Skip to main content
Top
Published in: Current Hematologic Malignancy Reports 2/2019

01-04-2019 | Acute Lymphoblastic Leukemia | Acute Lymphocytic Leukemias (K Ballen and M Keng, Section Editors)

Relapsed T Cell ALL: Current Approaches and New Directions

Authors: Christine M. McMahon, Selina M. Luger

Published in: Current Hematologic Malignancy Reports | Issue 2/2019

Login to get access

Abstract

Purpose of Review

Patients with relapsed T cell acute lymphoblastic leukemia (T-ALL) have limited therapeutic options and a poor prognosis. Although a variety of salvage chemotherapy regimens may be used, response rates are unsatisfactory. This article summarizes current approaches and promising emerging strategies for the treatment of relapsed T-ALL.

Recent Findings

Although nelarabine is the only agent approved specifically for T-ALL, recent studies have identified a variety of genetic alterations and signaling pathways that are critical in its pathogenesis. Based on these findings, a number of small-molecule inhibitors and other targeted therapies are being studied for relapsed T-ALL, including gamma-secretase inhibitors, BCL-2 inhibitors, cyclin-dependent kinase inhibitors, and mTOR inhibitors. In addition, pre-clinical studies of chimeric antigen receptor T cells targeting CD5 and CD7 as well as the monoclonal antibody daratumumab have shown promising results for T-ALL.

Summary

Relapsed T-ALL currently remains challenging to treat, but recent pre-clinical studies of targeted and immunotherapeutic agents have shown encouraging results. A number of clinical trials investigating these approaches for T-ALL are currently underway.
Literature
1.
go back to reference Dores GM, Devesa SS, Curtis RE, Linet MS, Morton LM, Dores GM, et al. Acute leukemia incidence and patient survival among children and adults in the United States, 2001–2007. Blood. 2011;119:34–43.CrossRefPubMed Dores GM, Devesa SS, Curtis RE, Linet MS, Morton LM, Dores GM, et al. Acute leukemia incidence and patient survival among children and adults in the United States, 2001–2007. Blood. 2011;119:34–43.CrossRefPubMed
2.
go back to reference Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the Children’s Oncology Group. J Clin Oncol. 2012;(30):1663–9. Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the Children’s Oncology Group. J Clin Oncol. 2012;(30):1663–9.
3.
go back to reference Winter SS, Dunsmore KP, Devidas M, Wood BL, Esiashvili N, Chen Z, et al. Improved survival for children and young adults with T-lineage acute lymphoblastic leukemia: results from the Children’s Oncology Group AALL0434 methotrexate randomization. J Clin Oncol. 2018;36:2926–34.CrossRefPubMedPubMedCentral Winter SS, Dunsmore KP, Devidas M, Wood BL, Esiashvili N, Chen Z, et al. Improved survival for children and young adults with T-lineage acute lymphoblastic leukemia: results from the Children’s Oncology Group AALL0434 methotrexate randomization. J Clin Oncol. 2018;36:2926–34.CrossRefPubMedPubMedCentral
4.
go back to reference Marks DI, Paietta EM, Moorman AV, Richards SM, Buck G, Dewald G, et al. T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial (UKALL XII/ECOG 2993). Blood. 2009;114:5136–45.CrossRefPubMedPubMedCentral Marks DI, Paietta EM, Moorman AV, Richards SM, Buck G, Dewald G, et al. T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial (UKALL XII/ECOG 2993). Blood. 2009;114:5136–45.CrossRefPubMedPubMedCentral
5.
go back to reference Stock W, Luger SM, Advani AS, Geyer S, Harvey RC, Mullighan CG, et al. Favorable outcomes for older adolescents and young adults (AYA) with acute lymphoblastic leukemia (ALL): early results of U.S. Intergroup Trial C10403 [Abstract]. Blood. 2014;124:796. Stock W, Luger SM, Advani AS, Geyer S, Harvey RC, Mullighan CG, et al. Favorable outcomes for older adolescents and young adults (AYA) with acute lymphoblastic leukemia (ALL): early results of U.S. Intergroup Trial C10403 [Abstract]. Blood. 2014;124:796.
6.
go back to reference Marks DI, Rowntree C. Management of adults with T-cell lymphoblastic leukemia. Blood. 2017;129:1134–42.CrossRefPubMed Marks DI, Rowntree C. Management of adults with T-cell lymphoblastic leukemia. Blood. 2017;129:1134–42.CrossRefPubMed
7.
go back to reference •• Beldjord K, Chevret S, Asnafi V, Boulland M-L, Leguay T, Thomas X, et al. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. 2016;123:3739–50 Beldjord et al. analyzed MRD levels in patients with T-ALL and B cell precursor ALL following induction chemotherapy and demonstrated that post-induction MRD levels ≥ 10 −4 predicted an increased risk of relapse. •• Beldjord K, Chevret S, Asnafi V, Boulland M-L, Leguay T, Thomas X, et al. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. 2016;123:3739–50 Beldjord et al. analyzed MRD levels in patients with T-ALL and B cell precursor ALL following induction chemotherapy and demonstrated that post-induction MRD levels ≥ 10 −4 predicted an increased risk of relapse.
8.
go back to reference Schrappe M, Valsecchi MG, Bartram CR, Schrauder A, Panzer-Grümayer R, Möricke A, et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood. 2011;118:2077–84.CrossRefPubMed Schrappe M, Valsecchi MG, Bartram CR, Schrauder A, Panzer-Grümayer R, Möricke A, et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood. 2011;118:2077–84.CrossRefPubMed
9.
go back to reference Brüggemann M, Raff T, Flohr T, Go N, Nakao M, Droese J, et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood. 2006;107:1116–23.CrossRefPubMed Brüggemann M, Raff T, Flohr T, Go N, Nakao M, Droese J, et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood. 2006;107:1116–23.CrossRefPubMed
10.
go back to reference • Möricke A, Zimmermann M, Valsecchi MG, Stanulla M, Biondi A, Mann G, et al. Dexamethasone vs prednisone in induction treatment of pediatric ALL: results of the randomized trial AIEOP-BFM ALL 2000. Blood. 2016;127:2101–12 This study which randomized pediatric patients with ALL to receive dexamethasone vs. prednisone during induction therapy demonstrated a decreased risk of relapse but a higher rate of induction-related deaths in the group that received dexamethasone. CrossRefPubMed • Möricke A, Zimmermann M, Valsecchi MG, Stanulla M, Biondi A, Mann G, et al. Dexamethasone vs prednisone in induction treatment of pediatric ALL: results of the randomized trial AIEOP-BFM ALL 2000. Blood. 2016;127:2101–12 This study which randomized pediatric patients with ALL to receive dexamethasone vs. prednisone during induction therapy demonstrated a decreased risk of relapse but a higher rate of induction-related deaths in the group that received dexamethasone. CrossRefPubMed
11.
go back to reference Asselin BL, Devidas M, Wang C, Pullen J, Borowitz MJ, Hutchison R, et al. Effectiveness of high dose methotrexate in T-cell lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a randomized study by the Children’s Oncology Group (POG 9404). Blood. 2011;118:874–84.CrossRefPubMedPubMedCentral Asselin BL, Devidas M, Wang C, Pullen J, Borowitz MJ, Hutchison R, et al. Effectiveness of high dose methotrexate in T-cell lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a randomized study by the Children’s Oncology Group (POG 9404). Blood. 2011;118:874–84.CrossRefPubMedPubMedCentral
12.
go back to reference Wetzler M, Sanford BL, Kurtzberg J, DeOliveira D, Frankel SR, Powell BL, et al. Effective asparagine depletion with pegylated asparaginase results in improved outcomes in adult acute lymphoblastic leukemia: Cancer and Leukemia Group B study 9511. Blood. 2007;109:4164–7.CrossRefPubMedPubMedCentral Wetzler M, Sanford BL, Kurtzberg J, DeOliveira D, Frankel SR, Powell BL, et al. Effective asparagine depletion with pegylated asparaginase results in improved outcomes in adult acute lymphoblastic leukemia: Cancer and Leukemia Group B study 9511. Blood. 2007;109:4164–7.CrossRefPubMedPubMedCentral
13.
go back to reference Gökbuget N, Baumann A, Beck J, Brueggemann M, Diedrich H, Huettmann A, et al. PEG-asparaginase intensification in adult acute lymphoblastic leukemia (ALL): significant improvement of outcome with moderate increase of liver toxicity In the German Multicenter Study Group for Adult ALL (GMALL) Study 07/2003 [Abstract]. Blood. 2010;116:494. Gökbuget N, Baumann A, Beck J, Brueggemann M, Diedrich H, Huettmann A, et al. PEG-asparaginase intensification in adult acute lymphoblastic leukemia (ALL): significant improvement of outcome with moderate increase of liver toxicity In the German Multicenter Study Group for Adult ALL (GMALL) Study 07/2003 [Abstract]. Blood. 2010;116:494.
14.
go back to reference DeAngelo DJ, Stevenson KE, Dahlberg SE, Silverman LB, Couban S, Supko JG, et al. Long-term outcome of a pediatric-inspired regimen used for adults aged 18–50 years with newly diagnosed acute lymphoblastic leukemia. Leukemia. 2015;29:526–34.CrossRefPubMed DeAngelo DJ, Stevenson KE, Dahlberg SE, Silverman LB, Couban S, Supko JG, et al. Long-term outcome of a pediatric-inspired regimen used for adults aged 18–50 years with newly diagnosed acute lymphoblastic leukemia. Leukemia. 2015;29:526–34.CrossRefPubMed
15.
go back to reference Hoelzer D, Thiel E, Arnold R, Beck J, Beelen DW, Bornhäuser M, et al. Successful subtype oriented treatment strategies in adult T-ALL: results of 744 patients treated in three consecutive GMALL studies [Abstract]. Blood. 2009;114:324. Hoelzer D, Thiel E, Arnold R, Beck J, Beelen DW, Bornhäuser M, et al. Successful subtype oriented treatment strategies in adult T-ALL: results of 744 patients treated in three consecutive GMALL studies [Abstract]. Blood. 2009;114:324.
16.
go back to reference Dunsmore KP, Devidas M, Linda SB, Borowitz MJ, Winick N, Hunger SP, et al. Pilot study of nelarabine in combination with intensive chemotherapy in high-risk T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30:2753–9.CrossRefPubMedPubMedCentral Dunsmore KP, Devidas M, Linda SB, Borowitz MJ, Winick N, Hunger SP, et al. Pilot study of nelarabine in combination with intensive chemotherapy in high-risk T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30:2753–9.CrossRefPubMedPubMedCentral
17.
go back to reference Jain P, Kantarjian H, Ravandi F, Thomas D, O’Brien S, Kadia T, et al. The combination of hyper-CVAD plus nelarabine as frontline therapy in adult T-cell acute lymphoblastic leukemia and T-lymphoblastic lymphoma: MD Anderson Cancer Center experience. Leukemia. 2014;28:973–5.CrossRefPubMed Jain P, Kantarjian H, Ravandi F, Thomas D, O’Brien S, Kadia T, et al. The combination of hyper-CVAD plus nelarabine as frontline therapy in adult T-cell acute lymphoblastic leukemia and T-lymphoblastic lymphoma: MD Anderson Cancer Center experience. Leukemia. 2014;28:973–5.CrossRefPubMed
18.
go back to reference Abaza Y, M. Kantarjian H, Faderl S, Jabbour E, Jain N, Thomas D, et al. Hyper-CVAD plus nelarabine in newly diagnosed adult T-cell acute lymphoblastic leukemia and T-lymphoblastic lymphoma. Am J Hematol. 2018;93:91–9.CrossRefPubMed Abaza Y, M. Kantarjian H, Faderl S, Jabbour E, Jain N, Thomas D, et al. Hyper-CVAD plus nelarabine in newly diagnosed adult T-cell acute lymphoblastic leukemia and T-lymphoblastic lymphoma. Am J Hematol. 2018;93:91–9.CrossRefPubMed
19.
go back to reference • Dunsmore KP, Winter S, Devidas M, Wood BL, Esiashvili N, Eisenberg N, et al. COG AALL0434: a randomized trial testing nelarabine in newly diagnosed T-cell malignancy [Abstract]. J Clin Oncol. 2018;36:10500 The initial results of the large COG AALL0434 study which randomized pediatric and young adult patients with newly diagnosed T-ALL to receive or not receive nelarabine demonstrated improved 4-year DFS in the patients that received nelarabine. CrossRef • Dunsmore KP, Winter S, Devidas M, Wood BL, Esiashvili N, Eisenberg N, et al. COG AALL0434: a randomized trial testing nelarabine in newly diagnosed T-cell malignancy [Abstract]. J Clin Oncol. 2018;36:10500 The initial results of the large COG AALL0434 study which randomized pediatric and young adult patients with newly diagnosed T-ALL to receive or not receive nelarabine demonstrated improved 4-year DFS in the patients that received nelarabine. CrossRef
20.
go back to reference Arber DA, Orazi A, Hasserjian R, Borowitz MJ, Le Beau MM, Bloomfield CD, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–406.CrossRefPubMed Arber DA, Orazi A, Hasserjian R, Borowitz MJ, Le Beau MM, Bloomfield CD, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–406.CrossRefPubMed
21.
go back to reference Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481:157–63.CrossRefPubMedPubMedCentral Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481:157–63.CrossRefPubMedPubMedCentral
22.
go back to reference Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10:147–56.CrossRefPubMedPubMedCentral Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10:147–56.CrossRefPubMedPubMedCentral
23.
go back to reference Patrick K, Wade R, Goulden N, Mitchell C, Moorman AV, Rowntree C, et al. Outcome for children and young people with early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br J Haematol. 2014;166:421–4.CrossRefPubMed Patrick K, Wade R, Goulden N, Mitchell C, Moorman AV, Rowntree C, et al. Outcome for children and young people with early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br J Haematol. 2014;166:421–4.CrossRefPubMed
24.
go back to reference Wood BL, Winter SS, Dunsmore KP, Devidas M, Chen S, Asselin B, et al. T-lymphoblastic leukemia (T-ALL) shows excellent outcome, lack of significance of the ETP immunophenotype, and validation of the prognostic value of end-induction MRD in COG study AALL0434 [abstract]. Blood 2014;124:1–1. Wood BL, Winter SS, Dunsmore KP, Devidas M, Chen S, Asselin B, et al. T-lymphoblastic leukemia (T-ALL) shows excellent outcome, lack of significance of the ETP immunophenotype, and validation of the prognostic value of end-induction MRD in COG study AALL0434 [abstract]. Blood 2014;124:1–1.
25.
go back to reference Reismüller B, Attarbaschi A, Peters C, Dworzak MN, Pötschger U, Urban C, et al. Long-term outcome of initially homogenously treated and relapsed childhood acute lymphoblastic leukaemia in Austria - a population-based report of the Austrian Berlin-Frankfurt-Münster (BFM) Study Group. Br J Haematol. 2009;144:559–70.CrossRefPubMed Reismüller B, Attarbaschi A, Peters C, Dworzak MN, Pötschger U, Urban C, et al. Long-term outcome of initially homogenously treated and relapsed childhood acute lymphoblastic leukaemia in Austria - a population-based report of the Austrian Berlin-Frankfurt-Münster (BFM) Study Group. Br J Haematol. 2009;144:559–70.CrossRefPubMed
26.
go back to reference • Desjonquères A, Chevallier P, Thomas X, Huguet F, Leguay T, Bernard M, et al. Acute lymphoblastic leukemia relapsing after first-line pediatric-inspired therapy: a retrospective GRAALL study. Blood Cancer J. 2016;6:e504 This large retrospective analysis of adults with relapsed Ph-ALL demonstrated that there is no specific standard of care regimen for relapsed T-ALL. CrossRefPubMedPubMedCentral • Desjonquères A, Chevallier P, Thomas X, Huguet F, Leguay T, Bernard M, et al. Acute lymphoblastic leukemia relapsing after first-line pediatric-inspired therapy: a retrospective GRAALL study. Blood Cancer J. 2016;6:e504 This large retrospective analysis of adults with relapsed Ph-ALL demonstrated that there is no specific standard of care regimen for relapsed T-ALL. CrossRefPubMedPubMedCentral
27.
go back to reference Fielding AK, Richards SM, Chopra R, Lazarus HM, Litzow MR, Buck G, et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood. 2007;109:944–50.CrossRefPubMed Fielding AK, Richards SM, Chopra R, Lazarus HM, Litzow MR, Buck G, et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood. 2007;109:944–50.CrossRefPubMed
28.
go back to reference Cohen A, Lee JWW, Gelfand EW. Selective toxicity of deoxyguanosine and arabinosyl guanine for T-leukemic cells. Blood. 1983;61:660–7.PubMed Cohen A, Lee JWW, Gelfand EW. Selective toxicity of deoxyguanosine and arabinosyl guanine for T-leukemic cells. Blood. 1983;61:660–7.PubMed
29.
go back to reference Kisor DF, Plunkett W, Kurtzberg J, Mitchell B, Hodge JP, Ernst T, et al. Pharmacokinetics of nelarabine and 9-beta-D-arabinofuranosyl guanine in pediatric and adult patients during a phase I study of nelarabine for the treatment of refractory hematologic malignancies. J Clin Oncol. 2000;18:995–1003.CrossRefPubMed Kisor DF, Plunkett W, Kurtzberg J, Mitchell B, Hodge JP, Ernst T, et al. Pharmacokinetics of nelarabine and 9-beta-D-arabinofuranosyl guanine in pediatric and adult patients during a phase I study of nelarabine for the treatment of refractory hematologic malignancies. J Clin Oncol. 2000;18:995–1003.CrossRefPubMed
30.
go back to reference Shewach DS, Daddona PE, Ashcroft E, Mitchell BS. Metabolism and selective cytotoxicity of 9-B-D-arabinofuranosyiguanine in human lymphoblasts. Cancer Res. 1985;45:1008–14.PubMed Shewach DS, Daddona PE, Ashcroft E, Mitchell BS. Metabolism and selective cytotoxicity of 9-B-D-arabinofuranosyiguanine in human lymphoblasts. Cancer Res. 1985;45:1008–14.PubMed
31.
go back to reference Lambe CU, Averett DR, Paff MT, Reardon JE, Wilson JG, Krenitsky TA. 2-Amino-6-methoxypurine arabinoside: an agent for T-cell malignancies. Cancer Res. 1995;100:3352–6. Lambe CU, Averett DR, Paff MT, Reardon JE, Wilson JG, Krenitsky TA. 2-Amino-6-methoxypurine arabinoside: an agent for T-cell malignancies. Cancer Res. 1995;100:3352–6.
32.
go back to reference Kurtzberg J, Ernst TJ, Keating MJ, Gandhi V, Hodge JP, Kisor DF, et al. Phase I study of 506U78 administered on a consecutive 5-day schedule in children and adults with refractory hematologic malignancies. J Clin Oncol. 2005;23:3396–403.CrossRefPubMed Kurtzberg J, Ernst TJ, Keating MJ, Gandhi V, Hodge JP, Kisor DF, et al. Phase I study of 506U78 administered on a consecutive 5-day schedule in children and adults with refractory hematologic malignancies. J Clin Oncol. 2005;23:3396–403.CrossRefPubMed
33.
go back to reference Cohen MH, Johnson JR, Justice R, Pazdur R. FDA drug approval summary: nelarabine (Arranon) for the treatment of T-cell lymphoblastic leukemia/lymphoma. Oncologist. 2008;13:709–14.CrossRefPubMed Cohen MH, Johnson JR, Justice R, Pazdur R. FDA drug approval summary: nelarabine (Arranon) for the treatment of T-cell lymphoblastic leukemia/lymphoma. Oncologist. 2008;13:709–14.CrossRefPubMed
34.
go back to reference Berg SL, Blaney SM, Devidas M, Lampkin TA, Murgo A, Bernstein M, et al. Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the Children’s Oncology Group. J Clin Oncol. 2005;23:3376–82.CrossRefPubMed Berg SL, Blaney SM, Devidas M, Lampkin TA, Murgo A, Bernstein M, et al. Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the Children’s Oncology Group. J Clin Oncol. 2005;23:3376–82.CrossRefPubMed
35.
go back to reference DeAngelo DJ, Yu D, Johnson JL, Coutre SE, Stone RM, Stopeck AT, et al. Nelarabine induces complete remissions in adults with relapsed or refractory T-lineage acute lymphoblastic leukemia or lymphoblastic lymphoma: Cancer and Leukemia Group B study 19801. Blood. 2007;109:5136–42.CrossRefPubMedPubMedCentral DeAngelo DJ, Yu D, Johnson JL, Coutre SE, Stone RM, Stopeck AT, et al. Nelarabine induces complete remissions in adults with relapsed or refractory T-lineage acute lymphoblastic leukemia or lymphoblastic lymphoma: Cancer and Leukemia Group B study 19801. Blood. 2007;109:5136–42.CrossRefPubMedPubMedCentral
36.
go back to reference Gökbuget N, Basara N, Baurmann H, Beck J, Brüggemann M, Diedrich H, et al. High single-drug activity of nelarabine in relapsed T-lymphoblastic leukemia/lymphoma offers curative option with subsequent stem cell transplantation. Blood. 2011;118:3504–11.CrossRefPubMed Gökbuget N, Basara N, Baurmann H, Beck J, Brüggemann M, Diedrich H, et al. High single-drug activity of nelarabine in relapsed T-lymphoblastic leukemia/lymphoma offers curative option with subsequent stem cell transplantation. Blood. 2011;118:3504–11.CrossRefPubMed
37.
go back to reference Commander LA, Seif AE, Insogna IG, Rheingold SR. Salvage therapy with nelarabine, etoposide, and cyclophosphamide in relapsed/refractory paediatric T-cell lymphoblastic leukaemia and lymphoma. Br J Haematol. 2010;150:345–51.CrossRefPubMed Commander LA, Seif AE, Insogna IG, Rheingold SR. Salvage therapy with nelarabine, etoposide, and cyclophosphamide in relapsed/refractory paediatric T-cell lymphoblastic leukaemia and lymphoma. Br J Haematol. 2010;150:345–51.CrossRefPubMed
38.
go back to reference Luskin MR, Ganetsky A, Landsburg DJ, Loren AW, Porter DL, Nasta SD, et al. Nelarabine, cyclosphosphamide and etoposide for adults with relapsed T-cell acute lymphoblastic leukaemia and lymphoma. Br J Haematol. 2016;174:332–4.CrossRefPubMed Luskin MR, Ganetsky A, Landsburg DJ, Loren AW, Porter DL, Nasta SD, et al. Nelarabine, cyclosphosphamide and etoposide for adults with relapsed T-cell acute lymphoblastic leukaemia and lymphoma. Br J Haematol. 2016;174:332–4.CrossRefPubMed
39.
go back to reference Silverman JA, Deitcher SR. Marqibo®(vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol. 2013;71:555–64.CrossRefPubMed Silverman JA, Deitcher SR. Marqibo®(vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol. 2013;71:555–64.CrossRefPubMed
40.
go back to reference Webb MS, Harasym TO, Masin D, Bally MB, Mayer LD. Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models. Br J Cancer. 1995;72:896–904.CrossRefPubMedPubMedCentral Webb MS, Harasym TO, Masin D, Bally MB, Mayer LD. Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models. Br J Cancer. 1995;72:896–904.CrossRefPubMedPubMedCentral
41.
go back to reference Webb MS, Logan P, Kanter PM, St.-Onge G, Gelmon K, Harasym T, et al. Preclinical pharmacology, toxicology and efficacy of sphingomyelin/cholesterol liposomal vincristine for therapeutic treatment of cancer. Cancer Chemother Pharmacol. 1998;42:461–70.CrossRefPubMed Webb MS, Logan P, Kanter PM, St.-Onge G, Gelmon K, Harasym T, et al. Preclinical pharmacology, toxicology and efficacy of sphingomyelin/cholesterol liposomal vincristine for therapeutic treatment of cancer. Cancer Chemother Pharmacol. 1998;42:461–70.CrossRefPubMed
42.
go back to reference Krishna R, Webb MS, St MLD. Liposomal and nonliposomal drug pharmacokinetics after administration of liposome-encapsulated vincristine and their contribution to drug tissue distribution properties. J Pharmacol Exp Ther. 2001;298:1206–12.PubMed Krishna R, Webb MS, St MLD. Liposomal and nonliposomal drug pharmacokinetics after administration of liposome-encapsulated vincristine and their contribution to drug tissue distribution properties. J Pharmacol Exp Ther. 2001;298:1206–12.PubMed
43.
go back to reference O’Brien S, Schiller G, Lister J, Damon L, Goldberg S, Aulitzky W, et al. High-dose vincristine sulfate liposome injection for advanced, relapsed, and refractory adult Philadelphia chromosome-negative acute lymphoblastic leukemia. J Clin Oncol. 2013;31:676–83.CrossRefPubMed O’Brien S, Schiller G, Lister J, Damon L, Goldberg S, Aulitzky W, et al. High-dose vincristine sulfate liposome injection for advanced, relapsed, and refractory adult Philadelphia chromosome-negative acute lymphoblastic leukemia. J Clin Oncol. 2013;31:676–83.CrossRefPubMed
44.
go back to reference Shah NN, Merchant MS, Cole DE, Jayaprakash N, Bernstein D, Delbrook C, et al. Vincristine sulfate liposomes injection (VSLI, Marqibo): results from a phase I study in children, adolescents, and young adults with refractory solid tumors or leukemias. Pediatr Blood Cancer. 2016;63:997–1005.CrossRefPubMedPubMedCentral Shah NN, Merchant MS, Cole DE, Jayaprakash N, Bernstein D, Delbrook C, et al. Vincristine sulfate liposomes injection (VSLI, Marqibo): results from a phase I study in children, adolescents, and young adults with refractory solid tumors or leukemias. Pediatr Blood Cancer. 2016;63:997–1005.CrossRefPubMedPubMedCentral
45.
go back to reference Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer. 2016;16:494–507.CrossRefPubMed Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer. 2016;16:494–507.CrossRefPubMed
46.
go back to reference Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(80):269–71.CrossRefPubMed Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(80):269–71.CrossRefPubMed
47.
go back to reference Sanchez-Martin M, Ferrando A. The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood. 2017;129:1124–33.CrossRefPubMed Sanchez-Martin M, Ferrando A. The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood. 2017;129:1124–33.CrossRefPubMed
48.
go back to reference Maillard I. Notch and human hematopoietic stem cells. Blood. 2015;123:1116–9. Maillard I. Notch and human hematopoietic stem cells. Blood. 2015;123:1116–9.
49.
go back to reference Paganin M, Ferrando A. Molecular pathogenesis and targeted therapies for NOTCH1-induced T-cell acute lymphoblastic leukemia. Blood Rev. 2011;25:83–90.CrossRefPubMed Paganin M, Ferrando A. Molecular pathogenesis and targeted therapies for NOTCH1-induced T-cell acute lymphoblastic leukemia. Blood Rev. 2011;25:83–90.CrossRefPubMed
50.
go back to reference •• Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49:1211–8 This genetic and RNA expression study on samples collected from 264 children and young adults with T-ALL identified 106 driver mutations, 39 novel gene rearrangements, and 10 pathways commonly dysregulated in T-ALL, illustrating the tremendous genetic heterogeneity of T-ALL and revealing potentially targetable pathways. CrossRefPubMedPubMedCentral •• Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49:1211–8 This genetic and RNA expression study on samples collected from 264 children and young adults with T-ALL identified 106 driver mutations, 39 novel gene rearrangements, and 10 pathways commonly dysregulated in T-ALL, illustrating the tremendous genetic heterogeneity of T-ALL and revealing potentially targetable pathways. CrossRefPubMedPubMedCentral
51.
go back to reference O’Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J Exp Med. 2007;204:1813–24.CrossRefPubMedPubMedCentral O’Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J Exp Med. 2007;204:1813–24.CrossRefPubMedPubMedCentral
52.
go back to reference Real PJ, Tosello V, Palomero T, Castillo M, Hernando E, De Stanchina E, et al. γ-Secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med. 2009;15:50–8.CrossRefPubMed Real PJ, Tosello V, Palomero T, Castillo M, Hernando E, De Stanchina E, et al. γ-Secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med. 2009;15:50–8.CrossRefPubMed
53.
go back to reference De Keersmaecker K, Lahortiga I, Mentens N, Folens C, Van Neste L, Bekaert S, et al. In vitro validation of γ-secretase inhibitors alone or in combination with other anti-cancer drugs for the treatment of T-cell acute lymphoblastic leukemia. Haematologica. 2008;93:533–42.CrossRefPubMed De Keersmaecker K, Lahortiga I, Mentens N, Folens C, Van Neste L, Bekaert S, et al. In vitro validation of γ-secretase inhibitors alone or in combination with other anti-cancer drugs for the treatment of T-cell acute lymphoblastic leukemia. Haematologica. 2008;93:533–42.CrossRefPubMed
54.
go back to reference Samon JB, Castillo-Martin M, Hadler M, Ambesi-Impiobato A, Paietta E, Racevskis J, et al. Preclinical analysis of the gamma-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia. Mol Cancer Ther. 2012;11:1565–75.CrossRefPubMedPubMedCentral Samon JB, Castillo-Martin M, Hadler M, Ambesi-Impiobato A, Paietta E, Racevskis J, et al. Preclinical analysis of the gamma-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia. Mol Cancer Ther. 2012;11:1565–75.CrossRefPubMedPubMedCentral
55.
go back to reference Gavai AV, Quesnelle C, Norris D, Han WC, Gill P, Shan W, et al. Discovery of clinical candidate BMS-906024: a potent pan-notch inhibitor for the treatment of leukemia and solid tumors. ACS Med Chem Lett. 2015;6:523–7.CrossRefPubMedPubMedCentral Gavai AV, Quesnelle C, Norris D, Han WC, Gill P, Shan W, et al. Discovery of clinical candidate BMS-906024: a potent pan-notch inhibitor for the treatment of leukemia and solid tumors. ACS Med Chem Lett. 2015;6:523–7.CrossRefPubMedPubMedCentral
56.
go back to reference Deangelo DJ, Stone RM, Silverman LB, Stock W, Attar EC, Fearen I, et al. A phase I clinical trial of the Notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias [Abstract]. J Clin Oncol. 2006;24:6585. Deangelo DJ, Stone RM, Silverman LB, Stock W, Attar EC, Fearen I, et al. A phase I clinical trial of the Notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias [Abstract]. J Clin Oncol. 2006;24:6585.
57.
go back to reference Zweidler-McKay PA, Deangelo DJ, Douer D, Dombret H, Ottmann OG, Vey N, et al. The safety and activity of BMS-906024, a gamma secretase inhibitor with anti-Notch activity, in patients with relapsed T-cell acute lymphoblastic leukemia: initial results of a phase 1 trial [Abstract]. Blood. 2014;124:968. Zweidler-McKay PA, Deangelo DJ, Douer D, Dombret H, Ottmann OG, Vey N, et al. The safety and activity of BMS-906024, a gamma secretase inhibitor with anti-Notch activity, in patients with relapsed T-cell acute lymphoblastic leukemia: initial results of a phase 1 trial [Abstract]. Blood. 2014;124:968.
58.
go back to reference Papayannidis C, DeAngelo DJ, Stock W, Huang B, Shaik MN, Cesari R, et al. A phase 1 study of the novel gamma-secretase inhibitor PF-03084014 in patients with T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Blood Cancer J. 2015;5:e350–3.CrossRefPubMedPubMedCentral Papayannidis C, DeAngelo DJ, Stock W, Huang B, Shaik MN, Cesari R, et al. A phase 1 study of the novel gamma-secretase inhibitor PF-03084014 in patients with T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Blood Cancer J. 2015;5:e350–3.CrossRefPubMedPubMedCentral
59.
go back to reference Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med. 2007;13:1203–10.CrossRefPubMedPubMedCentral Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med. 2007;13:1203–10.CrossRefPubMedPubMedCentral
60.
go back to reference Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ, et al. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet. 2014;46:364–70.CrossRefPubMedPubMedCentral Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ, et al. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet. 2014;46:364–70.CrossRefPubMedPubMedCentral
61.
go back to reference • Sanchez-Martin M, Ambesi-Impiombato A, Qin Y, Herranz D, Bansal M, Girardi T, et al. Synergistic antileukemic therapies in NOTCH1 -induced T-ALL. Proc Natl Acad Sci. 2017;114:2006–11 This study identified several drugs that are synergistic with GSIs in the pre-clinical setting for the treatment of T-ALL. CrossRefPubMedPubMedCentral • Sanchez-Martin M, Ambesi-Impiombato A, Qin Y, Herranz D, Bansal M, Girardi T, et al. Synergistic antileukemic therapies in NOTCH1 -induced T-ALL. Proc Natl Acad Sci. 2017;114:2006–11 This study identified several drugs that are synergistic with GSIs in the pre-clinical setting for the treatment of T-ALL. CrossRefPubMedPubMedCentral
62.
go back to reference Pinnell N, Yan R, Cho HJ, Keeley T, Murai MJ, Liu Y, et al. The PIAS-like coactivator Zmiz1 is a direct and selective cofactor of Notch1 in T cell development and leukemia. Immunity. 2015;43:870–83.CrossRefPubMedPubMedCentral Pinnell N, Yan R, Cho HJ, Keeley T, Murai MJ, Liu Y, et al. The PIAS-like coactivator Zmiz1 is a direct and selective cofactor of Notch1 in T cell development and leukemia. Immunity. 2015;43:870–83.CrossRefPubMedPubMedCentral
63.
go back to reference Roti G, Carlton A, Ross KN, Markstein M, Pajcini K, Su AH, et al. Complementary genomic screens identify SERCA as a therapeutic target in NOTCH1 mutated cancer. Cancer Cell. 2013;23:390–405.CrossRefPubMedPubMedCentral Roti G, Carlton A, Ross KN, Markstein M, Pajcini K, Su AH, et al. Complementary genomic screens identify SERCA as a therapeutic target in NOTCH1 mutated cancer. Cancer Cell. 2013;23:390–405.CrossRefPubMedPubMedCentral
64.
go back to reference Roderick JE, Tesell J, Shultz LD, Brehm MA, Greiner DL, Harris MH, et al. c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood. 2014;123:1040–51.CrossRefPubMedPubMedCentral Roderick JE, Tesell J, Shultz LD, Brehm MA, Greiner DL, Harris MH, et al. c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood. 2014;123:1040–51.CrossRefPubMedPubMedCentral
65.
go back to reference Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC, et al. Direct inhibition of the NOTCH transcription factor complex. Nature. 2009;462:182–8.CrossRefPubMedPubMedCentral Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC, et al. Direct inhibition of the NOTCH transcription factor complex. Nature. 2009;462:182–8.CrossRefPubMedPubMedCentral
66.
go back to reference Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, De Leon GP, Chen Y, et al. Therapeutic antibody targeting of individual Notch receptors. Nature. 2010;464:1052–7.CrossRefPubMed Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, De Leon GP, Chen Y, et al. Therapeutic antibody targeting of individual Notch receptors. Nature. 2010;464:1052–7.CrossRefPubMed
67.
go back to reference Agnusdei V, Minuzzo S, Frasson C, Grassi A, Axelrod F, Satyal S, et al. Therapeutic antibody targeting of Notch1 in T-acute lymphoblastic leukemia xenografts. Leukemia. 2014;28:278–88.CrossRefPubMed Agnusdei V, Minuzzo S, Frasson C, Grassi A, Axelrod F, Satyal S, et al. Therapeutic antibody targeting of Notch1 in T-acute lymphoblastic leukemia xenografts. Leukemia. 2014;28:278–88.CrossRefPubMed
68.
go back to reference Alcantara M, Tesio M, June CH, Houot R, T-cells CAR. CAR T-cells for T-cell malignancies: challenges in distinguishing between therapeutic, normal, and neoplastic T-cells. Leukemia. 2018;32:2307–15.CrossRefPubMedPubMedCentral Alcantara M, Tesio M, June CH, Houot R, T-cells CAR. CAR T-cells for T-cell malignancies: challenges in distinguishing between therapeutic, normal, and neoplastic T-cells. Leukemia. 2018;32:2307–15.CrossRefPubMedPubMedCentral
69.
go back to reference •• Mamonkin M, Rouce RH, Tashiro H, Brenner MK. A T-cell – directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood. 2015;126:983–93 Mamonkin et al. showed that CAR T cells targeting CD5 are effective against T-ALL cells in vitro and in vivo. CrossRefPubMedPubMedCentral •• Mamonkin M, Rouce RH, Tashiro H, Brenner MK. A T-cell – directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood. 2015;126:983–93 Mamonkin et al. showed that CAR T cells targeting CD5 are effective against T-ALL cells in vitro and in vivo. CrossRefPubMedPubMedCentral
70.
go back to reference •• Gomes-Silva D, Srinivasan M, Sharma S, Lee CM, Wagner DL, Davis TH, et al. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood. 2017;130:285–96 This important proof-of-concept study showed that gene editing to prevent the expression of CD7 in CAR Tcells that were engineered to target CD7 allowed for the efficacious targeting of T-ALL cells in vitro and in a mouse xenograft model with minimal fratricide. CrossRefPubMedPubMedCentral •• Gomes-Silva D, Srinivasan M, Sharma S, Lee CM, Wagner DL, Davis TH, et al. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood. 2017;130:285–96 This important proof-of-concept study showed that gene editing to prevent the expression of CD7 in CAR Tcells that were engineered to target CD7 allowed for the efficacious targeting of T-ALL cells in vitro and in a mouse xenograft model with minimal fratricide. CrossRefPubMedPubMedCentral
71.
go back to reference • Cooper ML, Choi J, Staser K, Ritchey JK, Devenport JM, Eckardt K, et al. An “off-the-shelf” fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia. 2018;32:1970–83 This study demonstrated efficacy of “off the shelf” CAR T cells targeting CD7 that lack both CD7 and T cell receptor alpha chain expression against T-ALL cells in vitro and in xenograft models. CrossRefPubMedPubMedCentral • Cooper ML, Choi J, Staser K, Ritchey JK, Devenport JM, Eckardt K, et al. An “off-the-shelf” fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia. 2018;32:1970–83 This study demonstrated efficacy of “off the shelf” CAR T cells targeting CD7 that lack both CD7 and T cell receptor alpha chain expression against T-ALL cells in vitro and in xenograft models. CrossRefPubMedPubMedCentral
72.
go back to reference Png YT, Vinanica N, Kamiya T, Shimasaki N, Coustan-Smith E, Campana D. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies. Blood Adv. 2017;1:2348–60.CrossRefPubMedPubMedCentral Png YT, Vinanica N, Kamiya T, Shimasaki N, Coustan-Smith E, Campana D. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies. Blood Adv. 2017;1:2348–60.CrossRefPubMedPubMedCentral
73.
go back to reference •• Bride KL, Vincent TL, Im S-Y, Aplenc R, Barrett DM, Carroll WL, et al. Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia (T-ALL). Blood. 2018;131:995–9 This study demonstrated that CD38 is expressed on the majority of T-ALL blasts and that daratumumab is effective in pre-clinical models of T-ALL, which provided the rationale for an ongoing trial of daratumumab for relapsed T-ALL. CrossRefPubMedPubMedCentral •• Bride KL, Vincent TL, Im S-Y, Aplenc R, Barrett DM, Carroll WL, et al. Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia (T-ALL). Blood. 2018;131:995–9 This study demonstrated that CD38 is expressed on the majority of T-ALL blasts and that daratumumab is effective in pre-clinical models of T-ALL, which provided the rationale for an ongoing trial of daratumumab for relapsed T-ALL. CrossRefPubMedPubMedCentral
74.
go back to reference Zheng W, Medeiros LJ, Young KH, Goswami M, Powers L, Kantarjian HH, et al. CD30 expression in acute lymphoblastic leukemia as assessed by flow cytometry analysis. Leuk Lymphoma. 2014;55:624–7.CrossRefPubMed Zheng W, Medeiros LJ, Young KH, Goswami M, Powers L, Kantarjian HH, et al. CD30 expression in acute lymphoblastic leukemia as assessed by flow cytometry analysis. Leuk Lymphoma. 2014;55:624–7.CrossRefPubMed
75.
go back to reference Passaro D, Irigoyen M, Catherinet C, Gachet S, Da Costa De Jesus C, Lasgi C, et al. CXCR4 is required for leukemia-initiating cell activity in T cell acute lymphoblastic leukemia. Cancer Cell. 2015;27:769–79.CrossRefPubMed Passaro D, Irigoyen M, Catherinet C, Gachet S, Da Costa De Jesus C, Lasgi C, et al. CXCR4 is required for leukemia-initiating cell activity in T cell acute lymphoblastic leukemia. Cancer Cell. 2015;27:769–79.CrossRefPubMed
76.
go back to reference Chonghaile TN, Roderick JE, Glenfield C, Ryan J, Sallan SE, Silverman LB, et al. Maturation stage of T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL dependence and sensitivity to ABT-199. Cancer Discov. 2014;4:1074–87.CrossRefPubMedPubMedCentral Chonghaile TN, Roderick JE, Glenfield C, Ryan J, Sallan SE, Silverman LB, et al. Maturation stage of T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL dependence and sensitivity to ABT-199. Cancer Discov. 2014;4:1074–87.CrossRefPubMedPubMedCentral
77.
go back to reference • Peirs S, Matthijssens F, Goossens S, Van De Walle I, Ruggero K, De Bock CE, et al. ABT-199 mediated inhibition of BCL-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia. Blood. 2015;124:3738–48 This study showed that a subset of T-ALLs, particularly those with an immature immunophenotype, are sensitive to BCL-2 inhibition in vitro and in vivo and provided the pre-clinical rationale for several ongoing studies of venetoclax for relapsed and/or refractory ALL. CrossRef • Peirs S, Matthijssens F, Goossens S, Van De Walle I, Ruggero K, De Bock CE, et al. ABT-199 mediated inhibition of BCL-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia. Blood. 2015;124:3738–48 This study showed that a subset of T-ALLs, particularly those with an immature immunophenotype, are sensitive to BCL-2 inhibition in vitro and in vivo and provided the pre-clinical rationale for several ongoing studies of venetoclax for relapsed and/or refractory ALL. CrossRef
78.
go back to reference Sawai CM, Freund J, Oh P, Ndiaye-Lobry D, Bretz JC, Strikoudis A, et al. Therapeutic targeting of the cyclin D3:CDK4/6 complex in T cell leukemia. Cancer Cell Elsevier Inc.; 2012:22:452–65. Sawai CM, Freund J, Oh P, Ndiaye-Lobry D, Bretz JC, Strikoudis A, et al. Therapeutic targeting of the cyclin D3:CDK4/6 complex in T cell leukemia. Cancer Cell Elsevier Inc.; 2012:22:452–65.
79.
go back to reference Jena N, Sheng J, Hu JK, Li W, Zhou W, Lee G, et al. CDK6-mediated repression of CD25 is required for induction and maintenance of Notch1-induced T-cell acute lymphoblastic leukemia. Leukemia. 2016;30:1033–43.CrossRefPubMed Jena N, Sheng J, Hu JK, Li W, Zhou W, Lee G, et al. CDK6-mediated repression of CD25 is required for induction and maintenance of Notch1-induced T-cell acute lymphoblastic leukemia. Leukemia. 2016;30:1033–43.CrossRefPubMed
80.
go back to reference Pikman Y, Alexe G, Roti G, Conway AS, Furman A, Lee ES, et al. Synergistic drug combinations with a CDK4/6 inhibitor in T-cell acute lymphoblastic leukemia. Clin Cancer Res. 2017;23:1012–24.CrossRefPubMed Pikman Y, Alexe G, Roti G, Conway AS, Furman A, Lee ES, et al. Synergistic drug combinations with a CDK4/6 inhibitor in T-cell acute lymphoblastic leukemia. Clin Cancer Res. 2017;23:1012–24.CrossRefPubMed
81.
go back to reference Palomero T, Dominguez M, Ferrando AA. The role of the PTEN/AKT pathway in NOTCH1-induced leukemia. Cell Cycle. 2008;7:965–70.CrossRefPubMed Palomero T, Dominguez M, Ferrando AA. The role of the PTEN/AKT pathway in NOTCH1-induced leukemia. Cell Cycle. 2008;7:965–70.CrossRefPubMed
82.
go back to reference Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y, et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood. 2009;114:647–50.CrossRefPubMedPubMedCentral Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y, et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood. 2009;114:647–50.CrossRefPubMedPubMedCentral
83.
go back to reference Piovan E, Yu J, Tosello V, Herranz D, Ambesi-Impiombato A, DaSilva AC, et al. Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell. 2013;24:766–76.CrossRefPubMed Piovan E, Yu J, Tosello V, Herranz D, Ambesi-Impiombato A, DaSilva AC, et al. Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell. 2013;24:766–76.CrossRefPubMed
84.
go back to reference Wei G, Twomey D, Lamb J, Schlis K, Agarwal J, Stam RW, et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell. 2006;10:331–42.CrossRefPubMed Wei G, Twomey D, Lamb J, Schlis K, Agarwal J, Stam RW, et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell. 2006;10:331–42.CrossRefPubMed
85.
go back to reference Subramaniam PS, Whye DW, Efimenko E, Chen J, Tosello V, De Keersmaecker K, et al. Targeting nonclassical oncogenes for therapy in T-ALL. Cancer Cell. 2012;21:459–72.CrossRefPubMed Subramaniam PS, Whye DW, Efimenko E, Chen J, Tosello V, De Keersmaecker K, et al. Targeting nonclassical oncogenes for therapy in T-ALL. Cancer Cell. 2012;21:459–72.CrossRefPubMed
86.
go back to reference Efimenko E, Davé UP, Lebedeva IV, Shen Y, Sanchez-Quintero MJ, Diolaiti D, et al. PI3Kγ/δ and NOTCH1 cross-regulate pathways that define the T-cell acute lymphoblastic leukemia disease signature. Mol Cancer Ther. 2017;16:2069–82.CrossRefPubMedPubMedCentral Efimenko E, Davé UP, Lebedeva IV, Shen Y, Sanchez-Quintero MJ, Diolaiti D, et al. PI3Kγ/δ and NOTCH1 cross-regulate pathways that define the T-cell acute lymphoblastic leukemia disease signature. Mol Cancer Ther. 2017;16:2069–82.CrossRefPubMedPubMedCentral
87.
go back to reference Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R, et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet. 2004;36:1084–9.CrossRefPubMed Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R, et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet. 2004;36:1084–9.CrossRefPubMed
88.
go back to reference Burmeister T, Gökbuget N, Reinhardt R, Rieder H, Hoelzer D, Schwartz S. NUP214-ABL1 in adult T-ALL: the GMALL study group experience. Blood. 2006;108:3556–9.CrossRefPubMed Burmeister T, Gökbuget N, Reinhardt R, Rieder H, Hoelzer D, Schwartz S. NUP214-ABL1 in adult T-ALL: the GMALL study group experience. Blood. 2006;108:3556–9.CrossRefPubMed
89.
go back to reference Quintás-Cardama A, Tong W, Manshouri T, Vega F, Lennon PA, Cools J, et al. Activity of tyrosine kinase inhibitors against human NUP214-ABL1-positive T cell malignancies. Leukemia. 2008;22:1117–24.CrossRefPubMed Quintás-Cardama A, Tong W, Manshouri T, Vega F, Lennon PA, Cools J, et al. Activity of tyrosine kinase inhibitors against human NUP214-ABL1-positive T cell malignancies. Leukemia. 2008;22:1117–24.CrossRefPubMed
90.
go back to reference Deenik W, Beverloo HB, van der Poel-van de Luytgaarde SCPAM, Wattel MM, van Esser JWJ, Valk PJM, et al. Rapid complete cytogenetic remission after upfront dasatinib monotherapy in a patient with a NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. Leukemia. 2009;23:627–9.CrossRefPubMed Deenik W, Beverloo HB, van der Poel-van de Luytgaarde SCPAM, Wattel MM, van Esser JWJ, Valk PJM, et al. Rapid complete cytogenetic remission after upfront dasatinib monotherapy in a patient with a NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. Leukemia. 2009;23:627–9.CrossRefPubMed
91.
go back to reference Clarke S, O’Reilly J, Romeo G, Cooney J. NUP214-ABL1 positive T-cell acute lymphoblastic leukemia patient shows an initial favorable response to imatinib therapy post relapse. Leuk Res. 2011;35:131–3.CrossRef Clarke S, O’Reilly J, Romeo G, Cooney J. NUP214-ABL1 positive T-cell acute lymphoblastic leukemia patient shows an initial favorable response to imatinib therapy post relapse. Leuk Res. 2011;35:131–3.CrossRef
Metadata
Title
Relapsed T Cell ALL: Current Approaches and New Directions
Authors
Christine M. McMahon
Selina M. Luger
Publication date
01-04-2019
Publisher
Springer US
Published in
Current Hematologic Malignancy Reports / Issue 2/2019
Print ISSN: 1558-8211
Electronic ISSN: 1558-822X
DOI
https://doi.org/10.1007/s11899-019-00501-3

Other articles of this Issue 2/2019

Current Hematologic Malignancy Reports 2/2019 Go to the issue

T-Cell and Other Lymphoproliferative Malignancies (J Zain, Section Editor)

Development and Significance of Mouse Models in Lymphoma Research

Acute Lymphocytic Leukemias (K Ballen and M Keng, Section Editors)

Hematopoietic Stem Cell Transplantation in Pediatric Acute Lymphoblastic Leukemia

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine