Skip to main content
Top
Published in: Clinical Orthopaedics and Related Research® 4/2017

01-04-2017 | Symposium: 2016 Bernese Hip Symposium

Is Increased Acetabular Cartilage or Fossa Size Associated With Pincer Femoroacetabular Impingement?

Authors: Stephanie Y. Pun, MD, Andreas Hingsammer, MD, Michael B. Millis, MD, Young-Jo Kim, MD, PhD

Published in: Clinical Orthopaedics and Related Research® | Issue 4/2017

Login to get access

Abstract

Background

Surgical treatment for pincer femoroacetabular impingement (FAI) of the hip remains controversial, between trimming the prominent acetabular rim and reverse periacetabular osteotomy (PAO) that reorients the acetabulum. However, rim trimming may decrease articular surface size to a critical threshold where increased joint contact forces lead to joint degeneration. Therefore, knowledge of how much acetabular articular cartilage is available for resection is important when evaluating between the two surgical options. In addition, it remains unclear whether the acetabulum rim in pincer FAI is a prominent rim because of increased cartilage size or increased fossa size.

Questions/purposes

We used reformatted MR and CT data to establish linear length dimensions of the lunate cartilage and cotyloid fossa in normal, dysplastic, and deep acetabula.

Methods

We reviewed the last 200 hips undergoing PAO, reverse PAO, and surgical dislocation for acetabular rim trimming at one institution. We compared MR images of symptomatic hips with acetabular dysplasia (20 hips), pincer FAI (29 hips), and CT scans of asymptomatic hips from patients who underwent CT scans for reasons other than hip pain (20 hips). These hips were chosen sequentially from the underlying pool of 200 potential subjects to identify the first 10 male and the first 10 female hips in each group that met inclusion criteria. As a result of low numbers, we included all hips that had undergone reverse PAO and met inclusion criteria. Cartilage width was measured medially from the cotyloid fossa to the lateral labrochondral junction. Cotyloid fossa linear height was measured from superior to inferior and cotyloid fossa width was measured from anterior to posterior. Superior lunate cartilage width (SLCW) and cotyloid fossa height (CFH) were measured on MR and CT oblique coronal reformats; anterior lunate cartilage width (ALCW), posterior lunate cartilage width (PLCW), and cotyloid fossa width (CFW) were measured on MR and CT oblique axial reformats. Cohorts were compared using multivariate analysis of variance with Bonferroni’s adjustment for multiple comparisons.

Results

Compared with control acetabula, dysplastic acetabula had smaller SLCW (2.08 ± 0.29 mm versus 2.63 ± 0.42 mm, mean difference = −0.55 mm; 95% confidence interval [CI] = −0.83 to −0.27; p < 0.01), ALCW (1.20 ± 0.34 mm versus 1.64 ± 0.21 mm, mean difference = −0.44 mm; 95% CI = −0.70 to −0.18; p = 0.00), CFH (2.84 ± 0.37 mm versus 3.42 ± 0.57 mm, mean difference = −0.59 mm; 95% CI = −0.96 to −0.21; p < 0.01), and CFW (1.98 ± 0.50 mm versus 2.77 ± 0.33 mm, mean difference = −0.80 mm; 95% CI = −1.16 to −0.42; p < 0.0001). Based on the results, we identified two subtypes of deep acetabula. Compared with controls, deep subtype 1 had normal CFH and CFW but increased ALCW (2.09 ± 0.42 mm versus 1.64 ± 0.21 mm; p < 0.001) and PLCW (2.32 ± 0.36 mm versus 2.00 ± 0.32 mm; p = 0.04). Compared with controls, deep subtype 2 had increased CFH (4.37 ± 0.51 mm versus 3.42 ± 0.57 mm; p < 0.01) and CFW (2.76 ± 0.54 mm versus 2.77 ± 0.33 mm; p = 1.0) but smaller SCLW (2.12 ± 0.40 mm versus 2.63 ± 0.42 mm; p < 0.01).

Conclusions

Deep acetabula have two distinct morphologies: subtype 1 with increased anterior and posterior cartilage lengths and subtype 2 with a larger fossa in height and width and smaller superior cartilage length.

Clinical Relevance

In patients with deep subtype 1 hips that have increased anterior and posterior cartilage widths, rim trimming to create an articular surface of normal size may be reasonable. However, for patients with deep subtype 2 hips that have large fossas but do not have increased cartilage widths, we propose that a reverse PAO that reorients yet preserves the size of the articular surface may be more promising. However, these theories will need to be validated in well-controlled clinical studies.
Literature
1.
go back to reference Anda S, Svenningsen S, Dale LG, Benum P. The acetabular sector angle of the adult hip determined by computed tomography. Acta Radiol Diagn (Stockh). 1986;27:443–447.PubMed Anda S, Svenningsen S, Dale LG, Benum P. The acetabular sector angle of the adult hip determined by computed tomography. Acta Radiol Diagn (Stockh). 1986;27:443–447.PubMed
2.
go back to reference Anda S, Terjesen T, Kvistad KA, Svenningsen S. Acetabular angles and femoral anteversion in dysplastic hips in adults: CT investigation. J Comput Assist Tomogr. 1991;15:115–120.CrossRefPubMed Anda S, Terjesen T, Kvistad KA, Svenningsen S. Acetabular angles and femoral anteversion in dysplastic hips in adults: CT investigation. J Comput Assist Tomogr. 1991;15:115–120.CrossRefPubMed
3.
go back to reference Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br. 2005;87:1012–1018.CrossRefPubMed Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br. 2005;87:1012–1018.CrossRefPubMed
4.
go back to reference Bhatia S, Lee S, Shewman E, Mather RC, Salata MJ, Bush-Joseph CA, Nho SJ. Effects of acetabular rim trimming on hip joint contact pressures: how much is too much? Am J Sports Med. 2015;43:2138–2145.CrossRefPubMed Bhatia S, Lee S, Shewman E, Mather RC, Salata MJ, Bush-Joseph CA, Nho SJ. Effects of acetabular rim trimming on hip joint contact pressures: how much is too much? Am J Sports Med. 2015;43:2138–2145.CrossRefPubMed
5.
go back to reference van Bosse H, Wedge JH, Babyn P. How are dysplastic hips different? A three-dimensional CT study. Clin Orthop Relat Res. 2015;473:1712–1723.CrossRefPubMed van Bosse H, Wedge JH, Babyn P. How are dysplastic hips different? A three-dimensional CT study. Clin Orthop Relat Res. 2015;473:1712–1723.CrossRefPubMed
6.
go back to reference Colvin AC, Koehler SM, Bird J. Can the change in center-edge angle during pincer trimming be reliably predicted? Clin Orthop Relat Res. 2011;469:1071–1074.CrossRefPubMed Colvin AC, Koehler SM, Bird J. Can the change in center-edge angle during pincer trimming be reliably predicted? Clin Orthop Relat Res. 2011;469:1071–1074.CrossRefPubMed
7.
go back to reference Dandachli W, Kannan V, Richards R, Shah Z, Hall-Craggs M, Witt J. Analysis of cover of the femoral head in normal and dysplastic hips: new CT-based technique. J Bone Joint Surg Br. 2008;90:1428–1434.CrossRefPubMed Dandachli W, Kannan V, Richards R, Shah Z, Hall-Craggs M, Witt J. Analysis of cover of the femoral head in normal and dysplastic hips: new CT-based technique. J Bone Joint Surg Br. 2008;90:1428–1434.CrossRefPubMed
8.
go back to reference Ganz R, Leunig M, Leunig-Ganz K, Harris WH. The etiology of osteoarthritis of the hip: an integrated mechanical concept. Clin Orthop Relat Res. 2008;466:264–272.CrossRefPubMedPubMedCentral Ganz R, Leunig M, Leunig-Ganz K, Harris WH. The etiology of osteoarthritis of the hip: an integrated mechanical concept. Clin Orthop Relat Res. 2008;466:264–272.CrossRefPubMedPubMedCentral
9.
go back to reference Ganz R, Parvizi J, Beck M, Leunig M, Nötzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res. 2003;417:112–120. Ganz R, Parvizi J, Beck M, Leunig M, Nötzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res. 2003;417:112–120.
10.
go back to reference Giori NJ, Trousdale RT. Acetabular retroversion is associated with osteoarthritis of the hip. Clin Orthop Relat Res. 2003;417:263–269. Giori NJ, Trousdale RT. Acetabular retroversion is associated with osteoarthritis of the hip. Clin Orthop Relat Res. 2003;417:263–269.
11.
go back to reference Harris MD, Anderson AE, Henak CR, Ellis BJ, Peters CL, Weiss JA. Finite element prediction of cartilage contact stresses in normal human hips. J Orthop Res. 2012;30:1133–1139.CrossRefPubMed Harris MD, Anderson AE, Henak CR, Ellis BJ, Peters CL, Weiss JA. Finite element prediction of cartilage contact stresses in normal human hips. J Orthop Res. 2012;30:1133–1139.CrossRefPubMed
12.
go back to reference Hipp JA, Sugano N, Millis MB, Murphy SB. Planning acetabular redirection osteotomies based on joint contact pressures. Clin Orthop Relat Res. 1999;364:134–143.CrossRef Hipp JA, Sugano N, Millis MB, Murphy SB. Planning acetabular redirection osteotomies based on joint contact pressures. Clin Orthop Relat Res. 1999;364:134–143.CrossRef
13.
go back to reference Klaue K, Wallin A, Ganz R. CT evaluation of coverage and congruency of the hip prior to osteotomy. Clin Orthop Relat Res. 1988;232:15–25. Klaue K, Wallin A, Ganz R. CT evaluation of coverage and congruency of the hip prior to osteotomy. Clin Orthop Relat Res. 1988;232:15–25.
14.
go back to reference Kling S, Karns MR, Gebhart J, Kosmas C, Robbin M, Nho SJ, Bedi A, Salata MJ. The effect of acetabular rim recession on anterior acetabular coverage: a cadaveric study using the false-profile radiograph. Am J Sports Med. 2015;43:957–964.CrossRefPubMed Kling S, Karns MR, Gebhart J, Kosmas C, Robbin M, Nho SJ, Bedi A, Salata MJ. The effect of acetabular rim recession on anterior acetabular coverage: a cadaveric study using the false-profile radiograph. Am J Sports Med. 2015;43:957–964.CrossRefPubMed
15.
go back to reference Köhnlein W, Ganz R, Impellizzeri FM, Leunig M. Acetabular morphology: implications for joint-preserving surgery. Clin Orthop Relat Res. 2009;467:682–691.CrossRefPubMedPubMedCentral Köhnlein W, Ganz R, Impellizzeri FM, Leunig M. Acetabular morphology: implications for joint-preserving surgery. Clin Orthop Relat Res. 2009;467:682–691.CrossRefPubMedPubMedCentral
16.
go back to reference Krebs V, Incavo SJ, Shields WH. The anatomy of the acetabulum: what is normal? Clin Orthop Relat Res. 2009;467:868–875.CrossRefPubMed Krebs V, Incavo SJ, Shields WH. The anatomy of the acetabulum: what is normal? Clin Orthop Relat Res. 2009;467:868–875.CrossRefPubMed
17.
go back to reference Liechti EF, Ferguson SJ, Tannast M. Protrusio acetabuli: joint loading with severe pincer impingement and its theoretical implications for surgical therapy. J Orthop Res. 2015;33:106–113.CrossRefPubMed Liechti EF, Ferguson SJ, Tannast M. Protrusio acetabuli: joint loading with severe pincer impingement and its theoretical implications for surgical therapy. J Orthop Res. 2015;33:106–113.CrossRefPubMed
18.
go back to reference Mavcic B, Iglic A, Kralj-Iglic V, Brand RA, Vengust R. Cumulative hip contact stress predicts osteoarthritis in DDH. Clin Orthop Relat Res. 2008;466:884–891.CrossRefPubMedPubMedCentral Mavcic B, Iglic A, Kralj-Iglic V, Brand RA, Vengust R. Cumulative hip contact stress predicts osteoarthritis in DDH. Clin Orthop Relat Res. 2008;466:884–891.CrossRefPubMedPubMedCentral
19.
go back to reference Mechlenburg I, Nyengaard JR, Rømer L, Søballe K. Changes in load-bearing area after Ganz periacetabular osteotomy evaluated by multislice CT scanning and stereology. Acta Orthop Scand. 2004;75:147–153.CrossRefPubMed Mechlenburg I, Nyengaard JR, Rømer L, Søballe K. Changes in load-bearing area after Ganz periacetabular osteotomy evaluated by multislice CT scanning and stereology. Acta Orthop Scand. 2004;75:147–153.CrossRefPubMed
20.
go back to reference Michaeli DA, Murphy SB, Hipp JA. Comparison of predicted and measured contact pressures in normal and dysplastic hips. Med Eng Phys. 1997;19:180–186.CrossRefPubMed Michaeli DA, Murphy SB, Hipp JA. Comparison of predicted and measured contact pressures in normal and dysplastic hips. Med Eng Phys. 1997;19:180–186.CrossRefPubMed
21.
go back to reference Murphy SB, Ganz R, Müller ME. The prognosis in untreated dysplasia of the hip. A study of radiographic factors that predict the outcome. J Bone Joint Surg Am. 1995;77:985–989.CrossRefPubMed Murphy SB, Ganz R, Müller ME. The prognosis in untreated dysplasia of the hip. A study of radiographic factors that predict the outcome. J Bone Joint Surg Am. 1995;77:985–989.CrossRefPubMed
22.
go back to reference Philippon MJ, Wolff AB, Briggs KK, Zehms CT, Kuppersmith DA. Acetabular rim reduction for the treatment of femoroacetabular impingement correlates with preoperative and postoperative center-edge angle. Arthroscopy. 2010;26:757–761.CrossRefPubMed Philippon MJ, Wolff AB, Briggs KK, Zehms CT, Kuppersmith DA. Acetabular rim reduction for the treatment of femoroacetabular impingement correlates with preoperative and postoperative center-edge angle. Arthroscopy. 2010;26:757–761.CrossRefPubMed
23.
go back to reference Reynolds D, Lucas J, Klaue K. Retroversion of the acetabulum. A cause of hip pain. J Bone Joint Surg Br. 1999;81:281–288.CrossRefPubMed Reynolds D, Lucas J, Klaue K. Retroversion of the acetabulum. A cause of hip pain. J Bone Joint Surg Br. 1999;81:281–288.CrossRefPubMed
24.
25.
go back to reference Steppacher SD, Anwander H, Zurmühle CA, Tannast M, Siebenrock KA. Eighty percent of patients with surgical hip dislocation for femoroacetabular impingement have a good clinical result without osteoarthritis progression at 10 years. Clin Orthop Relat Res. 2015;473:1333–1341.CrossRefPubMed Steppacher SD, Anwander H, Zurmühle CA, Tannast M, Siebenrock KA. Eighty percent of patients with surgical hip dislocation for femoroacetabular impingement have a good clinical result without osteoarthritis progression at 10 years. Clin Orthop Relat Res. 2015;473:1333–1341.CrossRefPubMed
26.
go back to reference Steppacher SD, Huemmer C, Schwab JM, Tannast M, Siebenrock KA. Surgical hip dislocation for treatment of femoroacetabular impingement: factors predicting 5-year survivorship. Clin Orthop Relat Res. 2014;472:337–348.CrossRefPubMed Steppacher SD, Huemmer C, Schwab JM, Tannast M, Siebenrock KA. Surgical hip dislocation for treatment of femoroacetabular impingement: factors predicting 5-year survivorship. Clin Orthop Relat Res. 2014;472:337–348.CrossRefPubMed
27.
go back to reference Steppacher SD, Lerch TD, Gharanizadeh K, Liechti EF, Werlen SF, Puls M, Tannast M, Siebenrock KA. Size and shape of the lunate surface in different types of pincer impingement: theoretical implications for surgical therapy. Osteoarthr Cartil. 2014;22:951–958.CrossRefPubMed Steppacher SD, Lerch TD, Gharanizadeh K, Liechti EF, Werlen SF, Puls M, Tannast M, Siebenrock KA. Size and shape of the lunate surface in different types of pincer impingement: theoretical implications for surgical therapy. Osteoarthr Cartil. 2014;22:951–958.CrossRefPubMed
28.
go back to reference Tannast M, Goricki D, Beck M, Murphy SB, Siebenrock KA. Hip damage occurs at the zone of femoroacetabular impingement. Clin Orthop Relat Res. 2008;466:273–280.CrossRefPubMedPubMedCentral Tannast M, Goricki D, Beck M, Murphy SB, Siebenrock KA. Hip damage occurs at the zone of femoroacetabular impingement. Clin Orthop Relat Res. 2008;466:273–280.CrossRefPubMedPubMedCentral
29.
go back to reference Tannast M, Hanke MS, Zheng G, Steppacher SD, Siebenrock KA. What are the radiographic reference values for acetabular under- and overcoverage? Clin Orthop Relat Res. 2015;473:1234–1246.CrossRefPubMed Tannast M, Hanke MS, Zheng G, Steppacher SD, Siebenrock KA. What are the radiographic reference values for acetabular under- and overcoverage? Clin Orthop Relat Res. 2015;473:1234–1246.CrossRefPubMed
30.
go back to reference Tönnis D, Heinecke A. Acetabular and femoral anteversion: relationship with osteoarthritis of the hip. J Bone Joint Surg Am. 1999;81:1747–1770.CrossRefPubMed Tönnis D, Heinecke A. Acetabular and femoral anteversion: relationship with osteoarthritis of the hip. J Bone Joint Surg Am. 1999;81:1747–1770.CrossRefPubMed
31.
go back to reference Zhao X, Chosa E, Totoribe K, Deng G. Effect of periacetabular osteotomy for acetabular dysplasia clarified by three-dimensional finite element analysis. J Orthop Sci. 2010;15:632–640.CrossRefPubMed Zhao X, Chosa E, Totoribe K, Deng G. Effect of periacetabular osteotomy for acetabular dysplasia clarified by three-dimensional finite element analysis. J Orthop Sci. 2010;15:632–640.CrossRefPubMed
Metadata
Title
Is Increased Acetabular Cartilage or Fossa Size Associated With Pincer Femoroacetabular Impingement?
Authors
Stephanie Y. Pun, MD
Andreas Hingsammer, MD
Michael B. Millis, MD
Young-Jo Kim, MD, PhD
Publication date
01-04-2017
Publisher
Springer US
Published in
Clinical Orthopaedics and Related Research® / Issue 4/2017
Print ISSN: 0009-921X
Electronic ISSN: 1528-1132
DOI
https://doi.org/10.1007/s11999-016-5063-1

Other articles of this Issue 4/2017

Clinical Orthopaedics and Related Research® 4/2017 Go to the issue

Gendered Innovations in Orthopaedic Science

Gendered Innovations in Orthopaedic Science: Show Me the Money

Symposium: 2016 Bernese Hip Symposium

Editorial Comment: 2016 Bernese Hip Symposium