Skip to main content
Top
Published in: Current Atherosclerosis Reports 5/2014

01-05-2014 | Coronary Heart Disease (JA Farmer, Section Editor)

The Role of Nonpharmacologic Device Interventions in the Management of Drug-Resistant Hypertension

Authors: William H. Frishman, Daniel Glicklich

Published in: Current Atherosclerosis Reports | Issue 5/2014

Login to get access

Abstract

Resistant systemic hypertension in patients is defined as the inability to control blood pressure despite taking at least three antihypertensive drugs, one of which is a diuretic. Two nonpharmacologic approaches are being evaluated in resistant hypertensive patients. First, the Rheos® Baroreflex Hypertension Therapy system is an implantable device that activates the carotid baroreflex through electrical stimulation of the carotid sinus wall. Sustained and clinically lower blood pressure has been observed in patient clinical trials. The second approach is a catheter-based strategy which denervates the renal afferent and efferent autonomic nervous system. This strategy has also been shown to be effective in drug-resistant patients, and has also been shown to decrease renin production, preserve renal function, improve glucose tolerance, and reduce left ventricular hypertrophy. Both carotid sinus stimulation and renal denervation are now being evaluated in clinical trials for the long-term control of hypertension.
Literature
1.
go back to reference • Roger VL, Go AS, Lloyd Jones DM, et al. Heart disease and stroke statistics, 2012 update: a report from the American Heart Association. Circulation. 2012;125:e2–220. High BP remains a major cause of morbidity and mortality.PubMedCrossRef • Roger VL, Go AS, Lloyd Jones DM, et al. Heart disease and stroke statistics, 2012 update: a report from the American Heart Association. Circulation. 2012;125:e2–220. High BP remains a major cause of morbidity and mortality.PubMedCrossRef
2.
go back to reference Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation. 2010;121:e46–215.PubMedCrossRef Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation. 2010;121:e46–215.PubMedCrossRef
3.
go back to reference Egan BM, Zhao Y, Axon RN. U.S. trends in prevalence, awareness, treatment, and control of hypertension. JAMA. 2010;303:2043–50.PubMedCrossRef Egan BM, Zhao Y, Axon RN. U.S. trends in prevalence, awareness, treatment, and control of hypertension. JAMA. 2010;303:2043–50.PubMedCrossRef
4.
go back to reference Calhoun DA, Jones D, Textor S, et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008;117:e510–26.PubMedCrossRef Calhoun DA, Jones D, Textor S, et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008;117:e510–26.PubMedCrossRef
5.
go back to reference •• Daugherty SL, Powers D, Magid DJ, et al. Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation. 2012;125:1635–42. Resistant hypertension with drug therapy is associated with increased risk of major adverse cardiovascular events.PubMedCentralPubMedCrossRef •• Daugherty SL, Powers D, Magid DJ, et al. Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation. 2012;125:1635–42. Resistant hypertension with drug therapy is associated with increased risk of major adverse cardiovascular events.PubMedCentralPubMedCrossRef
6.
go back to reference Ng MM, Sica DA, Frishman WH. Rheos: an implantable carotid sinus stimulation device for the nonpharmacologic treatment of resistant hypertension. Cardiol Rev. 2011;19:52–7.PubMedCrossRef Ng MM, Sica DA, Frishman WH. Rheos: an implantable carotid sinus stimulation device for the nonpharmacologic treatment of resistant hypertension. Cardiol Rev. 2011;19:52–7.PubMedCrossRef
7.
go back to reference Lohmeier TE, Irwin ED, Rossing MA, et al. Prolonged activation of the baroreflex produces sustained hypotension. Hypertension. 2004;43:306–11.PubMedCrossRef Lohmeier TE, Irwin ED, Rossing MA, et al. Prolonged activation of the baroreflex produces sustained hypotension. Hypertension. 2004;43:306–11.PubMedCrossRef
8.
go back to reference •• Krum H, Sobotka P, Mahfoud F, et al. Device-based antihypertensive therapy. Therapeutic modulation of the autonomic nervous system. Circulation. 2011;123:209–15.PubMedCrossRef •• Krum H, Sobotka P, Mahfoud F, et al. Device-based antihypertensive therapy. Therapeutic modulation of the autonomic nervous system. Circulation. 2011;123:209–15.PubMedCrossRef
9.
go back to reference •• Bisognano JD, Bakris G, Nadim MK, et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled Rheos pivotal trial. J Am Coll Cardiol. 2011;58:765–73. In this pivotal trial, long-term therapy with carotid sinus baroreflex activation therapy was found to be effective in treating patients with resistant hypertension.PubMedCrossRef •• Bisognano JD, Bakris G, Nadim MK, et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled Rheos pivotal trial. J Am Coll Cardiol. 2011;58:765–73. In this pivotal trial, long-term therapy with carotid sinus baroreflex activation therapy was found to be effective in treating patients with resistant hypertension.PubMedCrossRef
10.
go back to reference Jordan J, Heusser K, Brinkmann J, Tank J. Electrical carotid sinus stimulation in treatment resistant arterial hypertension. Auton Neurosci. 2012;172:31–6.PubMedCrossRef Jordan J, Heusser K, Brinkmann J, Tank J. Electrical carotid sinus stimulation in treatment resistant arterial hypertension. Auton Neurosci. 2012;172:31–6.PubMedCrossRef
11.
go back to reference Lovic D, Aj M, Lovic B, et al. The pathophysiological basis of carotid baroreceptor stimulation for the treatment of resistant hypertension. Curr Vasc Pharmacol. 2013. PMID: 23905596. Lovic D, Aj M, Lovic B, et al. The pathophysiological basis of carotid baroreceptor stimulation for the treatment of resistant hypertension. Curr Vasc Pharmacol. 2013. PMID: 23905596.
12.
go back to reference Esler M, Krum H, Sobotka P, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (the Symplicity HTN-2 trial): a randomised controlled trial. Lancet. 2010;376:1878–80.CrossRef Esler M, Krum H, Sobotka P, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (the Symplicity HTN-2 trial): a randomised controlled trial. Lancet. 2010;376:1878–80.CrossRef
13.
go back to reference Schlaich MP, Sobotka PA, Krum H, et al. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361:932–4. PMID: 23905592. Schlaich MP, Sobotka PA, Krum H, et al. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361:932–4. PMID: 23905592.
14.
go back to reference Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373:1275–81.PubMedCrossRef Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373:1275–81.PubMedCrossRef
15.
go back to reference • Symplicity HTN-1 Investigators. Catheter-based renal sympathetic denervation for resistant hypertension. Durability of blood pressure reduction out to 24 months. Hypertension. 2011;57:911–7.CrossRef • Symplicity HTN-1 Investigators. Catheter-based renal sympathetic denervation for resistant hypertension. Durability of blood pressure reduction out to 24 months. Hypertension. 2011;57:911–7.CrossRef
16.
go back to reference Briasoulis A, Bakris G. The future of interventional management of hypertension: threats and opportunities. Curr Vasc Pharmacol. 2013. Briasoulis A, Bakris G. The future of interventional management of hypertension: threats and opportunities. Curr Vasc Pharmacol. 2013.
17.
go back to reference Chapleau MW. Arterial baroreflexes. In: Izzo Jr JL, Sica DA, Black HR, editors. Hypertension primer. 4th ed. Dallas: American Heart Association; 2008. p. 120–3. Chapleau MW. Arterial baroreflexes. In: Izzo Jr JL, Sica DA, Black HR, editors. Hypertension primer. 4th ed. Dallas: American Heart Association; 2008. p. 120–3.
18.
go back to reference Dunlap ME. Cardiopulmonary baroreflexes. In: Izzo Jr JR, Sica DA, Black HR, editors. Hypertension primer. 4th ed. Dallas: American Heart Association; 2008. p. 123–5. Dunlap ME. Cardiopulmonary baroreflexes. In: Izzo Jr JR, Sica DA, Black HR, editors. Hypertension primer. 4th ed. Dallas: American Heart Association; 2008. p. 123–5.
19.
go back to reference Zar T, Peixoto AJ. Paroxysmal hypertension due to baroreflex failure. Kidney Int. 2008;74:126–31.PubMedCrossRef Zar T, Peixoto AJ. Paroxysmal hypertension due to baroreflex failure. Kidney Int. 2008;74:126–31.PubMedCrossRef
20.
go back to reference Sica DA. Baroreflex activation in drug-resistant hypertension. US Cardiol. 2009;6(1):29–32. Sica DA. Baroreflex activation in drug-resistant hypertension. US Cardiol. 2009;6(1):29–32.
21.
go back to reference Lohmeier TE, Dwyer TM, Irwin ED, et al. Prolonged activation of the baroreflex abolishes obesity-induced hypertension. Hypertension. 2007;49:1307–14.PubMedCrossRef Lohmeier TE, Dwyer TM, Irwin ED, et al. Prolonged activation of the baroreflex abolishes obesity-induced hypertension. Hypertension. 2007;49:1307–14.PubMedCrossRef
22.
go back to reference Lohmeier TE, Hildebrandt DA, Dwyer TM, et al. Renal denervation does not abolish sustained baroreflex-mediated reductions in arterial pressure. Hypertension. 2007;49:373–9.PubMedCrossRef Lohmeier TE, Hildebrandt DA, Dwyer TM, et al. Renal denervation does not abolish sustained baroreflex-mediated reductions in arterial pressure. Hypertension. 2007;49:373–9.PubMedCrossRef
23.
go back to reference Scheffers I, Kroon AA, Tordoir J, et al. Rheos® Baroreflex Hypertension Therapy™ system to treat resistant hypertension. Expert Rev Med Devices. 2008;5:33–9.PubMedCrossRef Scheffers I, Kroon AA, Tordoir J, et al. Rheos® Baroreflex Hypertension Therapy™ system to treat resistant hypertension. Expert Rev Med Devices. 2008;5:33–9.PubMedCrossRef
24.
go back to reference Sica DA, Lohmeier TE. Baroreflex activation for the treatment of hypertension: principles and practice. Expert Rev Med Devices. 2006;3:595–601.PubMedCrossRef Sica DA, Lohmeier TE. Baroreflex activation for the treatment of hypertension: principles and practice. Expert Rev Med Devices. 2006;3:595–601.PubMedCrossRef
25.
go back to reference Illig KA, Levy M, Sanchez L, et al. An implantable carotid sinus stimulator for drug-resistant hypertension: surgical technique and short-term outcome from the multicenter phase II Rheos feasibility trial. J Vasc Surg. 2006;44(6):1213–8.PubMedCrossRef Illig KA, Levy M, Sanchez L, et al. An implantable carotid sinus stimulator for drug-resistant hypertension: surgical technique and short-term outcome from the multicenter phase II Rheos feasibility trial. J Vasc Surg. 2006;44(6):1213–8.PubMedCrossRef
26.
go back to reference Scheffers IJ, Kroon AA, Schmidli J, et al. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol. 2010;5(56):1254–8.CrossRef Scheffers IJ, Kroon AA, Schmidli J, et al. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol. 2010;5(56):1254–8.CrossRef
27.
go back to reference Bakris G, Bisognano J, Nadim M, et al. Potential of implantable carotid sinus stimulator for drug-resistant hypertension. Paper presented at: 23rd Scientific Meeting of the International Society of Hypertension, 2010 ; Vancouver. Bakris G, Bisognano J, Nadim M, et al. Potential of implantable carotid sinus stimulator for drug-resistant hypertension. Paper presented at: 23rd Scientific Meeting of the International Society of Hypertension, 2010 ; Vancouver.
28.
go back to reference • Alnima T, de Leeuw PW, Tan RES, Kroon AA. Renal responses to long-term carotid baroreflex activation therapy in patients with drug-resistant hypertension. Hypertension. 2013;61:1334–9. Long-term carotid baroreflex activation has no adverse effect on renal function.PubMedCrossRef • Alnima T, de Leeuw PW, Tan RES, Kroon AA. Renal responses to long-term carotid baroreflex activation therapy in patients with drug-resistant hypertension. Hypertension. 2013;61:1334–9. Long-term carotid baroreflex activation has no adverse effect on renal function.PubMedCrossRef
29.
go back to reference Kroon A, Schmidli J, Scheffers I, et al. Chronically implanted system: 4-year data of Rheos DEBuT-HT study in patients with resistant hypertension. J Hypertension. 2010;28(Suppl A):e441. Kroon A, Schmidli J, Scheffers I, et al. Chronically implanted system: 4-year data of Rheos DEBuT-HT study in patients with resistant hypertension. J Hypertension. 2010;28(Suppl A):e441.
30.
go back to reference Wustmann K, Kucera JP. Scheffers I, et al Effects of chronic baroreceptor stimulation on the autonomic cardiovascular regulation in patients with drug-resistant arterial hypertension. Hypertension. 2009;54:530–6.PubMedCrossRef Wustmann K, Kucera JP. Scheffers I, et al Effects of chronic baroreceptor stimulation on the autonomic cardiovascular regulation in patients with drug-resistant arterial hypertension. Hypertension. 2009;54:530–6.PubMedCrossRef
31.
go back to reference Bakris GL, Nadim MK, Haller H, et al. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: results of long-term follow up in the Rheos Pivotal Trial. J Am Soc Hypertens. 2012;6:152–8.PubMedCrossRef Bakris GL, Nadim MK, Haller H, et al. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: results of long-term follow up in the Rheos Pivotal Trial. J Am Soc Hypertens. 2012;6:152–8.PubMedCrossRef
32.
go back to reference Heusser K, Tank J, Engeli S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55:619–26.PubMedCrossRef Heusser K, Tank J, Engeli S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55:619–26.PubMedCrossRef
33.
go back to reference Bisognano JD, de Leeuw P, Bach DS, et al. Improved cardiac structure and function in early-stage heart failure with chronic treatment using an implantable device: results from European and United States trials of the Rheos® system. J Cardiac Fail. 2008;14 Suppl 1:S48.CrossRef Bisognano JD, de Leeuw P, Bach DS, et al. Improved cardiac structure and function in early-stage heart failure with chronic treatment using an implantable device: results from European and United States trials of the Rheos® system. J Cardiac Fail. 2008;14 Suppl 1:S48.CrossRef
34.
go back to reference de Leeuw P, Gangahar D, Bach DS, et al. Left ventricular reverse remodeling with chronic treatment of resistant hypertension using an implantable device: results from European and United States trials of the Rheos® Baroreflex Hypertension Therapy system. J Hypertension. 2008;26 Suppl 1:S471. de Leeuw P, Gangahar D, Bach DS, et al. Left ventricular reverse remodeling with chronic treatment of resistant hypertension using an implantable device: results from European and United States trials of the Rheos® Baroreflex Hypertension Therapy system. J Hypertension. 2008;26 Suppl 1:S471.
35.
go back to reference Whitelaw GP, Kinsey D, Smithwick RH. Factors influencing the choice of treatment in essential hypertension: surgical, medical, or a combination of both. Am J Surg. 1964;107:220–31.PubMedCrossRef Whitelaw GP, Kinsey D, Smithwick RH. Factors influencing the choice of treatment in essential hypertension: surgical, medical, or a combination of both. Am J Surg. 1964;107:220–31.PubMedCrossRef
36.
go back to reference Allen EV. Sympathectomy for essential hypertension. Circulation. 1952;4:744–59. Allen EV. Sympathectomy for essential hypertension. Circulation. 1952;4:744–59.
37.
go back to reference Goodfriend TL. Angiotensins: actions and receptors. In: Izzo Jr JL, Sica DA, Black HR, editors. Hypertension primer. 4th ed. Dallas: American Heart Association; 2008. p. 54–8. Goodfriend TL. Angiotensins: actions and receptors. In: Izzo Jr JL, Sica DA, Black HR, editors. Hypertension primer. 4th ed. Dallas: American Heart Association; 2008. p. 54–8.
38.
go back to reference Isberg EM, Peet MM. The influence of supradiaphragmatic splanchnicectomy on the heart in hypertension. Am Heart J. 1948;35:567–83.PubMedCrossRef Isberg EM, Peet MM. The influence of supradiaphragmatic splanchnicectomy on the heart in hypertension. Am Heart J. 1948;35:567–83.PubMedCrossRef
40.
go back to reference Morrissey DM, Brookes VS, Cooke WT. Sympathectomy in the treatment of hypertension: review of 122 cases. Lancet. 1953;1:403–8.PubMedCrossRef Morrissey DM, Brookes VS, Cooke WT. Sympathectomy in the treatment of hypertension: review of 122 cases. Lancet. 1953;1:403–8.PubMedCrossRef
41.
go back to reference Johns EJ. Renal sympathetic nerves and extracellular fluid volume regulation. In: Izzo Jr JL, Sica DA, Black HR, editors. Hypertension primer. 4th ed. Dallas: American Heart Association; 2008. p. 126–8. Johns EJ. Renal sympathetic nerves and extracellular fluid volume regulation. In: Izzo Jr JL, Sica DA, Black HR, editors. Hypertension primer. 4th ed. Dallas: American Heart Association; 2008. p. 126–8.
42.
go back to reference Barajas L, Powers K, Wang P. Innervation of the renal cortical tubules: a quantitative study. Am J Physiol. 1984;247:F50–60.PubMed Barajas L, Powers K, Wang P. Innervation of the renal cortical tubules: a quantitative study. Am J Physiol. 1984;247:F50–60.PubMed
43.
go back to reference Esler M. The sympathetic system and hypertension. Am J Hypertens. 2000;13:S99–105.CrossRef Esler M. The sympathetic system and hypertension. Am J Hypertens. 2000;13:S99–105.CrossRef
44.
go back to reference Esler M, Rumantir M, Kaye D, et al. Sympathetic nerve biology in essential hypertension. Clin Exp Pharmacol Physiol. 2001;28:986–9.PubMedCrossRef Esler M, Rumantir M, Kaye D, et al. Sympathetic nerve biology in essential hypertension. Clin Exp Pharmacol Physiol. 2001;28:986–9.PubMedCrossRef
45.
go back to reference Doumas M, Faselis C, Papademetriou V. Renal sympathetic denervation and systemic hypertension. Am J Cardiol. 2010;105:570–6.PubMedCrossRef Doumas M, Faselis C, Papademetriou V. Renal sympathetic denervation and systemic hypertension. Am J Cardiol. 2010;105:570–6.PubMedCrossRef
46.
go back to reference Burke GM, Sica DA, Frishman WH. Renal sympathetic denervation for the treatment of systemic hypertension. Cardiol Rev. 2012;20:274–8.PubMedCrossRef Burke GM, Sica DA, Frishman WH. Renal sympathetic denervation for the treatment of systemic hypertension. Cardiol Rev. 2012;20:274–8.PubMedCrossRef
47.
go back to reference Wurzner G, Chiolero A, Maillard M, et al. Renal and neurohormonal responses to increasing levels of lower body negative pressure in men. Kidney Int. 2001;60:1469–76.PubMedCrossRef Wurzner G, Chiolero A, Maillard M, et al. Renal and neurohormonal responses to increasing levels of lower body negative pressure in men. Kidney Int. 2001;60:1469–76.PubMedCrossRef
48.
go back to reference DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77:75–97.PubMed DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77:75–97.PubMed
49.
go back to reference Kopp UC, DiBona GF. The neural control of renal function. In: Seldin G, Giebisch G, editors. The kidney: physiology and pathophysiology. 3rd ed. New York: Raven; 2006. p. 981–1006. Kopp UC, DiBona GF. The neural control of renal function. In: Seldin G, Giebisch G, editors. The kidney: physiology and pathophysiology. 3rd ed. New York: Raven; 2006. p. 981–1006.
50.
51.
go back to reference Bello-Reuss E, Pastoriza-Munoz E, Colindres RE. Acute unilateral renal denervation in rats with extracellular volume expansion. Am J Physiol. 1977;232:F26–32.PubMed Bello-Reuss E, Pastoriza-Munoz E, Colindres RE. Acute unilateral renal denervation in rats with extracellular volume expansion. Am J Physiol. 1977;232:F26–32.PubMed
52.
go back to reference La Grange RG, Sloop CH, Schmid HE. Selective stimulation of renal nerves in the anaesthetized dog.Effect on renin release during controlled changes in renal hemodynamics. Circ Res. 1973;33:704–12.PubMedCrossRef La Grange RG, Sloop CH, Schmid HE. Selective stimulation of renal nerves in the anaesthetized dog.Effect on renin release during controlled changes in renal hemodynamics. Circ Res. 1973;33:704–12.PubMedCrossRef
53.
go back to reference Hesse IF, Johns EJ. The effect of graded renal nerve stimulation on renal function in the anaesthetized rabbit. Comp Biochem Physiol A Comp Physiol. 1984;79:409–14.PubMedCrossRef Hesse IF, Johns EJ. The effect of graded renal nerve stimulation on renal function in the anaesthetized rabbit. Comp Biochem Physiol A Comp Physiol. 1984;79:409–14.PubMedCrossRef
54.
go back to reference Johns EJ, Manitius J. An investigation into the neural regulation of calcium excretion by the rat kidney. J Physiol. 1987;383:745–55.PubMedCentralPubMed Johns EJ, Manitius J. An investigation into the neural regulation of calcium excretion by the rat kidney. J Physiol. 1987;383:745–55.PubMedCentralPubMed
55.
go back to reference DiBona GF, Sawin LL. Effect of renal nerve stimulation on NaCl and H2O transport in Henle’s loop of the rat. Am J Physiol. 1982;243:F576–80.PubMed DiBona GF, Sawin LL. Effect of renal nerve stimulation on NaCl and H2O transport in Henle’s loop of the rat. Am J Physiol. 1982;243:F576–80.PubMed
56.
go back to reference Bonjour JP, Churchill PC, Malvin RL. Change of tubular reabsorption of sodium and water after renal denervation in the dog. J Physiol. 1969;204:571–83.PubMedCentralPubMed Bonjour JP, Churchill PC, Malvin RL. Change of tubular reabsorption of sodium and water after renal denervation in the dog. J Physiol. 1969;204:571–83.PubMedCentralPubMed
57.
go back to reference Szenasi G, Bencsath P, Takacs L. Proximal tubular transport and urinary excretion of sodium after renal denervation in sodium depleted rats. Pflugers Arch. 1985;403:146–50.PubMedCrossRef Szenasi G, Bencsath P, Takacs L. Proximal tubular transport and urinary excretion of sodium after renal denervation in sodium depleted rats. Pflugers Arch. 1985;403:146–50.PubMedCrossRef
58.
go back to reference Wu XC, Johns EJ. Interactions between nitric oxide and superoxide on the neural regulation of proximal fluid reabsorption in hypertensive rats. Exp Physiol. 2004;89:255–61.PubMedCrossRef Wu XC, Johns EJ. Interactions between nitric oxide and superoxide on the neural regulation of proximal fluid reabsorption in hypertensive rats. Exp Physiol. 2004;89:255–61.PubMedCrossRef
59.
go back to reference Wu XC, Johns EJ. Nitric oxide modulation of neurally induced proximal tubular fluid reabsorption in the rat. Hypertension. 2002;39:790–3.PubMedCrossRef Wu XC, Johns EJ. Nitric oxide modulation of neurally induced proximal tubular fluid reabsorption in the rat. Hypertension. 2002;39:790–3.PubMedCrossRef
60.
go back to reference Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999;79:143–80.PubMed Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999;79:143–80.PubMed
61.
go back to reference Wu W, Scholey JW, Sonnenberg H, Melo LG. Renal vascular morphology and haemodynamics in Dahl salt-sensitive rats on high salt low potassium diet: neural and genetic influences. J Hypertens. 2000;18:783–93.PubMedCrossRef Wu W, Scholey JW, Sonnenberg H, Melo LG. Renal vascular morphology and haemodynamics in Dahl salt-sensitive rats on high salt low potassium diet: neural and genetic influences. J Hypertens. 2000;18:783–93.PubMedCrossRef
62.
go back to reference Kopp UC, Cicha MZ, Nakamura K, et al. Activation of EP4 receptors contributes to prostaglandin E2-mediated stimulation of renal sensory nerves. Am J Physiol Renal Physiol. 2004;287:F1269–82.PubMedCrossRef Kopp UC, Cicha MZ, Nakamura K, et al. Activation of EP4 receptors contributes to prostaglandin E2-mediated stimulation of renal sensory nerves. Am J Physiol Renal Physiol. 2004;287:F1269–82.PubMedCrossRef
63.
go back to reference Kopp UC, Cicha MZ, Smith LA, Hokfelt T. Nitric oxide modulates renal sensory nerve fibers by mechanisms related to substance P receptor activation. Am J Physiol Regul Integr Comp Physiol. 2001;281:R279–90.PubMed Kopp UC, Cicha MZ, Smith LA, Hokfelt T. Nitric oxide modulates renal sensory nerve fibers by mechanisms related to substance P receptor activation. Am J Physiol Regul Integr Comp Physiol. 2001;281:R279–90.PubMed
64.
go back to reference Liu L, Barajas L. The rat renal nerves during development. Anat Embryol (Berl). 1993;188:345–61.CrossRef Liu L, Barajas L. The rat renal nerves during development. Anat Embryol (Berl). 1993;188:345–61.CrossRef
65.
go back to reference Stella A, Zanchetti A. Functional role of renal afferents. Physiol Rev. 1991;71:659–82.PubMed Stella A, Zanchetti A. Functional role of renal afferents. Physiol Rev. 1991;71:659–82.PubMed
66.
go back to reference Caralesu FR, Ciriello J. Renal afferent nerves affect discharge rate of medullary and hypothalamic single units in the cat. J Auton Nern Syst. 1981;3:311–20.CrossRef Caralesu FR, Ciriello J. Renal afferent nerves affect discharge rate of medullary and hypothalamic single units in the cat. J Auton Nern Syst. 1981;3:311–20.CrossRef
67.
go back to reference Ciriello J. Afferent renal inputs to paraventricular nucleus vasopressin and oxytocin neurosecretory neurons. Am J Physiol. 1998;275:R1745–54.PubMed Ciriello J. Afferent renal inputs to paraventricular nucleus vasopressin and oxytocin neurosecretory neurons. Am J Physiol. 1998;275:R1745–54.PubMed
68.
go back to reference Caverson MM, Ciriello J. Effect of stimulation of afferent renal nerves on plasma levels of vasopressin. Am J Physiol. 1987;252:R801–7.PubMed Caverson MM, Ciriello J. Effect of stimulation of afferent renal nerves on plasma levels of vasopressin. Am J Physiol. 1987;252:R801–7.PubMed
69.
go back to reference Coote JH. A role for the paraventricular nucleus of the hypothalamus in the autonomic control of heart and kidney. Exp Physiol. 2004;90:169–73.PubMedCrossRef Coote JH. A role for the paraventricular nucleus of the hypothalamus in the autonomic control of heart and kidney. Exp Physiol. 2004;90:169–73.PubMedCrossRef
70.
go back to reference Ferguson AV, Latchford KJ, Samson WK. The paraventricular nucleus of the hypothalamus—a potential target for integrative treatment of autonomic dysfunction. Expert Opin Ther Targets. 2008;12:717–27.PubMedCentralPubMedCrossRef Ferguson AV, Latchford KJ, Samson WK. The paraventricular nucleus of the hypothalamus—a potential target for integrative treatment of autonomic dysfunction. Expert Opin Ther Targets. 2008;12:717–27.PubMedCentralPubMedCrossRef
71.
go back to reference Zhong MK, Duan YC, Chen AD, et al. Paraventricular nucleus is involved in the central pathway of cardiac sympathetic afferent reflex in rats. Exp Physiol. 2008;93:746–53.PubMedCrossRef Zhong MK, Duan YC, Chen AD, et al. Paraventricular nucleus is involved in the central pathway of cardiac sympathetic afferent reflex in rats. Exp Physiol. 2008;93:746–53.PubMedCrossRef
72.
go back to reference Esler M, Jennings G. Korner P, et al Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension. 1988;11:3–20.PubMedCrossRef Esler M, Jennings G. Korner P, et al Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension. 1988;11:3–20.PubMedCrossRef
73.
go back to reference Katholi RE. Renal nerves and hypertension: an update. Fed Proc. 1985;44:2846–50.PubMed Katholi RE. Renal nerves and hypertension: an update. Fed Proc. 1985;44:2846–50.PubMed
74.
go back to reference Campese VM, Kogosov E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension. 1995;25:878–82.PubMedCrossRef Campese VM, Kogosov E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension. 1995;25:878–82.PubMedCrossRef
75.
go back to reference Katholi RE. Renal nerves in the pathogenesis of hypertension in experimental animals and humans. Am J Physiol. 1983;245:F1–14.PubMed Katholi RE. Renal nerves in the pathogenesis of hypertension in experimental animals and humans. Am J Physiol. 1983;245:F1–14.PubMed
76.
go back to reference Bigazzi R, Kogosov E, Campese VM. Altered norepinephrine turnover in the brain of rats with chronic renal failure. J Am Soc Nephrol. 1994;4:1901–7.PubMed Bigazzi R, Kogosov E, Campese VM. Altered norepinephrine turnover in the brain of rats with chronic renal failure. J Am Soc Nephrol. 1994;4:1901–7.PubMed
77.
go back to reference Ye S, Ozgur B, Campese VM. Renal afferent impulses, the posterior hypothalamus, and hypertension in rats with chronic renal failure. Kidney Int. 1997;51:722–7.PubMedCrossRef Ye S, Ozgur B, Campese VM. Renal afferent impulses, the posterior hypothalamus, and hypertension in rats with chronic renal failure. Kidney Int. 1997;51:722–7.PubMedCrossRef
78.
go back to reference Pan JY, Bishop VS, Ball NA, Haywood JR. Inability of dorsal spinal rhizotomy to prevent renal wrap hypertension in rats. Hypertension. 1985;7:722–8.PubMedCrossRef Pan JY, Bishop VS, Ball NA, Haywood JR. Inability of dorsal spinal rhizotomy to prevent renal wrap hypertension in rats. Hypertension. 1985;7:722–8.PubMedCrossRef
79.
go back to reference Zoler ML. Hopes high for device to treat resistant HT. Cardiol News. 2012;10(2):1. Zoler ML. Hopes high for device to treat resistant HT. Cardiol News. 2012;10(2):1.
80.
go back to reference Symplicity HTN-2 Investigators. Renal sympathetic denervation in patients with treatment-resistant hypertension (the Symplicity HTN-2 trial): a randomised controlled trial. Lancet. 2010;376:1903–9.CrossRef Symplicity HTN-2 Investigators. Renal sympathetic denervation in patients with treatment-resistant hypertension (the Symplicity HTN-2 trial): a randomised controlled trial. Lancet. 2010;376:1903–9.CrossRef
81.
go back to reference Ukena C, Mahfoud F, Kindermann I, et al. Cardiorespiratory response to exercise after renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol. 2011;58:1176–82.PubMedCrossRef Ukena C, Mahfoud F, Kindermann I, et al. Cardiorespiratory response to exercise after renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol. 2011;58:1176–82.PubMedCrossRef
82.
go back to reference Brandt MC, Mahfoud F. Reda S, et al Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59:901–9.PubMedCrossRef Brandt MC, Mahfoud F. Reda S, et al Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59:901–9.PubMedCrossRef
83.
go back to reference Pokushalov E, Romanov V, Corbucci G, et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation. J Am Coll Cardiol. 2012;60:1163–70.PubMedCrossRef Pokushalov E, Romanov V, Corbucci G, et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation. J Am Coll Cardiol. 2012;60:1163–70.PubMedCrossRef
84.
go back to reference Mahfoud F, Schlaich M, Kindermann I, et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension. A pilot study. Circulation. 2011;123:1940–6.PubMedCrossRef Mahfoud F, Schlaich M, Kindermann I, et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension. A pilot study. Circulation. 2011;123:1940–6.PubMedCrossRef
86.
go back to reference Davis MI, Filion KB, Zhang D, et al. Effectiveness of renal denervation therapy for resistant hypertension: a systematic review and meta-analysis. J Am Coll Cardiol. 2013;62:231–41.PubMedCrossRef Davis MI, Filion KB, Zhang D, et al. Effectiveness of renal denervation therapy for resistant hypertension: a systematic review and meta-analysis. J Am Coll Cardiol. 2013;62:231–41.PubMedCrossRef
87.
go back to reference Eleid MF, Schwartz GL, Gulati R. Renal denervation for hypertension. Curr Probl Cardiol. 2014;39:29–52.CrossRef Eleid MF, Schwartz GL, Gulati R. Renal denervation for hypertension. Curr Probl Cardiol. 2014;39:29–52.CrossRef
90.
go back to reference Aronow WS. Renal sympathetic denervation therapy for treatment of resistant hypertension. Hypertension. 2014;3:1. Aronow WS. Renal sympathetic denervation therapy for treatment of resistant hypertension. Hypertension. 2014;3:1.
91.
go back to reference Renal sympathetic denervation for hypertension. Med Lett Drugs Ther 2012; 54:55. Renal sympathetic denervation for hypertension. Med Lett Drugs Ther 2012; 54:55.
92.
go back to reference • Worthley SG, Tsioufis CP, Worthley MI, et al. Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial. Eur Heart J. 2013;34:2132–40. Multiple catheters are being developed as alternatives to the Symplicity catheter. This trial describes a multielectrode catheter that may be easier to use for abolishing sympathetic innervation of the renal artery.PubMedCentralPubMedCrossRef • Worthley SG, Tsioufis CP, Worthley MI, et al. Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial. Eur Heart J. 2013;34:2132–40. Multiple catheters are being developed as alternatives to the Symplicity catheter. This trial describes a multielectrode catheter that may be easier to use for abolishing sympathetic innervation of the renal artery.PubMedCentralPubMedCrossRef
93.
go back to reference • Ahmed H, Neuzil P, Skoda J, et al. Renal sympathetic denervation using an irrigated radio-frequency ablation catheter for the management of drug-resistant hypertension. J Am Coll Cardiol Interv. 2012;5:758–65. This study describes the use of an irrigated radiofrequency ablation catheter for RSD. This catheter is typically used for cardiac tissue ablation.CrossRef • Ahmed H, Neuzil P, Skoda J, et al. Renal sympathetic denervation using an irrigated radio-frequency ablation catheter for the management of drug-resistant hypertension. J Am Coll Cardiol Interv. 2012;5:758–65. This study describes the use of an irrigated radiofrequency ablation catheter for RSD. This catheter is typically used for cardiac tissue ablation.CrossRef
94.
go back to reference • Wang Q, Gun R, Rong S, et al. Noninvasive renal sympathetic denervation by extracorporeal high-intensity focused ultrasound in a pre-clinical canine model. J Am Coll Cardiol. 2013;61:2185–92. In this animal study, RSD was obtained by a noninvasive ultrasound technique, which could avoid catheterizations.PubMedCrossRef • Wang Q, Gun R, Rong S, et al. Noninvasive renal sympathetic denervation by extracorporeal high-intensity focused ultrasound in a pre-clinical canine model. J Am Coll Cardiol. 2013;61:2185–92. In this animal study, RSD was obtained by a noninvasive ultrasound technique, which could avoid catheterizations.PubMedCrossRef
95.
go back to reference Barbash IM, Waksman R. Sympathetic renal denervation: hypertension beyond SYMPLICITY. Cardiovasc Revasc Med. 2013;14:229–35.PubMedCrossRef Barbash IM, Waksman R. Sympathetic renal denervation: hypertension beyond SYMPLICITY. Cardiovasc Revasc Med. 2013;14:229–35.PubMedCrossRef
96.
go back to reference Mohaupt MG, Schmidli J, Luft FC. Management of uncontrollable hypertension with a carotid sinus stimulation device. Hypertension. 2007;50:825–8.PubMedCrossRef Mohaupt MG, Schmidli J, Luft FC. Management of uncontrollable hypertension with a carotid sinus stimulation device. Hypertension. 2007;50:825–8.PubMedCrossRef
97.
go back to reference Alnima T, Scheffers I, DeLeeuw PW, et al. Sustained acute voltage-dependent blood pressure decrease with prolonged carotid baroreflex activation in therapy-resistant hypertension. J Hypertens. 2012;30:1665–70.PubMedCrossRef Alnima T, Scheffers I, DeLeeuw PW, et al. Sustained acute voltage-dependent blood pressure decrease with prolonged carotid baroreflex activation in therapy-resistant hypertension. J Hypertens. 2012;30:1665–70.PubMedCrossRef
Metadata
Title
The Role of Nonpharmacologic Device Interventions in the Management of Drug-Resistant Hypertension
Authors
William H. Frishman
Daniel Glicklich
Publication date
01-05-2014
Publisher
Springer US
Published in
Current Atherosclerosis Reports / Issue 5/2014
Print ISSN: 1523-3804
Electronic ISSN: 1534-6242
DOI
https://doi.org/10.1007/s11883-014-0405-5

Other articles of this Issue 5/2014

Current Atherosclerosis Reports 5/2014 Go to the issue

Vascular Biology (RS Rosenson, Section Editor)

Antiatherothrombotic Effects of Dipeptidyl Peptidase Inhibitors

Vascular Biology(RS Rosenson, Section Editor)

The Endothelium in Diabetic Nephropathy

Cardiovascular Disease and Stroke (P Perrone-Filardi and S. Agewall, Section Editors)

Adiposopathy, “Sick Fat,” Ockham’s Razor, and Resolution of the Obesity Paradox

Genetics (AJ Marian, Section Editor)

Noncoding RNAs and Atherosclerosis

Genetics (AJ Marian, Section Editor)

Pharmacogenetics of Antiplatelet Therapy

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine