Skip to main content
Top
Published in: Current Neurology and Neuroscience Reports 12/2016

01-12-2016 | Dementia (KS Marder, Section Editor)

Genetics of Frontotemporal Dementia

Authors: Diana A. Olszewska, Roisin Lonergan, Emer M. Fallon, Tim Lynch

Published in: Current Neurology and Neuroscience Reports | Issue 12/2016

Login to get access

Abstract

Frontotemporal dementia (FTD) is the second most common cause of dementia following Alzheimer’s disease (AD). Between 20 and 50% of cases are familial. Mutations in MAPT, GRN and C9orf72 are found in 60% of familial FTD cases. C9orf72 mutations are the most common and account for 25%. Rarer mutations (<5%) occur in other genes such as VPC, CHMP2B, TARDP, FUS, ITM2B, TBK1 and TBP. The diagnosis is often challenging due to symptom overlap with AD and other conditions. We review the genetics, clinical presentations, neuroimaging, neuropathology, animal studies and therapeutic trials in FTD. We describe clinical scenarios including the original family with the tau stem loop mutation (+14) and also the recently discovered ‘missing tau’ mutation +15 that ‘closed the loop’ in 2015.
Literature
1.
go back to reference Pick A. Ueber die Beziehungen der senilen Hirnatrophie zur Aphasie. Prager Med Wschr. 1892;17:165–7. Pick A. Ueber die Beziehungen der senilen Hirnatrophie zur Aphasie. Prager Med Wschr. 1892;17:165–7.
2.
go back to reference Alzheimer A. Uber eigenartige Krankheitsf€alle des sp€ateren. Alters. Z Gesamte Neurol Psychiatr. 1911;4:356–85.CrossRef Alzheimer A. Uber eigenartige Krankheitsf€alle des sp€ateren. Alters. Z Gesamte Neurol Psychiatr. 1911;4:356–85.CrossRef
3.
go back to reference Escourolle R. La maladie de Pick. Etude critique d’ensemble et synthese anatomo-clinique. Paris: R Foulon; 1958. Escourolle R. La maladie de Pick. Etude critique d’ensemble et synthese anatomo-clinique. Paris: R Foulon; 1958.
4.
6.
go back to reference Jee B, Spina S, Miller BL. Frontotemporal dementia. Lancet. 2015;386(10004):1672–82.CrossRef Jee B, Spina S, Miller BL. Frontotemporal dementia. Lancet. 2015;386(10004):1672–82.CrossRef
7.
go back to reference Vidal R, Frangione B, Rostagno A, et al. A stop-codon mutation in the BRI gene associated with familial British dementia. Nature. 1999;399(6738):776–81.PubMedCrossRef Vidal R, Frangione B, Rostagno A, et al. A stop-codon mutation in the BRI gene associated with familial British dementia. Nature. 1999;399(6738):776–81.PubMedCrossRef
8.
go back to reference Vidal R, Revesz T, Rostano A, et al. A decamer duplication in the 3′ region of the BRI gene originates an amyloid peptide that is associated with dementia in a Danish kindred. Proc Natl Acad Sci U S A. 2000;97(9):4920–5.PubMedPubMedCentralCrossRef Vidal R, Revesz T, Rostano A, et al. A decamer duplication in the 3′ region of the BRI gene originates an amyloid peptide that is associated with dementia in a Danish kindred. Proc Natl Acad Sci U S A. 2000;97(9):4920–5.PubMedPubMedCentralCrossRef
9.
go back to reference Seelaar H, Rohrer JD, Pijnenburg YAL, Fox NC, Van Swieten JC. Clinical, genetic, and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry. 2010;82(5):476–86.PubMedCrossRef Seelaar H, Rohrer JD, Pijnenburg YAL, Fox NC, Van Swieten JC. Clinical, genetic, and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry. 2010;82(5):476–86.PubMedCrossRef
10.
go back to reference Stevanin G, Brice A. Spinocerebellar ataxia 17 (SCA17) and Huntington’s disease-like 4 (HDL4). Cerebellum. 2008;7(2):170–8.PubMedCrossRef Stevanin G, Brice A. Spinocerebellar ataxia 17 (SCA17) and Huntington’s disease-like 4 (HDL4). Cerebellum. 2008;7(2):170–8.PubMedCrossRef
12.
go back to reference Lynch T, Sano M, Marder KS, et al. Clinical characteristics of a family with chromosome 17-linked disinhibition-dementia-parkinsonism-amyotrophy complex. Neurology. 1994;44:1878–84.PubMedCrossRef Lynch T, Sano M, Marder KS, et al. Clinical characteristics of a family with chromosome 17-linked disinhibition-dementia-parkinsonism-amyotrophy complex. Neurology. 1994;44:1878–84.PubMedCrossRef
13.
go back to reference Wilhelmsen KC, Lynch T, Pavlou E, et al. Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21-22. Am J Hum Genet. 1994;55:1159–65.PubMedPubMedCentral Wilhelmsen KC, Lynch T, Pavlou E, et al. Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21-22. Am J Hum Genet. 1994;55:1159–65.PubMedPubMedCentral
14.
go back to reference Wszolek ZK, Pfeiffer RF, Bhatt MH, et al. Rapidly progressive autosomal dominant parkinsonism and dementia with pallido-ponto-nigral degeneration. Ann Neurol. 1992;32:312–20.PubMedCrossRef Wszolek ZK, Pfeiffer RF, Bhatt MH, et al. Rapidly progressive autosomal dominant parkinsonism and dementia with pallido-ponto-nigral degeneration. Ann Neurol. 1992;32:312–20.PubMedCrossRef
15.
go back to reference Yamaoka LH, Welsh-Bohmer KA, Hulette CM, et al. Linkage of frontotemporal dementia to chromosome 17: clinical and neuropathological characterization of phenotype. Am J Hum Genet. 1996;59:1306–12.PubMedPubMedCentral Yamaoka LH, Welsh-Bohmer KA, Hulette CM, et al. Linkage of frontotemporal dementia to chromosome 17: clinical and neuropathological characterization of phenotype. Am J Hum Genet. 1996;59:1306–12.PubMedPubMedCentral
16.
go back to reference Spillantini MG, Goedert M, Crowther RA, et al. Familial multiple system tauopathy with presenile dementia: a disease with abundant neuronal and glial tau filaments. Proc Natl Acad Sci U S A. 1997;94:4113–8.PubMedPubMedCentralCrossRef Spillantini MG, Goedert M, Crowther RA, et al. Familial multiple system tauopathy with presenile dementia: a disease with abundant neuronal and glial tau filaments. Proc Natl Acad Sci U S A. 1997;94:4113–8.PubMedPubMedCentralCrossRef
17.
go back to reference Foster NL, Wilhemsen K, Sima AA, et al. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Ann Neurol. 1997;41(6):706–15.PubMedCrossRef Foster NL, Wilhemsen K, Sima AA, et al. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Ann Neurol. 1997;41(6):706–15.PubMedCrossRef
18.
go back to reference Hutton M, Lendon CL, Rizzu P, et al. Association of missense and 5-prime-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998;393:702–5.PubMedCrossRef Hutton M, Lendon CL, Rizzu P, et al. Association of missense and 5-prime-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998;393:702–5.PubMedCrossRef
19.
go back to reference Spillantini MG, Bird TD, Ghetti B. Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol. 1998;8:387–402.PubMedCrossRef Spillantini MG, Bird TD, Ghetti B. Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol. 1998;8:387–402.PubMedCrossRef
20.
go back to reference Poorkaj P, Bird TD, Wijsman E, et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol. 1998;43:815–25.PubMedCrossRef Poorkaj P, Bird TD, Wijsman E, et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol. 1998;43:815–25.PubMedCrossRef
21.
go back to reference Van der Zee J, Van Broeckhoven C. Dementia in 2013: frontotemporal lobar degeneration-building on breakthroughs. Nat Rev Neurol. 2014;10(2):70–2.PubMedCrossRef Van der Zee J, Van Broeckhoven C. Dementia in 2013: frontotemporal lobar degeneration-building on breakthroughs. Nat Rev Neurol. 2014;10(2):70–2.PubMedCrossRef
22.
go back to reference • McCarthy A, Lonergan R, Olszewska DA, et al. Closing the tau loop: the missing tau mutation. Brain. 2015;138(Pt 10):3100–9. We reported an Irish family with autosomal dominant early amnesia and behavioural change or parkinsonism associated with the ‘missing’ +15 tau mutation at the intronic boundary of exon 10. This mutation was the final missing stem loop tau mutation predicted 15 years ago. Where amnesia or atypical parkinsonism coexists with behavioural symptoms early in the disease tau screening should be considered. PubMedPubMedCentralCrossRef • McCarthy A, Lonergan R, Olszewska DA, et al. Closing the tau loop: the missing tau mutation. Brain. 2015;138(Pt 10):3100–9. We reported an Irish family with autosomal dominant early amnesia and behavioural change or parkinsonism associated with the ‘missing’ +15 tau mutation at the intronic boundary of exon 10. This mutation was the final missing stem loop tau mutation predicted 15 years ago. Where amnesia or atypical parkinsonism coexists with behavioural symptoms early in the disease tau screening should be considered. PubMedPubMedCentralCrossRef
23.
go back to reference Iijima M, Takeshi T, Poorkaj P, et al. A distinct familial presenile dementia with a novel missense mutation in the tau gene. Neuroreport. 1999;10:497–501.PubMedCrossRef Iijima M, Takeshi T, Poorkaj P, et al. A distinct familial presenile dementia with a novel missense mutation in the tau gene. Neuroreport. 1999;10:497–501.PubMedCrossRef
24.
go back to reference Grover A, Houlden H, Baker M, et al. 5′ splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem-loop structure that regulates alternative splicing of exon 10. J Biol Chem. 1999;274:15134–43.PubMedCrossRef Grover A, Houlden H, Baker M, et al. 5′ splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem-loop structure that regulates alternative splicing of exon 10. J Biol Chem. 1999;274:15134–43.PubMedCrossRef
25.
go back to reference Stanford PM, Halliday GM, Brooks WS, et al. Progressive supranuclear palsy pathology caused by a novel silent mutation in exon 10 of the tau gene: expansion of the disease phenotype caused by tau gene mutations. Brain J Neurol. 2000;123(Pt 5):880–93.CrossRef Stanford PM, Halliday GM, Brooks WS, et al. Progressive supranuclear palsy pathology caused by a novel silent mutation in exon 10 of the tau gene: expansion of the disease phenotype caused by tau gene mutations. Brain J Neurol. 2000;123(Pt 5):880–93.CrossRef
26.
go back to reference Yasuda M, Takamatsu J, D’Souza I, et al. A novel mutation at position + 12 in the intron following exon 10 of the tau gene in familial frontotemporal dementia (FTD-Kumamoto). Ann Neurol. 2000;47:422–9.PubMedCrossRef Yasuda M, Takamatsu J, D’Souza I, et al. A novel mutation at position + 12 in the intron following exon 10 of the tau gene in familial frontotemporal dementia (FTD-Kumamoto). Ann Neurol. 2000;47:422–9.PubMedCrossRef
28.
29.
go back to reference Baker M, Litvan I, Houlden H, et al. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet. 1999;8(4):711–5.PubMedCrossRef Baker M, Litvan I, Houlden H, et al. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet. 1999;8(4):711–5.PubMedCrossRef
30.
go back to reference de Silva R, Weiler M, Morris HR, et al. Strong association of a novel Tau promoter haplotype in progressive supranuclear palsy. Neurosci Lett. 2001;311(3):145–8.PubMedCrossRef de Silva R, Weiler M, Morris HR, et al. Strong association of a novel Tau promoter haplotype in progressive supranuclear palsy. Neurosci Lett. 2001;311(3):145–8.PubMedCrossRef
31.
go back to reference Houlden H, Baker M, Morris HR, et al. Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology. 2001;56(12):1702–6.PubMedCrossRef Houlden H, Baker M, Morris HR, et al. Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology. 2001;56(12):1702–6.PubMedCrossRef
32.
go back to reference Verpillat P, Camuzat A, Hannequin D, et al. Association between the extended tau haplotype and frontotemporal dementia. Arch Neurol. 2002;59(6):935–9.PubMedCrossRef Verpillat P, Camuzat A, Hannequin D, et al. Association between the extended tau haplotype and frontotemporal dementia. Arch Neurol. 2002;59(6):935–9.PubMedCrossRef
33.
go back to reference Hughes A, Mann D, Pickering-Brown S. Tau haplotype frequency in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Exp Neurol. 2003;181(1):12–6.PubMedCrossRef Hughes A, Mann D, Pickering-Brown S. Tau haplotype frequency in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Exp Neurol. 2003;181(1):12–6.PubMedCrossRef
34.
go back to reference Borroni B, Yancopoulou D, Tsutsui M, et al. Association between Tau H2 haplotype and age at onset in frontotemporal dementia. Arch Neurol. 2005;62(9):1419–22.PubMedCrossRef Borroni B, Yancopoulou D, Tsutsui M, et al. Association between Tau H2 haplotype and age at onset in frontotemporal dementia. Arch Neurol. 2005;62(9):1419–22.PubMedCrossRef
35.
go back to reference Pastor P, Moreno F, Clarimón J, et al. MAPT H1 haplotype is associated with late-onset alzheimer’s disease risk in APOEɛ4 noncarriers: results from the Dementia Genetics Spanish Consortium. J Alzheimers Dis. 2015;49(2):343–52.CrossRef Pastor P, Moreno F, Clarimón J, et al. MAPT H1 haplotype is associated with late-onset alzheimer’s disease risk in APOEɛ4 noncarriers: results from the Dementia Genetics Spanish Consortium. J Alzheimers Dis. 2015;49(2):343–52.CrossRef
36.
go back to reference Ghetti B, Oblak AL, Boeve BF, et al. Invited review: frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathol Appl Neurobiol. 2015;41(1):24–46.PubMedPubMedCentralCrossRef Ghetti B, Oblak AL, Boeve BF, et al. Invited review: frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathol Appl Neurobiol. 2015;41(1):24–46.PubMedPubMedCentralCrossRef
37.
go back to reference Sieben A, Van Langenhove T, Engelborghs S, et al. The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol. 2012;124(3):353–72.PubMedPubMedCentralCrossRef Sieben A, Van Langenhove T, Engelborghs S, et al. The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol. 2012;124(3):353–72.PubMedPubMedCentralCrossRef
38.
go back to reference O’Dowd S, Murray B, Roberts K, et al. Pallidopontonigral degeneration: a deceptive familial tauopathy. Mov Disord. 2012;27(7):817–9.PubMedCrossRef O’Dowd S, Murray B, Roberts K, et al. Pallidopontonigral degeneration: a deceptive familial tauopathy. Mov Disord. 2012;27(7):817–9.PubMedCrossRef
39.
go back to reference Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51:1546–54.PubMedCrossRef Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51:1546–54.PubMedCrossRef
40.
go back to reference Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain J Neurol. 2011;134(Pt 9):2456–77.CrossRef Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain J Neurol. 2011;134(Pt 9):2456–77.CrossRef
41.
go back to reference • Rohrer JD, Nicholas JM, Cash DM, et al. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the genetic frontotemporal dementia initiative (GENFI) study: a cross-sectional analysis. Lancet Neurol. 2015;14:253–62. Rohrer et al. recruited participants from 11 research sites and analyzed data form 118 mutation carriers (40 symptomatic and 78 asymptomatic) and 102 non-carriers. This study showed that changes in structural imaging and cognition can be identified 5–10 years before expected onset of symptoms in asymptomatic adults at risk of FTD and could help to develop FTD biomarkers. PubMedCrossRef • Rohrer JD, Nicholas JM, Cash DM, et al. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the genetic frontotemporal dementia initiative (GENFI) study: a cross-sectional analysis. Lancet Neurol. 2015;14:253–62. Rohrer et al. recruited participants from 11 research sites and analyzed data form 118 mutation carriers (40 symptomatic and 78 asymptomatic) and 102 non-carriers. This study showed that changes in structural imaging and cognition can be identified 5–10 years before expected onset of symptoms in asymptomatic adults at risk of FTD and could help to develop FTD biomarkers. PubMedCrossRef
42.
go back to reference Mahoney CJ, Downey LE, Ridgway GR, et al. Longitudinal neuroimaging and neuropsychological profiles of frontotemporal dementia with C9ORF72 expansions. Alzheimers Res Ther. 2012;4:41–51.PubMedPubMedCentralCrossRef Mahoney CJ, Downey LE, Ridgway GR, et al. Longitudinal neuroimaging and neuropsychological profiles of frontotemporal dementia with C9ORF72 expansions. Alzheimers Res Ther. 2012;4:41–51.PubMedPubMedCentralCrossRef
43.
go back to reference Spina S, Farlow MR, Unverzagt FW, et al. The tauopathy associated with mutation +3 in intron 10 of Tau: characterization of the MSTD family. Brain. 2008;131:72–89.PubMedCrossRef Spina S, Farlow MR, Unverzagt FW, et al. The tauopathy associated with mutation +3 in intron 10 of Tau: characterization of the MSTD family. Brain. 2008;131:72–89.PubMedCrossRef
44.
go back to reference Whitwell JL, Weigand SD, Gunter JL, et al. Trajectories of brain and hippocampal atrophy in FTD with mutations in MAPT or GRN. Neurology. 2011;77:393–8.PubMedPubMedCentralCrossRef Whitwell JL, Weigand SD, Gunter JL, et al. Trajectories of brain and hippocampal atrophy in FTD with mutations in MAPT or GRN. Neurology. 2011;77:393–8.PubMedPubMedCentralCrossRef
45.
go back to reference • Mahoney CJ, Simpson I, Nicholas JM, et al. Longitudinal diffusion tensor imaging in frontotemporal dementia. Ann Neurol. 2015;77(1):33–46. Mahoney et al. reported on serial diffusion tensor imaging (DTI) scans usefulness in monitoring bvFTD disease progression (at baseline and 1.3 years later) in 23 patients with bvFTD (12 with genetic mutations). PubMedCrossRef • Mahoney CJ, Simpson I, Nicholas JM, et al. Longitudinal diffusion tensor imaging in frontotemporal dementia. Ann Neurol. 2015;77(1):33–46. Mahoney et al. reported on serial diffusion tensor imaging (DTI) scans usefulness in monitoring bvFTD disease progression (at baseline and 1.3 years later) in 23 patients with bvFTD (12 with genetic mutations). PubMedCrossRef
46.
47.
go back to reference Dopper EG, Rombouts SA, Jiskoot LC, et al. Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia. Neurology. 2013;80:814–23.PubMedPubMedCentralCrossRef Dopper EG, Rombouts SA, Jiskoot LC, et al. Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia. Neurology. 2013;80:814–23.PubMedPubMedCentralCrossRef
48.
go back to reference Rowe CC, Villemagne VL. Brain amyloid imaging. J Nucl Med. 2011;52:1733–40.PubMed Rowe CC, Villemagne VL. Brain amyloid imaging. J Nucl Med. 2011;52:1733–40.PubMed
49.
go back to reference Thompson PW, Ye L, Morgenstern JL, et al. Interaction of the amyloid imaging tracer fddnp with hallmark Alzheimer’s disease pathologies. J Neurochem. 2009;109:623–30.PubMedPubMedCentralCrossRef Thompson PW, Ye L, Morgenstern JL, et al. Interaction of the amyloid imaging tracer fddnp with hallmark Alzheimer’s disease pathologies. J Neurochem. 2009;109:623–30.PubMedPubMedCentralCrossRef
50.
go back to reference Harada R, Okamura N, Furumoto S, et al. Comparison of the binding characteristics of [18F]THK-523 and other amyloid imaging tracers to Alzheimer’s disease pathology. Eur J Nucl Med Mol Imaging. 2013;40:125–32.PubMedCrossRef Harada R, Okamura N, Furumoto S, et al. Comparison of the binding characteristics of [18F]THK-523 and other amyloid imaging tracers to Alzheimer’s disease pathology. Eur J Nucl Med Mol Imaging. 2013;40:125–32.PubMedCrossRef
51.
go back to reference Maruyama M, Shimada H, Suhara T, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79:1094–108.PubMedCrossRef Maruyama M, Shimada H, Suhara T, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79:1094–108.PubMedCrossRef
52.
go back to reference Zhang W, Arteaga J, Cashion DK, et al. A highly selective and specific pet tracer for imaging of tau pathologies. J Alzheimers Dis. 2012;31:601–12.PubMed Zhang W, Arteaga J, Cashion DK, et al. A highly selective and specific pet tracer for imaging of tau pathologies. J Alzheimers Dis. 2012;31:601–12.PubMed
53.
go back to reference • Smith R, Puschmann A, Scholl M, et al. 18 F-AV-I45i tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers. Brain. 2016;139(Pt 9):2372–9. Smith et al. showed that positron emission tomography imaging with (18)F-AV-1451 accurately quantifies in vivo regional distribution of hyperphophorylated tau protein in a study of three patients (pre-mortem PET findings and post-mortem results). PubMedPubMedCentralCrossRef • Smith R, Puschmann A, Scholl M, et al. 18 F-AV-I45i tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers. Brain. 2016;139(Pt 9):2372–9. Smith et al. showed that positron emission tomography imaging with (18)F-AV-1451 accurately quantifies in vivo regional distribution of hyperphophorylated tau protein in a study of three patients (pre-mortem PET findings and post-mortem results). PubMedPubMedCentralCrossRef
54.
go back to reference Marquie M, Normandin MD, Vanderburg CR, et al. Validating novel tau PET tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015;78(5):787–800.PubMedPubMedCentralCrossRef Marquie M, Normandin MD, Vanderburg CR, et al. Validating novel tau PET tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015;78(5):787–800.PubMedPubMedCentralCrossRef
55.
go back to reference Fodero-Tavoletti MT, Okamura N, Furumoto S, et al. 18F-THK523: A novel in vivo tau imaging ligand for Alzheimer’s disease. Brain. 2011;134:1089–100.PubMedCrossRef Fodero-Tavoletti MT, Okamura N, Furumoto S, et al. 18F-THK523: A novel in vivo tau imaging ligand for Alzheimer’s disease. Brain. 2011;134:1089–100.PubMedCrossRef
56.
go back to reference Fodero-Tavoletti MT, Furumoto S, Taylor L, et al. Assessing THK523 selectivity for tau deposits in Alzheimer’s disease and non-Alzheimer’s disease tauopathies. Alzheimers Res Ther. 2014;6:1.CrossRef Fodero-Tavoletti MT, Furumoto S, Taylor L, et al. Assessing THK523 selectivity for tau deposits in Alzheimer’s disease and non-Alzheimer’s disease tauopathies. Alzheimers Res Ther. 2014;6:1.CrossRef
57.
go back to reference Okamura N, Furumoto S, Harada R, et al. Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease. J Nucl Med. 2013;54:1420–7.PubMedCrossRef Okamura N, Furumoto S, Harada R, et al. Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease. J Nucl Med. 2013;54:1420–7.PubMedCrossRef
58.
go back to reference • Matsumura K, Ono M, Kitada A, et al. Structure-activity relationship study of heterocyclic phenylethenyl and pyridinylethenyl derivatives as tau-imaging agents that selectively detect neurofibrillary tangles in Alzheimer’s disease brains. J Med Chem. 2015;58:7241–57. Matsumura et al. reported on the novel tau-imaging agents that can selectively detect neurofibrillary tangles in Alzheimer’s disease (AD) brains, and suggested that a phenylethenyl benzimidazole derivative ([(125)I]64) may be a new candidate for tau-imaging. PubMedCrossRef • Matsumura K, Ono M, Kitada A, et al. Structure-activity relationship study of heterocyclic phenylethenyl and pyridinylethenyl derivatives as tau-imaging agents that selectively detect neurofibrillary tangles in Alzheimer’s disease brains. J Med Chem. 2015;58:7241–57. Matsumura et al. reported on the novel tau-imaging agents that can selectively detect neurofibrillary tangles in Alzheimer’s disease (AD) brains, and suggested that a phenylethenyl benzimidazole derivative ([(125)I]64) may be a new candidate for tau-imaging. PubMedCrossRef
59.
go back to reference Sima AA, Defendini R, Keohane C, et al. The neuropathology of chromosome 17-linked dementia. Ann Neurol. 1996;39:734–43.PubMedCrossRef Sima AA, Defendini R, Keohane C, et al. The neuropathology of chromosome 17-linked dementia. Ann Neurol. 1996;39:734–43.PubMedCrossRef
60.
go back to reference Mackenzie IR, Neumann M. Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies. J Neurochem. 2016;138 Suppl 1:54–70.PubMedCrossRef Mackenzie IR, Neumann M. Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies. J Neurochem. 2016;138 Suppl 1:54–70.PubMedCrossRef
61.
go back to reference Togo T, Dickson DW. Tau accumulation in astrocytes in progressive supranuclear palsy is a degenerative rather than a reactive process. Acta Neuropathol. 2002;104(4):398–402.PubMed Togo T, Dickson DW. Tau accumulation in astrocytes in progressive supranuclear palsy is a degenerative rather than a reactive process. Acta Neuropathol. 2002;104(4):398–402.PubMed
62.
go back to reference de Silva R, Lashley T, Gibb G. Pathological inclusion bodies in tauopathies contain distinct complements of tau with three or four microtubule-binding repeat domains as demonstrated by new specific monoclonal antibodies. Neuropathol Appl Neurobiol. 2003;29(3):288–302.PubMedCrossRef de Silva R, Lashley T, Gibb G. Pathological inclusion bodies in tauopathies contain distinct complements of tau with three or four microtubule-binding repeat domains as demonstrated by new specific monoclonal antibodies. Neuropathol Appl Neurobiol. 2003;29(3):288–302.PubMedCrossRef
63.
go back to reference McDermott JB, Aamodt S, Aamodt E. ptl-1, a Caenorhabditis elegans gene whose products are homologous to the tau microtubule-associated proteins. Biochemistry. 1996;35:9415–23.PubMedCrossRef McDermott JB, Aamodt S, Aamodt E. ptl-1, a Caenorhabditis elegans gene whose products are homologous to the tau microtubule-associated proteins. Biochemistry. 1996;35:9415–23.PubMedCrossRef
64.
go back to reference Denk F, Wade-Martins R. Knockout and transgenic mouse models of tauopathies. Neurobiol Aging. 2009;30(1):1–13.PubMedCrossRef Denk F, Wade-Martins R. Knockout and transgenic mouse models of tauopathies. Neurobiol Aging. 2009;30(1):1–13.PubMedCrossRef
65.
go back to reference Gistelinck M, Lambert JC, Callaerts P, et al. Drosophila models of tauopathies: what have we learned? Int J Alzheimers Dis. 2012;2012:970980.PubMedPubMedCentral Gistelinck M, Lambert JC, Callaerts P, et al. Drosophila models of tauopathies: what have we learned? Int J Alzheimers Dis. 2012;2012:970980.PubMedPubMedCentral
67.
go back to reference Umeda T, Yamashita T, Kimura T, et al. Neurodegenerative disorder FTDP-17-related tau intron 10 + 16C → T mutation increases tau exon 10 splicing and causes tauopathy in transgenic mice. J Pathol. 2013;183(1):211–25. Umeda T, Yamashita T, Kimura T, et al. Neurodegenerative disorder FTDP-17-related tau intron 10 + 16C → T mutation increases tau exon 10 splicing and causes tauopathy in transgenic mice. J Pathol. 2013;183(1):211–25.
68.
go back to reference Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci. 2007;27(34):9115–29.PubMedCrossRef Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci. 2007;27(34):9115–29.PubMedCrossRef
69.
go back to reference Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci. 2010;30(49):16559–66.PubMedPubMedCentralCrossRef Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci. 2010;30(49):16559–66.PubMedPubMedCentralCrossRef
71.
go back to reference Rosenmann H, Grigoriadis N, Karussis D, et al. Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Arch Neurol. 2006;63:1459–67.PubMedCrossRef Rosenmann H, Grigoriadis N, Karussis D, et al. Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Arch Neurol. 2006;63:1459–67.PubMedCrossRef
72.
go back to reference Avila J, Pallas N, Bolós M, et al. Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies. Expert Opin Ther Targets. 2016;20(6):653–61.PubMedCrossRef Avila J, Pallas N, Bolós M, et al. Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies. Expert Opin Ther Targets. 2016;20(6):653–61.PubMedCrossRef
73.
go back to reference Harrington CR, Storey JM, Clunas S, et al. Cellular models of aggregation-dependent template-directed proteolysis to characterize tau aggregation inhibitors for treatment of Alzheimer disease. J Biol Chem. 2015;290(17):10862–75.PubMedPubMedCentralCrossRef Harrington CR, Storey JM, Clunas S, et al. Cellular models of aggregation-dependent template-directed proteolysis to characterize tau aggregation inhibitors for treatment of Alzheimer disease. J Biol Chem. 2015;290(17):10862–75.PubMedPubMedCentralCrossRef
74.
go back to reference Lendon CL, Lynch T, Norton J. Hereditary dysphasic disinhibition dementia: a frontotemporal dementia linked to 17q21-22. Neurology. 1998;50(6):1546–55.PubMedCrossRef Lendon CL, Lynch T, Norton J. Hereditary dysphasic disinhibition dementia: a frontotemporal dementia linked to 17q21-22. Neurology. 1998;50(6):1546–55.PubMedCrossRef
75.
go back to reference Cruts M, Gijselinks I, Van der Zee J, et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature. 2006;443(7105):920–3.CrossRef Cruts M, Gijselinks I, Van der Zee J, et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature. 2006;443(7105):920–3.CrossRef
76.
go back to reference Bateman A, Bennett HP. The granulin gene family: from cancer to dementia. Bioessays. 2009;31(11):1245–54.PubMedCrossRef Bateman A, Bennett HP. The granulin gene family: from cancer to dementia. Bioessays. 2009;31(11):1245–54.PubMedCrossRef
78.
go back to reference Baker M, Mackenzie IR, Pickering-Brown SM, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442:916–9.PubMedCrossRef Baker M, Mackenzie IR, Pickering-Brown SM, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442:916–9.PubMedCrossRef
79.
go back to reference Nicholson AM, Gass J, Petrucelli L, Rademakers R. Progranulin axis and recent developments in frontotemporal lobar degeneration. Alzheimers Res Ther. 2012;4(1):4.PubMedPubMedCentralCrossRef Nicholson AM, Gass J, Petrucelli L, Rademakers R. Progranulin axis and recent developments in frontotemporal lobar degeneration. Alzheimers Res Ther. 2012;4(1):4.PubMedPubMedCentralCrossRef
80.
go back to reference Eriksen JL, Mackenzie IRA. Progranulin: normal function and role in neurodegeneration. J Neurochem. 2008;104(2):287–97.PubMed Eriksen JL, Mackenzie IRA. Progranulin: normal function and role in neurodegeneration. J Neurochem. 2008;104(2):287–97.PubMed
81.
go back to reference Benussi L, Ghidoni R, Binetti G. Progranulin mutations are a common cause of FTLD in Northern Italy. Alzheimer Dis Assoc Disord. 2010;24(3):308–9.PubMedCrossRef Benussi L, Ghidoni R, Binetti G. Progranulin mutations are a common cause of FTLD in Northern Italy. Alzheimer Dis Assoc Disord. 2010;24(3):308–9.PubMedCrossRef
82.
go back to reference Le Ber I, Camuzat A, Hannequin D, et al. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain. 2008;131(Pt 3):732–46.PubMedCrossRef Le Ber I, Camuzat A, Hannequin D, et al. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain. 2008;131(Pt 3):732–46.PubMedCrossRef
83.
go back to reference Rohrer JD. The genetics of primary progressive aphasia. Aphasiology. 2014;28(8-9):941–7.CrossRef Rohrer JD. The genetics of primary progressive aphasia. Aphasiology. 2014;28(8-9):941–7.CrossRef
84.
go back to reference Premi E, Cauda F, Gasparotti R, et al. Multimodal FMRI resting-state functional connectivity in granulin mutations: the case of fronto-parietal dementia. PLoS One. 2014;9(9):e106500.PubMedPubMedCentralCrossRef Premi E, Cauda F, Gasparotti R, et al. Multimodal FMRI resting-state functional connectivity in granulin mutations: the case of fronto-parietal dementia. PLoS One. 2014;9(9):e106500.PubMedPubMedCentralCrossRef
85.
go back to reference Kayasuga Y, Chiba S, Suzuki M, et al. Alteration of behavioural phenotype in mice by targeted disruption of the progranulin gene. Behav Brain Res. 2007;185(2):110–8.PubMedCrossRef Kayasuga Y, Chiba S, Suzuki M, et al. Alteration of behavioural phenotype in mice by targeted disruption of the progranulin gene. Behav Brain Res. 2007;185(2):110–8.PubMedCrossRef
86.
go back to reference Yin F, Banerjee R, Thomas B, et al. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med. 2010;207(1):117–28.PubMedPubMedCentralCrossRef Yin F, Banerjee R, Thomas B, et al. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med. 2010;207(1):117–28.PubMedPubMedCentralCrossRef
87.
go back to reference Ahmed Z, Sheng H, Xu YF, et al. Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggest a role for progranulin in successful aging. Am J Pathol. 2010;177:311–24.PubMedPubMedCentralCrossRef Ahmed Z, Sheng H, Xu YF, et al. Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggest a role for progranulin in successful aging. Am J Pathol. 2010;177:311–24.PubMedPubMedCentralCrossRef
88.
go back to reference Yin F, Dumont M, Banerjee R, et al. Behavioral deficits and progressive neuropathology in progranulin-deficient mice: a mouse model of frontotemporal dementia. FASEB J. 2010;24:4639–47.PubMedPubMedCentralCrossRef Yin F, Dumont M, Banerjee R, et al. Behavioral deficits and progressive neuropathology in progranulin-deficient mice: a mouse model of frontotemporal dementia. FASEB J. 2010;24:4639–47.PubMedPubMedCentralCrossRef
90.
91.
go back to reference Meeter LHH, Patzke H, Loewen G, et al. Progranulin Levels in Plasma and Cerebrospinal Fluid in Granulin Mutation Carriers. Dement Geriatr Cogn Dis Extra. 2016;6:330–40.PubMedPubMedCentralCrossRef Meeter LHH, Patzke H, Loewen G, et al. Progranulin Levels in Plasma and Cerebrospinal Fluid in Granulin Mutation Carriers. Dement Geriatr Cogn Dis Extra. 2016;6:330–40.PubMedPubMedCentralCrossRef
92.
go back to reference Finch N, Baker M, Crook R, et al. Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain. 2009;132(3):583–91.PubMedPubMedCentralCrossRef Finch N, Baker M, Crook R, et al. Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain. 2009;132(3):583–91.PubMedPubMedCentralCrossRef
93.
go back to reference DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked frontotemporal dementia and amyotrophic lateral sclerosis. Neuron. 2011;72(2):245–56.PubMedPubMedCentralCrossRef DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked frontotemporal dementia and amyotrophic lateral sclerosis. Neuron. 2011;72(2):245–56.PubMedPubMedCentralCrossRef
94.
go back to reference Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–68.PubMedPubMedCentralCrossRef Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–68.PubMedPubMedCentralCrossRef
95.
go back to reference O’Dowd S, Curtin D, Waite AJ, et al. C9ORF72 expansion in amyotrophic lateral sclerosis/frontotemporal dementia also causes parkinsonism. Mov Disord. 2012;27(8):1072–4.PubMedPubMedCentralCrossRef O’Dowd S, Curtin D, Waite AJ, et al. C9ORF72 expansion in amyotrophic lateral sclerosis/frontotemporal dementia also causes parkinsonism. Mov Disord. 2012;27(8):1072–4.PubMedPubMedCentralCrossRef
96.
go back to reference Gramaglia C, Cantello R, Terazzi E, et al. Early onset frontotemporal dementia with psychiatric presentation due to the C9ORF72 hexanucleotide repeat expansion: a case report. BMC Neurol. 2014;14:228.PubMedPubMedCentralCrossRef Gramaglia C, Cantello R, Terazzi E, et al. Early onset frontotemporal dementia with psychiatric presentation due to the C9ORF72 hexanucleotide repeat expansion: a case report. BMC Neurol. 2014;14:228.PubMedPubMedCentralCrossRef
97.
go back to reference Mahoney CJ, Beck J, Rohrer JD, et al. Frontotemporal dementia with C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. Brain. 2012;135:736–50.PubMedPubMedCentralCrossRef Mahoney CJ, Beck J, Rohrer JD, et al. Frontotemporal dementia with C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. Brain. 2012;135:736–50.PubMedPubMedCentralCrossRef
98.
go back to reference Rohrer JD, Isaacs AM, Mizielinska S, et al. C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. Lancet Neurol. 2015;14(3):291–301.PubMedCrossRef Rohrer JD, Isaacs AM, Mizielinska S, et al. C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. Lancet Neurol. 2015;14(3):291–301.PubMedCrossRef
99.
go back to reference Irwin DJ, Cairns NJ, Grossman M, et al. Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathol. 2015;129:469–91.PubMedCrossRef Irwin DJ, Cairns NJ, Grossman M, et al. Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathol. 2015;129:469–91.PubMedCrossRef
100.
go back to reference Mizielinska S, Grönke S, Niccoli T, et al. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science. 2014;345(6201):1192–4.PubMedPubMedCentralCrossRef Mizielinska S, Grönke S, Niccoli T, et al. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science. 2014;345(6201):1192–4.PubMedPubMedCentralCrossRef
101.
go back to reference Borroni B, Bonvicini C, Alberici A, et al. Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum Mutat. 2009;30:E974–83.PubMedCrossRef Borroni B, Bonvicini C, Alberici A, et al. Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum Mutat. 2009;30:E974–83.PubMedCrossRef
102.
go back to reference Floris G, Borghero G, Cannas A, et al. Clinical phenotypes and radiological findings in frontotemporal dementia related to TARDBP mutations. J Neurol. 2015;262(2):375–84.PubMedCrossRef Floris G, Borghero G, Cannas A, et al. Clinical phenotypes and radiological findings in frontotemporal dementia related to TARDBP mutations. J Neurol. 2015;262(2):375–84.PubMedCrossRef
103.
go back to reference Huey ED, Ferrari R, Moreno JH, et al. FUS and TDP43 genetic variability in FTD and CBS. Neurobiol Aging. 2012;33(5):1016.e9–17.CrossRef Huey ED, Ferrari R, Moreno JH, et al. FUS and TDP43 genetic variability in FTD and CBS. Neurobiol Aging. 2012;33(5):1016.e9–17.CrossRef
104.
go back to reference Gydesen S, Brown JM, Brun A, et al. Chromosome 3 linked frontotemporal dementia (FTD-3). Neurology. 2002;59(10):1585–94.PubMedCrossRef Gydesen S, Brown JM, Brun A, et al. Chromosome 3 linked frontotemporal dementia (FTD-3). Neurology. 2002;59(10):1585–94.PubMedCrossRef
105.
go back to reference Rohrer JD, Ahsan RL, Isaacs AM, et al. Presymptomatic generalized brain atrophy in frontotemporal dementia caused by CHMP2B mutation. Dement Geriatr Cogn Disord. 2009;27(2):182–6.PubMedCrossRef Rohrer JD, Ahsan RL, Isaacs AM, et al. Presymptomatic generalized brain atrophy in frontotemporal dementia caused by CHMP2B mutation. Dement Geriatr Cogn Disord. 2009;27(2):182–6.PubMedCrossRef
106.
go back to reference Eskildsen SF, Østergaard LR, Rodell AB, et al. Cortical volumes and atrophy rates in FTD-3 CHMP2B mutation carriers and related non-carriers. Neuroimage. 2009;45(3):713–21.PubMedCrossRef Eskildsen SF, Østergaard LR, Rodell AB, et al. Cortical volumes and atrophy rates in FTD-3 CHMP2B mutation carriers and related non-carriers. Neuroimage. 2009;45(3):713–21.PubMedCrossRef
107.
108.
go back to reference Gijselinck I, Van Mossevelde S, van der Zee J, et al. Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology. 2015;85(24):2116–25.PubMedPubMedCentralCrossRef Gijselinck I, Van Mossevelde S, van der Zee J, et al. Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology. 2015;85(24):2116–25.PubMedPubMedCentralCrossRef
109.
110.
go back to reference Lasek K, Lencer R, Gaser C, et al. Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain. 2006;129:2341–52.PubMedCrossRef Lasek K, Lencer R, Gaser C, et al. Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain. 2006;129:2341–52.PubMedCrossRef
111.
go back to reference Bruni AC, Takahashi-Fujigasaki J, Maltecca F, et al. Behavioral Disorder, dementia, ataxia, and rigidity in a large family with TATA box-binding protein mutation. Arch Neurol. 2004;61(8):1314–20.PubMedCrossRef Bruni AC, Takahashi-Fujigasaki J, Maltecca F, et al. Behavioral Disorder, dementia, ataxia, and rigidity in a large family with TATA box-binding protein mutation. Arch Neurol. 2004;61(8):1314–20.PubMedCrossRef
112.
go back to reference Koutsis G, Panas M, Paraskevas GP, et al. From mild ataxia to huntington disease phenocopy: the multiple faces of spinocerebellar ataxia 17. Case Rep Neurol Med. 2014;2014:643289.PubMedPubMedCentral Koutsis G, Panas M, Paraskevas GP, et al. From mild ataxia to huntington disease phenocopy: the multiple faces of spinocerebellar ataxia 17. Case Rep Neurol Med. 2014;2014:643289.PubMedPubMedCentral
113.
go back to reference O’Keeffe FM, Murray B, Coen RF, et al. Loss of insight in frontotemporal dementia, corticobasal degeneration and progressive supranuclear palsy. Brain. 2007;130(Pt 3):753–64.PubMedCrossRef O’Keeffe FM, Murray B, Coen RF, et al. Loss of insight in frontotemporal dementia, corticobasal degeneration and progressive supranuclear palsy. Brain. 2007;130(Pt 3):753–64.PubMedCrossRef
Metadata
Title
Genetics of Frontotemporal Dementia
Authors
Diana A. Olszewska
Roisin Lonergan
Emer M. Fallon
Tim Lynch
Publication date
01-12-2016
Publisher
Springer US
Published in
Current Neurology and Neuroscience Reports / Issue 12/2016
Print ISSN: 1528-4042
Electronic ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-016-0707-9

Other articles of this Issue 12/2016

Current Neurology and Neuroscience Reports 12/2016 Go to the issue

Infection (J Halperin, Section Editor)

Bacterial Endocarditis and Cerebrovascular Disease

Demyelinating Disorders (DN Bourdette and M Cameron, Section Editors)

Mental Health Comorbidity in MS: Depression, Anxiety, and Bipolar Disorder