, M., Brasseur, R., & Ruysschaert, J. M. (1990). Structure of the adriamycin-cardiolipin complex. Role in mitochondrial toxicity. Biophysical Chemistry, 35(2–3), 247–257.PubMedCrossRef
24.
go back to reference Gosalvez, M., Blanco, M., Hunter, J., Miko, M., & Chance, B. (1974). Effects of anticancer agents on the respiration of isolated mitochondria and tumor cells. European Journal of Cancer, 10(9), 567–574.PubMed Gosalvez, M., Blanco, M., Hunter, J., Miko, M., & Chance, B. (1974). Effects of anticancer agents on the respiration of isolated mitochondria and tumor cells. European Journal of Cancer, 10(9), 567–574.PubMed
25.
go back to reference Singal, P. K., Deally, C. M., & Weinberg, L. E. (1987). Subcellular effects of adriamycin in the heart: a concise review. Journal of Molecular and Cellular Cardiology, 19(8), 817–828.PubMedCrossRef Singal, P. K., Deally, C. M., & Weinberg, L. E. (1987). Subcellular effects of adriamycin in the heart: a concise review. Journal of Molecular and Cellular Cardiology, 19(8), 817–828.PubMedCrossRef
26.
go back to reference Ferrero, M. E., Ferrero, E., Gaja, G., & Bernelli-Zazzera, A. (1976). Adriamycin: Energy metabolism and mitochondrial oxidations in the heart of treated rabbits. Biochemical Pharmacology, 25(2), 125–130.PubMedCrossRef Ferrero, M. E., Ferrero, E., Gaja, G., & Bernelli-Zazzera, A. (1976). Adriamycin: Energy metabolism and mitochondrial oxidations in the heart of treated rabbits. Biochemical Pharmacology, 25(2), 125–130.PubMedCrossRef
27.
go back to reference Hoek, J. B., Farber, J. L., Thomas, A. P., & Wang, X. (1995). Calcium ion-dependent signalling and mitochondrial dysfunction: Mitochondrial calcium uptake during hormonal stimulation in intact liver cells and its implication for the mitochondrial permeability transition. Biochimica et Biophysica Acta, 1271(1), 93–102.PubMed Hoek, J. B., Farber, J. L., Thomas, A. P., & Wang, X. (1995). Calcium ion-dependent signalling and mitochondrial dysfunction: Mitochondrial calcium uptake during hormonal stimulation in intact liver cells and its implication for the mitochondrial permeability transition. Biochimica et Biophysica Acta, 1271(1), 93–102.PubMed
28.
go back to reference Miyata, H., Silverman, H. S., Sollott, S. J., Lakatta, E. G., Stern, M. D., & Hansford, R. G. (1991). Measurement of mitochondrial free Ca2+ concentration in living single rat cardiac myocytes. American Journal of Physiology, 261(4 Pt 2), H1123–H1134.PubMed Miyata, H., Silverman, H. S., Sollott, S. J., Lakatta, E. G., Stern, M. D., & Hansford, R. G. (1991). Measurement of mitochondrial free Ca2+ concentration in living single rat cardiac myocytes. American Journal of Physiology, 261(4 Pt 2), H1123–H1134.PubMed
29.
go back to reference Sparagna, G. C., Gunter, K. K., Sheu, S. S., & Gunter, T. E. (1995). Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. Journal of Biological Chemistry, 270(46), 27510–27515.PubMedCrossRef Sparagna, G. C., Gunter, K. K., Sheu, S. S., & Gunter, T. E. (1995). Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. Journal of Biological Chemistry, 270(46), 27510–27515.PubMedCrossRef
30.
go back to reference Rudge, M. F., & Duncan, C. J. (1984). Comparative studies on the role of calcium in triggering subcellular damage in cardiac muscle. Comparative Biochemistry and Physiology A, 77(3), 459–468.CrossRef Rudge, M. F., & Duncan, C. J. (1984). Comparative studies on the role of calcium in triggering subcellular damage in cardiac muscle. Comparative Biochemistry and Physiology A, 77(3), 459–468.CrossRef
31.
go back to reference Li, Q., Hohl, C. M., Altschuld, R. A., & Stokes, B. T. (1989). Energy depletion-repletion and calcium transients in single cardiomyocytes. American Journal of Physiology, 257(3 Pt 1), C427–C434.PubMed Li, Q., Hohl, C. M., Altschuld, R. A., & Stokes, B. T. (1989). Energy depletion-repletion and calcium transients in single cardiomyocytes. American Journal of Physiology, 257(3 Pt 1), C427–C434.PubMed
32.
go back to reference Solem, L. E., Heller, L. J., & Wallace, K. B. (1996). Dose-dependent increase in sensitivity to calcium-induced mitochondrial dysfunction and cardiomyocyte cell injury by doxorubicin. Journal of Molecular and Cellular Cardiology, 28(5), 1023–1032.PubMedCrossRef Solem, L. E., Heller, L. J., & Wallace, K. B. (1996). Dose-dependent increase in sensitivity to calcium-induced mitochondrial dysfunction and cardiomyocyte cell injury by doxorubicin. Journal of Molecular and Cellular Cardiology, 28(5), 1023–1032.PubMedCrossRef
33.
go back to reference Solem, L. E., & Wallace, K. B. (1993). Selective activation of the sodium-independent, cyclosporine A-sensitive calcium pore of cardiac mitochondria by doxorubicin. Toxicology and Applied Pharmacology, 121(1), 50–57.PubMedCrossRef Solem, L. E., & Wallace, K. B. (1993). Selective activation of the sodium-independent, cyclosporine A-sensitive calcium pore of cardiac mitochondria by doxorubicin. Toxicology and Applied Pharmacology, 121(1), 50–57.PubMedCrossRef
34.
go back to reference Bachmann, E., & Zbinden, G. (1979). Effect of doxorubicin and rubidazone on respiratory function and Ca2+ transport in rat heart mitochondria. Toxicology Letters, 3, 29–34.CrossRef Bachmann, E., & Zbinden, G. (1979). Effect of doxorubicin and rubidazone on respiratory function and Ca2+ transport in rat heart mitochondria. Toxicology Letters, 3, 29–34.CrossRef
35.
go back to reference Chacon, E., & Acosta, D. (1991). Mitochondrial regulation of superoxide by Ca2+: An alternate mechanism for the cardiotoxicity of doxorubicin. Toxicology and Applied Pharmacology, 107(1), 117–128.PubMedCrossRef Chacon, E., & Acosta, D. (1991). Mitochondrial regulation of superoxide by Ca2+: An alternate mechanism for the cardiotoxicity of doxorubicin. Toxicology and Applied Pharmacology, 107(1), 117–128.PubMedCrossRef
36.
go back to reference Sokolove, P. M., & Shinaberry, R. G. (1988). Na+-independent release of Ca2+ from rat heart mitochondria. Induction by adriamycin aglycone. Biochemical Pharmacology, 37(5), 803–812.PubMedCrossRef Sokolove, P. M., & Shinaberry, R. G. (1988). Na+-independent release of Ca2+ from rat heart mitochondria. Induction by adriamycin aglycone. Biochemical Pharmacology, 37(5), 803–812.PubMedCrossRef
37.
go back to reference Sokolove, P. M. (1990). Inhibition by cyclosporine A and butylated hydroxytoluene of the inner mitochondrial membrane permeability transition induced by adriamycin aglycones. Biochemical Pharmacology, 40(12), 2733–2736.PubMedCrossRef Sokolove, P. M. (1990). Inhibition by cyclosporine A and butylated hydroxytoluene of the inner mitochondrial membrane permeability transition induced by adriamycin aglycones. Biochemical Pharmacology, 40(12), 2733–2736.PubMedCrossRef
38.
go back to reference Singal, P. K., Forbes, M. S., & Sperelakis, N. (1984). Occurrence of intramitochondrial Ca2+ granules in a hypertrophied heart exposed to adriamycin. Canadian Journal of Physiology and Pharmacology, 62, 1239–1244.PubMed Singal, P. K., Forbes, M. S., & Sperelakis, N. (1984). Occurrence of intramitochondrial Ca2+ granules in a hypertrophied heart exposed to adriamycin. Canadian Journal of Physiology and Pharmacology, 62, 1239–1244.PubMed
39.
go back to reference Gunter, K. K., & Gunter, T. E. (1994). Transport of calcium by mitochondria. Journal Of Bioenergetics and Biomembranes, 26(5), 471–485.PubMedCrossRef Gunter, K. K., & Gunter, T. E. (1994). Transport of calcium by mitochondria. Journal Of Bioenergetics and Biomembranes, 26(5), 471–485.PubMedCrossRef
40.
go back to reference Gunter, T. E., & Pfeiffer, D. R. (1990). Mechanisms by which mitochondria transport calcium. American Journal of Physiology, 258(5 Pt 1), C755–C786.PubMed Gunter, T. E., & Pfeiffer, D. R. (1990). Mechanisms by which mitochondria transport calcium. American Journal of Physiology, 258(5 Pt 1), C755–C786.PubMed
41.
go back to reference Denton, R. M., & McCormack, J. G. (1990). Ca2+ as a second messenger within mitochondria of the heart and other tissues. Annual Review of Physiology, 52, 451–466.PubMedCrossRef Denton, R. M., & McCormack, J. G. (1990). Ca2+ as a second messenger within mitochondria of the heart and other tissues. Annual Review of Physiology, 52, 451–466.PubMedCrossRef
42.
go back to reference Bernardi, P., Broekemeier, K. M., & Pfeiffer, D. R. (1994). Recent progress on regulation of the mitochondrial permeability transition pore; a sensitive-sensitive pore in the inner mitochondrial membrane. Journal Of Bioenergetics and Biomembranes, 26(5), 509–517.PubMedCrossRef Bernardi, P., Broekemeier, K. M., & Pfeiffer, D. R. (1994). Recent progress on regulation of the mitochondrial permeability transition pore; a sensitive-sensitive pore in the inner mitochondrial membrane. Journal Of Bioenergetics and Biomembranes, 26(5), 509–517.PubMedCrossRef
43.
go back to reference Al-Nasser, I. A. (1998). In vivo prevention of adriamycin cardiotoxicity by cyclosporine A or FK506. Toxicology, 131, 175–181.PubMedCrossRef Al-Nasser, I. A. (1998). In vivo prevention of adriamycin cardiotoxicity by cyclosporine A or FK506. Toxicology, 131, 175–181.PubMedCrossRef
44.
go back to reference Zhou, S., Starkov, A., & Wallace, K. B. (2001). Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Research, 61, 771–777.PubMed Zhou, S., Starkov, A., & Wallace, K. B. (2001). Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Research, 61, 771–777.PubMed
45.
go back to reference Bernardi, P. (1999). Mitochondrial transport of cations: Channels, exchangers, and permeability transition. Physiological Reviews, 79(4), 1127–1155.PubMed Bernardi, P. (1999). Mitochondrial transport of cations: Channels, exchangers, and permeability transition. Physiological Reviews, 79(4), 1127–1155.PubMed
46.
go back to reference Richter, C., & Schlegel, J. (1993). Mitochondrial calcium release induced by prooxidants. Toxicology Letters, 67(1–3), 119–127.PubMedCrossRef Richter, C., & Schlegel, J. (1993). Mitochondrial calcium release induced by prooxidants. Toxicology Letters, 67(1–3), 119–127.PubMedCrossRef
47.
go back to reference Wallace, K. B., Eells, J. T., Madeira, V. M., Cortopassi, G., & Jones, D. P. (1997). Mitochondria-mediated cell injury. Symposium overview. Fundamental and Applied Toxicology, 38(1), 23–37.PubMedCrossRef Wallace, K. B., Eells, J. T., Madeira, V. M., Cortopassi, G., & Jones, D. P. (1997). Mitochondria-mediated cell injury. Symposium overview. Fundamental and Applied Toxicology, 38(1), 23–37.PubMedCrossRef
48.
go back to reference Imberti, R., Nieminen, A. L., Herman, B., & Lemasters, J. J. (1993). Mitochondrial and glycolytic dysfunction in lethal injury to hepatocytes by t-butylhydroperoxide: Protection by fructose, cyclosporine A and trifluoperazine. Journal of Pharmacology and Experimental Therapeutics, 265(1), 392–400.PubMed Imberti, R., Nieminen, A. L., Herman, B., & Lemasters, J. J. (1993). Mitochondrial and glycolytic dysfunction in lethal injury to hepatocytes by t-butylhydroperoxide: Protection by fructose, cyclosporine A and trifluoperazine. Journal of Pharmacology and Experimental Therapeutics, 265(1), 392–400.PubMed
49.
go back to reference Groskreutz, J. L., Bronk, S. F., & Gores, G. J. (1992). Ruthenium red delays the onset of cell death during oxidative stress of rat hepatocytes. Gastroenterology, 102(3), 1030–1038.PubMed Groskreutz, J. L., Bronk, S. F., & Gores, G. J. (1992). Ruthenium red delays the onset of cell death during oxidative stress of rat hepatocytes. Gastroenterology, 102(3), 1030–1038.PubMed
50.
go back to reference Pastorino, J. G., Snyder, J. W., Serroni, A., Hoek, J. B., & Farber, J. L. (1993). Cyclosporine and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. Journal of Biological Chemistry, 268(19), 13791–13798.PubMed Pastorino, J. G., Snyder, J. W., Serroni, A., Hoek, J. B., & Farber, J. L. (1993). Cyclosporine and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. Journal of Biological Chemistry, 268(19), 13791–13798.PubMed
51.
go back to reference Henry, T. R., & Wallace, K. B. (1996). Differential mechanisms of cell killing by redox cycling and arylating quinones. Archives of Toxicology, 70(8), 482–489.PubMedCrossRef Henry, T. R., & Wallace, K. B. (1996). Differential mechanisms of cell killing by redox cycling and arylating quinones. Archives of Toxicology, 70(8), 482–489.PubMedCrossRef
52.
go back to reference Petronilli, V., Cola, C., Massari, S., Colonna, R., & Bernardi, P. (1993). Physiological effectors modify voltage sensing by the cyclosporine A- sensitive permeability transition pore of mitochondria. Journal of Biological Chemistry, 268(29), 21939–21945.PubMed Petronilli, V., Cola, C., Massari, S., Colonna, R., & Bernardi, P. (1993). Physiological effectors modify voltage sensing by the cyclosporine A- sensitive permeability transition pore of mitochondria. Journal of Biological Chemistry, 268(29), 21939–21945.PubMed
53.
go back to reference Petronilli, V., Cola, C., & Bernardi, P. (1993). Modulation of the mitochondrial cyclosporine A-sensitive permeability transition pore. II. The minimal requirements for pore induction underscore a key role for transmembrane electrical potential, matrix pH, and matrix Ca2+. Journal of Biological Chemistry, 268(2), 1011–1016.PubMed Petronilli, V., Cola, C., & Bernardi, P. (1993). Modulation of the mitochondrial cyclosporine A-sensitive permeability transition pore. II. The minimal requirements for pore induction underscore a key role for transmembrane electrical potential, matrix pH, and matrix Ca2+. Journal of Biological Chemistry, 268(2), 1011–1016.PubMed
54.
go back to reference Petronilli, V., Nicolli, A., Costantini, P., Colonna, R., & Bernardi, P. (1994). Regulation of the permeability transition pore, a voltage-dependent mitochondrial channel inhibited by cyclosporine A. Biochimica et Biophysica Acta, 1187(2), 255–259.PubMedCrossRef Petronilli, V., Nicolli, A., Costantini, P., Colonna, R., & Bernardi, P. (1994). Regulation of the permeability transition pore, a voltage-dependent mitochondrial channel inhibited by cyclosporine A. Biochimica et Biophysica Acta, 1187(2), 255–259.PubMedCrossRef
55.
go back to reference Petronilli, V., Costantini, P., Scorrano, L., Colonna, R., Passamonti, S., & Bernardi, P. (1994). The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. Journal of Biological Chemistry, 269(24), 16638–16642.PubMed Petronilli, V., Costantini, P., Scorrano, L., Colonna, R., Passamonti, S., & Bernardi, P. (1994). The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. Journal of Biological Chemistry, 269(24), 16638–16642.PubMed
56.
go back to reference Fagian, M. M., Pereira-da-Silva, L., Martins, I. S., & Vercesi, A. E. (1990). Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants. Journal of Biological Chemistry, 265(32), 19955–19960.PubMed Fagian, M. M., Pereira-da-Silva, L., Martins, I. S., & Vercesi, A. E. (1990). Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants. Journal of Biological Chemistry, 265(32), 19955–19960.PubMed
57.
go back to reference Meredith, M. J., & Reed, D. J. (1983). Depletion in vitro of mitochondrial glutathione in rat hepatocytes and enhancement of lipid peroxidation by adriamycin and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). Biochemical Pharmacology, 32(8), 1383–1388.PubMedCrossRef Meredith, M. J., & Reed, D. J. (1983). Depletion in vitro of mitochondrial glutathione in rat hepatocytes and enhancement of lipid peroxidation by adriamycin and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). Biochemical Pharmacology, 32(8), 1383–1388.PubMedCrossRef
58.
go back to reference Oliveira, P. J., & Wallace, K. B. (2006). Depletion of adenine nucleotide translocator protein in heart mitochodria from doxorubicin-treated rats—Relevance for mitochondrial dysfunction. Toxicology, 220, 160–168.PubMedCrossRef Oliveira, P. J., & Wallace, K. B. (2006). Depletion of adenine nucleotide translocator protein in heart mitochodria from doxorubicin-treated rats—Relevance for mitochondrial dysfunction. Toxicology, 220, 160–168.PubMedCrossRef
59.
go back to reference Halestrap, A. P., Woodfield, K. Y., & Connern, C. P. (1997). Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. Journal of Biological Chemistry, 272(6), 3346–3354.PubMedCrossRef Halestrap, A. P., Woodfield, K. Y., & Connern, C. P. (1997). Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. Journal of Biological Chemistry, 272(6), 3346–3354.PubMedCrossRef
60.
go back to reference Halestrap, A. P., Kerr, P. M., Javadov, S., & Woodfield, K. Y. (1998). Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochimica et Biophysica Acta, 1366(1–2), 79–94.PubMedCrossRef Halestrap, A. P., Kerr, P. M., Javadov, S., & Woodfield, K. Y. (1998). Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochimica et Biophysica Acta, 1366(1–2), 79–94.PubMedCrossRef
61.
go back to reference Oliveira, P. J., Santos, M. S., & Wallace, K. B. (2005). Doxorubicin-induced thiol-dependent alteration of cardiac mitochondrial permeability transition and respiration. Biochemistry (Moscow), 71, 194–199.CrossRef Oliveira, P. J., Santos, M. S., & Wallace, K. B. (2005). Doxorubicin-induced thiol-dependent alteration of cardiac mitochondrial permeability transition and respiration. Biochemistry (Moscow), 71, 194–199.CrossRef
62.
go back to reference Serrano, J., Palmeira, C. M., Kuehl, D. W., & Wallace, K. B. (1999). Cardioselective and cumulative oxidation of mitochondrial DNA following subchronic doxorubicin administration. Biochimica et Biophysica Acta, 1411(1), 201–205.PubMedCrossRef Serrano, J., Palmeira, C. M., Kuehl, D. W., & Wallace, K. B. (1999). Cardioselective and cumulative oxidation of mitochondrial DNA following subchronic doxorubicin administration. Biochimica et Biophysica Acta, 1411(1), 201–205.PubMedCrossRef
63.
go back to reference Palmeira, C. M., Serrano, J., Kuehl, D. W., & Wallace, K. B. (1997). Preferential oxidation of cardiac mitochondrial DNA following acute intoxication with doxorubicin. Biochimica et Biophysica Acta, 1321(2), 101–106.PubMedCrossRef Palmeira, C. M., Serrano, J., Kuehl, D. W., & Wallace, K. B. (1997). Preferential oxidation of cardiac mitochondrial DNA following acute intoxication with doxorubicin. Biochimica et Biophysica Acta, 1321(2), 101–106.PubMedCrossRef
64.
go back to reference Zhou, S., Palmeira, C. M., & Wallace, K. B. (2001). Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicology Letters, 121, 151–157.PubMedCrossRef Zhou, S., Palmeira, C. M., & Wallace, K. B. (2001). Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicology Letters, 121, 151–157.PubMedCrossRef
65.
go back to reference Chacon, E., Ohata, H., Harper, I. S., Trollinger, D. R., Herman, B., & Lemasters, J. J. (1996). Mitochondrial free calcium transients during excitation-contraction coupling in rabbit cardiac myocytes. FEBS Letters, 382(1–2), 31–36.PubMedCrossRef Chacon, E., Ohata, H., Harper, I. S., Trollinger, D. R., Herman, B., & Lemasters, J. J. (1996). Mitochondrial free calcium transients during excitation-contraction coupling in rabbit cardiac myocytes. FEBS Letters, 382(1–2), 31–36.PubMedCrossRef
66.
go back to reference Herrington, J., Park, Y. B., Babcock, D. F., & Hille, B. (1996). Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells. Neuron, 16(1), 219–228.PubMedCrossRef Herrington, J., Park, Y. B., Babcock, D. F., & Hille, B. (1996). Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells. Neuron, 16(1), 219–228.PubMedCrossRef
67.
go back to reference Isenberg, G., Han, S., Schiefer, A., & Wendt-Gallitelli, M. F. (1993). Changes in mitochondrial calcium concentration during the cardiac contraction cycle. Cardiovascular Research, 27(10), 1800–1809.PubMedCrossRef Isenberg, G., Han, S., Schiefer, A., & Wendt-Gallitelli, M. F. (1993). Changes in mitochondrial calcium concentration during the cardiac contraction cycle. Cardiovascular Research, 27(10), 1800–1809.PubMedCrossRef
68.
go back to reference Gillis, J. M. (1997). Inhibition of mitochondrial calcium uptake slows down relaxation in mitochondria-rich skeletal muscles. Journal of Muscle Research and Cell Motility, 18(4), 473–483.PubMedCrossRef Gillis, J. M. (1997). Inhibition of mitochondrial calcium uptake slows down relaxation in mitochondria-rich skeletal muscles. Journal of Muscle Research and Cell Motility, 18(4), 473–483.PubMedCrossRef
69.
go back to reference Loew, L. M., Carrington, W., Tuft, R. A., & Fay, F. S. (1994). Physiological cytosolic Ca2+ transients evoke concurrent mitochondrial depolarizations. Proceedings of the National Academy of Sciences of the United States of America, 91(26), 12579–12583. Loew, L. M., Carrington, W., Tuft, R. A., & Fay, F. S. (1994). Physiological cytosolic Ca2+ transients evoke concurrent mitochondrial depolarizations. Proceedings of the National Academy of Sciences of the United States of America, 91(26), 12579–12583.
70.
go back to reference Zhou, S., Heller, L. J., & Wallace, K. B. (2001). Interferences with calcium-dependent mitochondrial bioenergetics in cardiac myocytes isolated from doxorubicin-treated rats. Toxicology and Applied Pharmacology, 175, 60–67.PubMedCrossRef Zhou, S., Heller, L. J., & Wallace, K. B. (2001). Interferences with calcium-dependent mitochondrial bioenergetics in cardiac myocytes isolated from doxorubicin-treated rats. Toxicology and Applied Pharmacology, 175, 60–67.PubMedCrossRef
Metadata
Title
Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis
Author
Kendall B. Wallace
Publication date
01-06-2007
Publisher
Humana Press Inc
Published in
Cardiovascular Toxicology / Issue 2/2007
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-007-0008-2

Other articles of this Issue 2/2007

Cardiovascular Toxicology 2/2007 Go to the issue