Skip to main content
Top
Published in: Current Diabetes Reports 9/2019

01-09-2019 | Insulins | Economics and Policy in Diabetes (AA Baig and N Laiteerapong, Section Editors)

Economics of Beta-Cell Replacement Therapy

Authors: Cátia Bandeiras, Albert J. Hwa, Joaquim M. S. Cabral, Frederico Castelo Ferreira, Stan N. Finkelstein, Robert A. Gabbay

Published in: Current Diabetes Reports | Issue 9/2019

Login to get access

Abstract

Purpose of Review

Type 1 diabetes impacts 1.3 million people in the USA with a total direct lifetime medical cost of $133.7 billion. Management requires a mix of daily exogenous insulin administration and frequent glucose monitoring. Decision-making by the individual can be burdensome.

Recent Findings

Beta-cell replacement, which involves devices protecting cells from autoimmunity and allo-rejection, aims at restoring physiological glucose regulation and improving clinical outcomes in patients. Given the significant burden of T1D in the healthcare systems, cost-effectiveness analyses can drive innovation and policymaking in the area.

Summary

This review presents the health economics analyses performed for donor-derived islet transplantation and the possible outcomes of stem cell-derived beta cells. Long-term cost-effectiveness of islet transplantation depends on the engraftment of these transplants, and the expenses and thresholds assumed by healthcare systems in different countries. Early health technology assessment analyses for stem cell-derived beta-cell replacement suggest manufacturing optimization is necessary to reduce upfront costs.
Literature
5.
go back to reference Bullard KM, Cowie CC, Lessem SE, Saydah SH, Menke A, Geiss LS, et al. Prevalence of diagnosed diabetes in adults by diabetes type - United States, 2016. MMWR Morb Mortal Wkly Rep [Internet]. Centers for Disease Control and Prevention; 2018 [cited 2019 Apr 30];67:359–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29596402 Bullard KM, Cowie CC, Lessem SE, Saydah SH, Menke A, Geiss LS, et al. Prevalence of diagnosed diabetes in adults by diabetes type - United States, 2016. MMWR Morb Mortal Wkly Rep [Internet]. Centers for Disease Control and Prevention; 2018 [cited 2019 Apr 30];67:359–61. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​29596402
7.
go back to reference Ijzerman M, Wissing T, de Koning E. Early health economic evaluation of bioartificial organs: involving users in the design of the bioartificial pancreas for diabetes. In: Stamatialis D, editor. Biomed Membr (bio)artificial organs. New Jersey: World Scientific Publishing Co. Pte Ltd; 2017. Ijzerman M, Wissing T, de Koning E. Early health economic evaluation of bioartificial organs: involving users in the design of the bioartificial pancreas for diabetes. In: Stamatialis D, editor. Biomed Membr (bio)artificial organs. New Jersey: World Scientific Publishing Co. Pte Ltd; 2017.
9.
go back to reference • Jacobson EF, Tzanakakis ES. Who will win: induced pluripotent stem cells versus embryonic stem cells for β cell replacement and diabetes disease modeling? Curr Diab Rep [Internet]. 2018 [cited 2019 Apr 17];18:133. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30343423. This review describes the main factors differentiating the use of induced pluripotent stem cells from embryonic stem cells to be used for beta-cell replacement. • Jacobson EF, Tzanakakis ES. Who will win: induced pluripotent stem cells versus embryonic stem cells for β cell replacement and diabetes disease modeling? Curr Diab Rep [Internet]. 2018 [cited 2019 Apr 17];18:133. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​30343423. This review describes the main factors differentiating the use of induced pluripotent stem cells from embryonic stem cells to be used for beta-cell replacement.
10.
go back to reference • Hwa AJ, Weir GC. Transplantation of macroencapsulated insulin-producing cells. Curr Diab Rep [Internet]. 2018 [cited 2019 Apr 17];18:50. Available from: http://link.springer.com/10.1007/s11892-018-1028-y. This review showcases the different device designs for macroencapsulation of beta cells for transplantation. Engraftment limitations are directly connected to the mass transport limitations in the devices. • Hwa AJ, Weir GC. Transplantation of macroencapsulated insulin-producing cells. Curr Diab Rep [Internet]. 2018 [cited 2019 Apr 17];18:50. Available from: http://​link.​springer.​com/​10.​1007/​s11892-018-1028-y. This review showcases the different device designs for macroencapsulation of beta cells for transplantation. Engraftment limitations are directly connected to the mass transport limitations in the devices.
14.
go back to reference Mount NM, Ward SJ, Kefalas P, Hyllner J. Cell-based therapy technology classifications and translational challenges. Philos Trans R Soc B Biol Sci [Internet]. The Royal Society; 2015 [cited 2019 Apr 15];370:20150017. Available from: http://rstb.royalsocietypublishing.org/lookup/doi/10.1098/rstb.2015.0017 Mount NM, Ward SJ, Kefalas P, Hyllner J. Cell-based therapy technology classifications and translational challenges. Philos Trans R Soc B Biol Sci [Internet]. The Royal Society; 2015 [cited 2019 Apr 15];370:20150017. Available from: http://​rstb.​royalsocietypubl​ishing.​org/​lookup/​doi/​10.​1098/​rstb.​2015.​0017
18.
21.
go back to reference Israni AK, Zaun D, Rosendale JD, Schaffhausen C, Snyder JJ, Kasiske BL. OPTN/SRTR 2016 Annual data report: deceased organ donation. Am J Transplant [Internet]. John Wiley & Sons, Ltd (10.1111); 2018 [cited 2019 Apr 17];18:434–63. Available from: http://doi.wiley.com/10.1111/ajt.14563 Israni AK, Zaun D, Rosendale JD, Schaffhausen C, Snyder JJ, Kasiske BL. OPTN/SRTR 2016 Annual data report: deceased organ donation. Am J Transplant [Internet]. John Wiley & Sons, Ltd (10.1111); 2018 [cited 2019 Apr 17];18:434–63. Available from: http://​doi.​wiley.​com/​10.​1111/​ajt.​14563
22.
go back to reference Ricordi C, Goldstein JS, Balamurugan AN, Szot GL, Kin T, Liu C, et al. National institutes of health-sponsored clinical islet transplantation consortium phase 3 trial: manufacture of a complex cellular product at eight processing facilities. Diabetes [Internet]. American Diabetes Association; 2016 [cited 2019 Apr 17];65:3418–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27465220 CrossRef Ricordi C, Goldstein JS, Balamurugan AN, Szot GL, Kin T, Liu C, et al. National institutes of health-sponsored clinical islet transplantation consortium phase 3 trial: manufacture of a complex cellular product at eight processing facilities. Diabetes [Internet]. American Diabetes Association; 2016 [cited 2019 Apr 17];65:3418–28. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​27465220 CrossRef
23.
go back to reference Brennan DC, Kopetskie HA, Sayre PH, Alejandro R, Cagliero E, Shapiro AMJ, Goldstein JS, DesMarais MR, Booher S, Bianchine PJ Long-term follow-up of the Edmonton protocol of islet transplantation in the United States. Am J Transplant [Internet]. 2016 [cited 2019 Apr 17];16:509–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26433206 CrossRef Brennan DC, Kopetskie HA, Sayre PH, Alejandro R, Cagliero E, Shapiro AMJ, Goldstein JS, DesMarais MR, Booher S, Bianchine PJ Long-term follow-up of the Edmonton protocol of islet transplantation in the United States. Am J Transplant [Internet]. 2016 [cited 2019 Apr 17];16:509–17. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​26433206 CrossRef
25.
go back to reference Moassesfar S, Masharani U, Frassetto LA, Szot GL, Tavakol M, Stock PG, Posselt AM A comparative analysis of the safety, efficacy, and cost of islet versus pancreas transplantation in nonuremic patients with type 1 diabetes. Am J Transplant [Internet]. 2016 [cited 2019 Mar 25];16:518–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26595767 CrossRef Moassesfar S, Masharani U, Frassetto LA, Szot GL, Tavakol M, Stock PG, Posselt AM A comparative analysis of the safety, efficacy, and cost of islet versus pancreas transplantation in nonuremic patients with type 1 diabetes. Am J Transplant [Internet]. 2016 [cited 2019 Mar 25];16:518–26. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​26595767 CrossRef
26.
go back to reference Schive SW, Foss A, Sahraoui A, Kloster-Jensen K, Hafsahl G, Kvalheim G, et al. Cost and clinical outcome of islet transplantation in Norway 2010–2015. Clin Transplant [Internet]. John Wiley & Sons, Ltd (10.1111); 2017 [cited 2019 Apr 16];31:e12871. Available from: http://doi.wiley.com/10.1111/ctr.12871 Schive SW, Foss A, Sahraoui A, Kloster-Jensen K, Hafsahl G, Kvalheim G, et al. Cost and clinical outcome of islet transplantation in Norway 2010–2015. Clin Transplant [Internet]. John Wiley & Sons, Ltd (10.1111); 2017 [cited 2019 Apr 16];31:e12871. Available from: http://​doi.​wiley.​com/​10.​1111/​ctr.​12871
27.
go back to reference Wallner K, Shapiro AMJ, Senior PA, McCabe C. Cost effectiveness and value of information analyses of islet cell transplantation in the management of ‘unstable’ type 1 diabetes mellitus. BMC Endocr Disord [Internet]. 2016 [cited 2019 Mar 25];16:17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27061400 Wallner K, Shapiro AMJ, Senior PA, McCabe C. Cost effectiveness and value of information analyses of islet cell transplantation in the management of ‘unstable’ type 1 diabetes mellitus. BMC Endocr Disord [Internet]. 2016 [cited 2019 Mar 25];16:17. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​27061400
28.
go back to reference Guignard AP, Oberholzer J, Benhamou P-Y, Touzet S, Bucher P, Penfornis A, et al. Cost analysis of human islet transplantation for the treatment of type 1 diabetes in the Swiss-French Consortium GRAGIL. Diabetes Care [Internet]. American Diabetes Association; 2004 [cited 2019 Apr 16];27:895–900. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15047645 Guignard AP, Oberholzer J, Benhamou P-Y, Touzet S, Bucher P, Penfornis A, et al. Cost analysis of human islet transplantation for the treatment of type 1 diabetes in the Swiss-French Consortium GRAGIL. Diabetes Care [Internet]. American Diabetes Association; 2004 [cited 2019 Apr 16];27:895–900. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​15047645
32.
go back to reference Lablanche S, David-Tchouda S, Margier J, Schir E, Wojtusciszyn A, Borot S, Kessler L, Morelon E, Thivolet C, Pattou F, Vantyghem MC, Berney T, Benhamou PY Randomised, prospective, medico-economic nationwide French study of islet transplantation in patients with severely unstable type 1 diabetes: the STABILOT study protocol. BMJ Open [Internet]. 2017 [cited 2019 Apr 16];7:e013434. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28219959 CrossRef Lablanche S, David-Tchouda S, Margier J, Schir E, Wojtusciszyn A, Borot S, Kessler L, Morelon E, Thivolet C, Pattou F, Vantyghem MC, Berney T, Benhamou PY Randomised, prospective, medico-economic nationwide French study of islet transplantation in patients with severely unstable type 1 diabetes: the STABILOT study protocol. BMJ Open [Internet]. 2017 [cited 2019 Apr 16];7:e013434. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28219959 CrossRef
33.
go back to reference Schulz TC, Young HY, Agulnick AD, Babin MJ, Baetge EE, Bang AG, et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. Lynn FC, editor. PLoS One [Internet]. Public Library of Science; 2012 [cited 2019 Mar 16];7:e37004. Available from: https://dx.plos.org/10.1371/journal.pone.0037004 Schulz TC, Young HY, Agulnick AD, Babin MJ, Baetge EE, Bang AG, et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. Lynn FC, editor. PLoS One [Internet]. Public Library of Science; 2012 [cited 2019 Mar 16];7:e37004. Available from: https://​dx.​plos.​org/​10.​1371/​journal.​pone.​0037004
34.
go back to reference Agulnick AD, Ambruzs DM, Moorman MA, Bhoumik A, Cesario RM, Payne JK, et al. Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo. Stem Cells Transl Med [Internet]. John Wiley & Sons, Ltd; 2015 [cited 2019 Mar 16];4:1214–22. Available from: http://doi.wiley.com/10.5966/sctm.2015-0079 Agulnick AD, Ambruzs DM, Moorman MA, Bhoumik A, Cesario RM, Payne JK, et al. Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo. Stem Cells Transl Med [Internet]. John Wiley & Sons, Ltd; 2015 [cited 2019 Mar 16];4:1214–22. Available from: http://​doi.​wiley.​com/​10.​5966/​sctm.​2015-0079
38.
go back to reference Rodrigues AL, Rodrigues CA V., Gomes AR, Vieira SF, Badenes SM, Diogo MM, Cabral JMS Dissolvable microcarriers allow scalable expansion and harvesting of human induced pluripotent stem cells under xeno-free conditions. Biotechnol J [Internet]. 2018 [cited 2019 Mar 25];1800461. Available from: http://doi.wiley.com/10.1002/biot.201800461 Rodrigues AL, Rodrigues CA V., Gomes AR, Vieira SF, Badenes SM, Diogo MM, Cabral JMS Dissolvable microcarriers allow scalable expansion and harvesting of human induced pluripotent stem cells under xeno-free conditions. Biotechnol J [Internet]. 2018 [cited 2019 Mar 25];1800461. Available from: http://​doi.​wiley.​com/​10.​1002/​biot.​201800461
39.
go back to reference Rodrigues CA, Silva TP, Nogueira DE, Fernandes TG, Hashimura Y, Wesselschmidt R, et al. Scalable culture of human induced pluripotent cells on microcarriers under xeno-free conditions using single-use vertical-wheel™ bioreactors. J Chem Technol Biotechnol [Internet]. John Wiley & Sons, Ltd; 2018 [cited 2019 Apr 17];93:3597–606. Available from: http://doi.wiley.com/10.1002/jctb.5738 Rodrigues CA, Silva TP, Nogueira DE, Fernandes TG, Hashimura Y, Wesselschmidt R, et al. Scalable culture of human induced pluripotent cells on microcarriers under xeno-free conditions using single-use vertical-wheel™ bioreactors. J Chem Technol Biotechnol [Internet]. John Wiley & Sons, Ltd; 2018 [cited 2019 Apr 17];93:3597–606. Available from: http://​doi.​wiley.​com/​10.​1002/​jctb.​5738
46.
47.
go back to reference •• Bandeiras C, Cabral JMS, Gabbay RA, Finkelstein SN, Ferreira FC. Bringing stem cell-based therapies for type 1 diabetes to the clinic: early insights from bioprocess economics and cost-effectiveness analysis. Biotechnol J [Internet]. John Wiley & Sons, Ltd; 2019 [cited 2019 Jun 25];1800563. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/biot.201800563. This paper reports a comprehensive bioprocess model of manufacturing of beta cells from pluripotent stem cells to be encapsulated as type 1 diabetes therapies, in combination with a cost-effectiveness analysis. The findings elicit the critical need for a manufacturing cost reduction to enable widespread cost-effectiveness of stem cell-based therapies. •• Bandeiras C, Cabral JMS, Gabbay RA, Finkelstein SN, Ferreira FC. Bringing stem cell-based therapies for type 1 diabetes to the clinic: early insights from bioprocess economics and cost-effectiveness analysis. Biotechnol J [Internet]. John Wiley & Sons, Ltd; 2019 [cited 2019 Jun 25];1800563. Available from: https://​onlinelibrary.​wiley.​com/​doi/​abs/​10.​1002/​biot.​201800563. This paper reports a comprehensive bioprocess model of manufacturing of beta cells from pluripotent stem cells to be encapsulated as type 1 diabetes therapies, in combination with a cost-effectiveness analysis. The findings elicit the critical need for a manufacturing cost reduction to enable widespread cost-effectiveness of stem cell-based therapies.
50.
go back to reference Beers J, Linask KL, Chen JA, Siniscalchi LI, Lin Y, Zheng W, et al. A cost-effective and efficient reprogramming platform for large-scale production of integration-free human induced pluripotent stem cells in chemically defined culture. Sci Rep [Internet]. Nature Publishing Group; 2015 [cited 2019 Jun 25];5:11319. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26066579 Beers J, Linask KL, Chen JA, Siniscalchi LI, Lin Y, Zheng W, et al. A cost-effective and efficient reprogramming platform for large-scale production of integration-free human induced pluripotent stem cells in chemically defined culture. Sci Rep [Internet]. Nature Publishing Group; 2015 [cited 2019 Jun 25];5:11319. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​26066579
Metadata
Title
Economics of Beta-Cell Replacement Therapy
Authors
Cátia Bandeiras
Albert J. Hwa
Joaquim M. S. Cabral
Frederico Castelo Ferreira
Stan N. Finkelstein
Robert A. Gabbay
Publication date
01-09-2019
Publisher
Springer US
Published in
Current Diabetes Reports / Issue 9/2019
Print ISSN: 1534-4827
Electronic ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-019-1203-9

Other articles of this Issue 9/2019

Current Diabetes Reports 9/2019 Go to the issue

Pathogenesis of Type 1 Diabetes (A Pugliese and SJ Richardson, Section Editors)

Alterations in Beta Cell Identity in Type 1 and Type 2 Diabetes

Microvascular Complications—Retinopathy (DL Chao and G Yiu, Section Editors)

Artificial Intelligence Screening for Diabetic Retinopathy: the Real-World Emerging Application

Pathogenesis of Type 2 Diabetes and Insulin Resistance (M-E Patti, Section Editor)

Regulation of Glucose Production in the Pathogenesis of Type 2 Diabetes

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine