Skip to main content
Top
Published in: Japanese Journal of Radiology 11/2023

Open Access 20-05-2023 | Computed Tomography | Invited Review

Magnetic resonance bone imaging: applications to vertebral lesions

Authors: Kazuhiro Tsuchiya, Miho Gomyo, Shichiro Katase, Sayuki Hiraoka, Hidekatsu Tateishi

Published in: Japanese Journal of Radiology | Issue 11/2023

Login to get access

Abstract

MR bone imaging is a recently introduced technique, that allows visualization of bony structures in good contrast against adjacent structures, like CT. Although CT has long been considered the modality of choice for bone imaging, MR bone imaging allows visualization of the bone without radiation exposure while simultaneously allowing conventional MR images to be obtained. Accordingly, MR bone imaging is expected as a new imaging technique for the diagnosis of miscellaneous spinal diseases. This review presents several sequences used in MR bone imaging including black bone imaging, ultrashort/zero echo time (UTE/ZTE) sequences, and T1-weighted 3D gradient-echo sequence. We also illustrate clinical cases in which spinal lesions could be effectively demonstrated on MR bone imaging, performed in most cases using a 3D gradient-echo sequence at our institution. The lesions presented herein include degenerative diseases, tumors and similar diseases, fractures, infectious diseases, and hemangioma. Finally, we discuss the differences between MR bone imaging and previously reported techniques, and the limitations and future perspectives of MR bone imaging.
Literature
1.
go back to reference Wiesinger F, Sacolic LI, Menini A, Kaushik SS, Ahn S, Veit-Haibach P, et al. Zero TE MR bone imaging in the head. Magn Reson Med. 2016;75:107–14.CrossRefPubMed Wiesinger F, Sacolic LI, Menini A, Kaushik SS, Ahn S, Veit-Haibach P, et al. Zero TE MR bone imaging in the head. Magn Reson Med. 2016;75:107–14.CrossRefPubMed
2.
go back to reference Du J, Carl M, Bydder M, Takahashi A, Chung CB, Bydder GM. Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone. J Magn Reson. 2010;207:304–11.CrossRefPubMed Du J, Carl M, Bydder M, Takahashi A, Chung CB, Bydder GM. Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone. J Magn Reson. 2010;207:304–11.CrossRefPubMed
3.
go back to reference Eley KA, Mcintyre AG, Watt-Smith SR, Golding SJ. “Black bone” MRI: a partial flip angle technique for radiation reduction in craniofacial imaging. Br J Radiol. 2012;85:272–8.CrossRefPubMedPubMedCentral Eley KA, Mcintyre AG, Watt-Smith SR, Golding SJ. “Black bone” MRI: a partial flip angle technique for radiation reduction in craniofacial imaging. Br J Radiol. 2012;85:272–8.CrossRefPubMedPubMedCentral
4.
go back to reference Du J, Hermida JC, Diaz E, Corbeil J, Znamirowski R, D’Lima DD, et al. Assessment of cortical bone with clinical and ultrashort echo time sequences. Magn Reson Med. 2013;70:697–704.CrossRefPubMed Du J, Hermida JC, Diaz E, Corbeil J, Znamirowski R, D’Lima DD, et al. Assessment of cortical bone with clinical and ultrashort echo time sequences. Magn Reson Med. 2013;70:697–704.CrossRefPubMed
5.
go back to reference Breighner RE, Endo T, Konin JP, Guolotta LV, Koff MF, Potter HG. Zero echo time imaging of the shoulder: Enhanced osseous detail by using MR imaging. Radiology. 2018;286:960–6.CrossRefPubMed Breighner RE, Endo T, Konin JP, Guolotta LV, Koff MF, Potter HG. Zero echo time imaging of the shoulder: Enhanced osseous detail by using MR imaging. Radiology. 2018;286:960–6.CrossRefPubMed
6.
go back to reference Bae WC, Biswas R, Chen K, Chang ET. UTE MRI of the osteochondral junction. Curr Radiol Rep. 2014;2:35.CrossRefPubMed Bae WC, Biswas R, Chen K, Chang ET. UTE MRI of the osteochondral junction. Curr Radiol Rep. 2014;2:35.CrossRefPubMed
7.
go back to reference Florkow MC, Willemsen K, Mascarenhas VV, Oei EH, van Stalen M, Seevinck PR. Magnetic resonance imaging versus computed tomography for three-dimensional bone imaging of musculoskeletal pathologies: a review. J Magn Reson Imaging. 2022;56:11–34.CrossRefPubMedPubMedCentral Florkow MC, Willemsen K, Mascarenhas VV, Oei EH, van Stalen M, Seevinck PR. Magnetic resonance imaging versus computed tomography for three-dimensional bone imaging of musculoskeletal pathologies: a review. J Magn Reson Imaging. 2022;56:11–34.CrossRefPubMedPubMedCentral
8.
go back to reference Chong LR, Lee K, Sim FY. 3D MRI with CT-like bone contrast -An overview of current approaches and practical clinical implementation. Eur J Radiol. 2021;143:109915.CrossRefPubMed Chong LR, Lee K, Sim FY. 3D MRI with CT-like bone contrast -An overview of current approaches and practical clinical implementation. Eur J Radiol. 2021;143:109915.CrossRefPubMed
9.
go back to reference Gersing AS, Pfeiffer D, Kopp FK, Schwaiger BJ, Knebel C, Haller B, et al. Evaluation of MR-derived CT-like images and simulated radiographs compared to conventional radiography in patients with benign and malignant bone tumors. Eur Radiol. 2019;29:13–21.CrossRefPubMed Gersing AS, Pfeiffer D, Kopp FK, Schwaiger BJ, Knebel C, Haller B, et al. Evaluation of MR-derived CT-like images and simulated radiographs compared to conventional radiography in patients with benign and malignant bone tumors. Eur Radiol. 2019;29:13–21.CrossRefPubMed
10.
go back to reference Ang EC, Robertson AF, Malara FA, O’Shea T, Roebert JK, Schneider ME, et al. Diagnostic accuracy of 3-T magnetic resonance imaging with 3D T1 VIBE versus computer tomography in pars stress fracture of the lumbar spine. Skeletal Radiol. 2016;45:1533–40.CrossRefPubMed Ang EC, Robertson AF, Malara FA, O’Shea T, Roebert JK, Schneider ME, et al. Diagnostic accuracy of 3-T magnetic resonance imaging with 3D T1 VIBE versus computer tomography in pars stress fracture of the lumbar spine. Skeletal Radiol. 2016;45:1533–40.CrossRefPubMed
11.
go back to reference Stillwater L, Koenig J, Maycher B, Davidson M. 3D-MR vs. 3D-CT of the shoulder in patients with glenohumeral instability. Skeletal Radiol. 2017;46:325–31.CrossRefPubMed Stillwater L, Koenig J, Maycher B, Davidson M. 3D-MR vs. 3D-CT of the shoulder in patients with glenohumeral instability. Skeletal Radiol. 2017;46:325–31.CrossRefPubMed
12.
go back to reference Goronzy J, Blum S, Hartmann A, Plodeck V, Franken L, Gunther KP, et al. Is MRI an adequate replacement for CT scans in the three-dimensional assessment of acetabular morphology? Acta Radiol. 2019;60:726–34.CrossRefPubMed Goronzy J, Blum S, Hartmann A, Plodeck V, Franken L, Gunther KP, et al. Is MRI an adequate replacement for CT scans in the three-dimensional assessment of acetabular morphology? Acta Radiol. 2019;60:726–34.CrossRefPubMed
13.
go back to reference Johnson B, Alizai H, Dempsey M. Fast field echo resembling a CT using restricted echo-spacing (FRACTURE): a novel MRI technique with superior bone contrast. Skeletal Radiol. 2021;50:1705–13.CrossRefPubMed Johnson B, Alizai H, Dempsey M. Fast field echo resembling a CT using restricted echo-spacing (FRACTURE): a novel MRI technique with superior bone contrast. Skeletal Radiol. 2021;50:1705–13.CrossRefPubMed
14.
go back to reference Deininger-Czermak E, Euler A, Franckenberg S, Finkenstaedt T, Villefort C, Gascho D, et al. Evaluation of ultrashort echo-time (UTE) and fast-field-echo (FRACTURE) sequences for skull bone visualization and fracture detection-a postmortem study. J Neuroradiol. 2022;49:237–43.CrossRefPubMed Deininger-Czermak E, Euler A, Franckenberg S, Finkenstaedt T, Villefort C, Gascho D, et al. Evaluation of ultrashort echo-time (UTE) and fast-field-echo (FRACTURE) sequences for skull bone visualization and fracture detection-a postmortem study. J Neuroradiol. 2022;49:237–43.CrossRefPubMed
15.
go back to reference Gascho D, Zoelch N, Tappero C, Kottner S, Bruellmnn E, Thali MJ, et al. FRACTURE MRI: optimized 3D multi-echo in-phase sequence for bone damage assessment in craniocerebral gunshot injuries. Diagn Interv Imaging. 2020;101:611–5.CrossRefPubMed Gascho D, Zoelch N, Tappero C, Kottner S, Bruellmnn E, Thali MJ, et al. FRACTURE MRI: optimized 3D multi-echo in-phase sequence for bone damage assessment in craniocerebral gunshot injuries. Diagn Interv Imaging. 2020;101:611–5.CrossRefPubMed
16.
go back to reference Böker SM, Adams LC, Bender YY, Wagner M, Diekhof T, Fallenberg E, et al. Evaluation of vertebral body fractures using susceptibility-weighted magnetic resonance imaging. Eur Radiol. 2018;28:2228–35.CrossRefPubMed Böker SM, Adams LC, Bender YY, Wagner M, Diekhof T, Fallenberg E, et al. Evaluation of vertebral body fractures using susceptibility-weighted magnetic resonance imaging. Eur Radiol. 2018;28:2228–35.CrossRefPubMed
17.
go back to reference Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017;44:1408–9.CrossRefPubMed Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017;44:1408–9.CrossRefPubMed
18.
go back to reference Florkow MC, Zijlstra F, Willemsen K, Maspero M, van den Berg CAT, Kerkmeijer LGW, et al. Deep learning-based MR-to-CT synthesis: the influence of varying gradient echo-based MR images as input channels. Magn Reson Med. 2020;83:1429–41.CrossRefPubMed Florkow MC, Zijlstra F, Willemsen K, Maspero M, van den Berg CAT, Kerkmeijer LGW, et al. Deep learning-based MR-to-CT synthesis: the influence of varying gradient echo-based MR images as input channels. Magn Reson Med. 2020;83:1429–41.CrossRefPubMed
19.
go back to reference Bender YY, Diederichs G, Walter TC, Wagner M, Liebig T, Rickert M, et al. Differentiation of osteophytes and disc herniations in spinal radiculopathy using susceptibility-weighted magnetic resonance imaging. Invest Radiol. 2017;52:75–80.CrossRefPubMed Bender YY, Diederichs G, Walter TC, Wagner M, Liebig T, Rickert M, et al. Differentiation of osteophytes and disc herniations in spinal radiculopathy using susceptibility-weighted magnetic resonance imaging. Invest Radiol. 2017;52:75–80.CrossRefPubMed
20.
go back to reference Kemppainen R, Suilamo S, Tuokkola T, Lindholm P, Deppe MH, Keyriläinen J. Magnetic resonance-only simulation and dose calculation in external beam radiation therapy: a feasibility study for pelvic cancers. Acta Oncol. 2017;56:792–8.CrossRefPubMed Kemppainen R, Suilamo S, Tuokkola T, Lindholm P, Deppe MH, Keyriläinen J. Magnetic resonance-only simulation and dose calculation in external beam radiation therapy: a feasibility study for pelvic cancers. Acta Oncol. 2017;56:792–8.CrossRefPubMed
21.
go back to reference Argentieri EC, Koff MF, Breighner RE, Endo Y, Shah PH, Sneag DB. Diagnostic accuracy of zero-echo time MRI for the evaluation of cervical neural foraminal stenosis. Spine (Phila Pa 1976). 2018;43:928–33.CrossRefPubMed Argentieri EC, Koff MF, Breighner RE, Endo Y, Shah PH, Sneag DB. Diagnostic accuracy of zero-echo time MRI for the evaluation of cervical neural foraminal stenosis. Spine (Phila Pa 1976). 2018;43:928–33.CrossRefPubMed
23.
go back to reference Ma YJ, Chang EY. Ossification of the posterior longitudinal ligament on zero-TE MRI with “CT-like” contrast. AJR Am J Roentgenol. 2021;217:1242.CrossRefPubMed Ma YJ, Chang EY. Ossification of the posterior longitudinal ligament on zero-TE MRI with “CT-like” contrast. AJR Am J Roentgenol. 2021;217:1242.CrossRefPubMed
24.
go back to reference Feuerriegel GC, Kronthaler S, Boehm C, Renz M, Leonhardt Y, Gassert F, et al. Diagnostic value of water-fat-separated images and CT-like susceptibility-weighted images extracted from a single ultrashort echo time sequence for the evaluation of vertebral fractures and degenerative changes of the spine. Eur Radiol. 2023;33:1445–55.CrossRefPubMed Feuerriegel GC, Kronthaler S, Boehm C, Renz M, Leonhardt Y, Gassert F, et al. Diagnostic value of water-fat-separated images and CT-like susceptibility-weighted images extracted from a single ultrashort echo time sequence for the evaluation of vertebral fractures and degenerative changes of the spine. Eur Radiol. 2023;33:1445–55.CrossRefPubMed
25.
go back to reference Afsahi AM, Lombardi AF, Wei Z, Cari M, Athertya J, Masuda K, et al. High-contrast lumbar spinal bone imaging using a 3D slab-selective UTE sequence. Front Endocrinol (Lausanne). 2022;12:800398.CrossRefPubMed Afsahi AM, Lombardi AF, Wei Z, Cari M, Athertya J, Masuda K, et al. High-contrast lumbar spinal bone imaging using a 3D slab-selective UTE sequence. Front Endocrinol (Lausanne). 2022;12:800398.CrossRefPubMed
26.
go back to reference Schwaiger BJ, Schneider C, Kronthaler S, Gassert F, Böhm C, Pfeiffer D, et al. CT-like images based on T1 spoiled gradient-echo and ultra-short echo time MRI sequences for the assessment of vertebral fractures and degenerative bone changes of the spine. Eur Radiol. 2021;31:4680–9.CrossRefPubMedPubMedCentral Schwaiger BJ, Schneider C, Kronthaler S, Gassert F, Böhm C, Pfeiffer D, et al. CT-like images based on T1 spoiled gradient-echo and ultra-short echo time MRI sequences for the assessment of vertebral fractures and degenerative bone changes of the spine. Eur Radiol. 2021;31:4680–9.CrossRefPubMedPubMedCentral
27.
go back to reference Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter R. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166:193–9.CrossRefPubMed Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter R. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166:193–9.CrossRefPubMed
28.
go back to reference Boker SM, Bender YY, Adams LC, Fallenberg EM, Wagner M, Hamm B, et al. Evaluation of sclerosis in Modic changes of the spine using susceptibility-weighted magnetic resonance imaging. Eur J Radiol. 2017;88:148–54.CrossRefPubMed Boker SM, Bender YY, Adams LC, Fallenberg EM, Wagner M, Hamm B, et al. Evaluation of sclerosis in Modic changes of the spine using susceptibility-weighted magnetic resonance imaging. Eur J Radiol. 2017;88:148–54.CrossRefPubMed
29.
go back to reference Jeong HS, Park C, Kim KS, Kim JH, Jeon CH. Clinical feasibility of MR-generated synthetic CT images of the cervical spine: diagnostic performance for detection of OPLL and comparison of CT number. Medicine (Baltimore). 2021;100:e25800.CrossRefPubMed Jeong HS, Park C, Kim KS, Kim JH, Jeon CH. Clinical feasibility of MR-generated synthetic CT images of the cervical spine: diagnostic performance for detection of OPLL and comparison of CT number. Medicine (Baltimore). 2021;100:e25800.CrossRefPubMed
31.
go back to reference Sandberg JK, Young VA, Yuan J, Hargreaves BA, Wishah F, Vasanawala SS. Zero echo time pediatric musculoskeletal magnetic resonance imaging: initial experience. Pediatr Radiol. 2021;51(13):2549–60.CrossRefPubMed Sandberg JK, Young VA, Yuan J, Hargreaves BA, Wishah F, Vasanawala SS. Zero echo time pediatric musculoskeletal magnetic resonance imaging: initial experience. Pediatr Radiol. 2021;51(13):2549–60.CrossRefPubMed
32.
go back to reference Juerchott A, Freudlsperger C, Weber D, Jende JME, Saleem MA, Zingler S, et al. In vivo comparison of MRI- and CBCT-based 3D cephalometric analysis: Beginning of a nonionizing diagnostic era in craniomaxillofacial imaging? Eur Radiol. 2020;30:1488–97.CrossRefPubMed Juerchott A, Freudlsperger C, Weber D, Jende JME, Saleem MA, Zingler S, et al. In vivo comparison of MRI- and CBCT-based 3D cephalometric analysis: Beginning of a nonionizing diagnostic era in craniomaxillofacial imaging? Eur Radiol. 2020;30:1488–97.CrossRefPubMed
33.
go back to reference Florkow MC, Willemsen K, Zijlstra F, Foppen W, van der Wal BCH, van der Voort van Zyp JRN, et al. MRI-based synthetic CT shows equivalence to conventional CT for the morphological assessment of the hip joint. J Orthop Res. 2022;40:954–64.CrossRefPubMed Florkow MC, Willemsen K, Zijlstra F, Foppen W, van der Wal BCH, van der Voort van Zyp JRN, et al. MRI-based synthetic CT shows equivalence to conventional CT for the morphological assessment of the hip joint. J Orthop Res. 2022;40:954–64.CrossRefPubMed
34.
go back to reference Zheng ZZ, Shan H, Li X. Fat-suppressed 3D T1-weighted gradient-echo imaging of the cartilage with a volumetric interpolated breath-hold examination. AJR Am J Roentgenol. 2010;194:W414–9.CrossRefPubMed Zheng ZZ, Shan H, Li X. Fat-suppressed 3D T1-weighted gradient-echo imaging of the cartilage with a volumetric interpolated breath-hold examination. AJR Am J Roentgenol. 2010;194:W414–9.CrossRefPubMed
35.
go back to reference Kralik SF, Supakul N, Wu IC, Delso G, Radhakrishnan R, Ho CY, et al. Black bone MRI with 3D reconstruction for the detection of skull fractures in children with suspected abusive head trauma. Neuroradiology. 2019;61:81–7.CrossRefPubMed Kralik SF, Supakul N, Wu IC, Delso G, Radhakrishnan R, Ho CY, et al. Black bone MRI with 3D reconstruction for the detection of skull fractures in children with suspected abusive head trauma. Neuroradiology. 2019;61:81–7.CrossRefPubMed
36.
go back to reference Low XZ, Lim MC, Nga V, Sundar G, Tan AP. Clinical application of “black bone” imaging in paediatric craniofacial disorders. Br J Radiol. 2021;94:20200061.CrossRefPubMedPubMedCentral Low XZ, Lim MC, Nga V, Sundar G, Tan AP. Clinical application of “black bone” imaging in paediatric craniofacial disorders. Br J Radiol. 2021;94:20200061.CrossRefPubMedPubMedCentral
37.
go back to reference Leonhardt Y, Kronthaler S, Feuerriegel G, Karampionos DC, Schwaiger BJ, Pfeiffer D, et al. CT-like MR-derived images for the assessment of craniosynostosis and other pathologies of the pediatric skull. Clin Neuroradiol. 2023;33:57–64.CrossRefPubMed Leonhardt Y, Kronthaler S, Feuerriegel G, Karampionos DC, Schwaiger BJ, Pfeiffer D, et al. CT-like MR-derived images for the assessment of craniosynostosis and other pathologies of the pediatric skull. Clin Neuroradiol. 2023;33:57–64.CrossRefPubMed
38.
go back to reference Leong JL, Batra PS, Citardi MJ. CT-MR image fusion for the management of skull base lesions. Otolaryngol Head Neck Surg. 2006;134:868–76.CrossRefPubMed Leong JL, Batra PS, Citardi MJ. CT-MR image fusion for the management of skull base lesions. Otolaryngol Head Neck Surg. 2006;134:868–76.CrossRefPubMed
39.
go back to reference Noorda YH, Bartels LW, Huisman M, Nijenhuis RJ, Van Den Bosch MAAJ, Pluim JW. Registration of CT to pre-treatment MRI for planning of MR-HIFU ablation treatment of painful bone metastases. Phys Med Biol. 2014;59:4167–79.CrossRefPubMed Noorda YH, Bartels LW, Huisman M, Nijenhuis RJ, Van Den Bosch MAAJ, Pluim JW. Registration of CT to pre-treatment MRI for planning of MR-HIFU ablation treatment of painful bone metastases. Phys Med Biol. 2014;59:4167–79.CrossRefPubMed
40.
go back to reference Maduri R, Bobinski L, Duff JM. Image merge tailored access resection (IMTAR) of spinal intradural tumors. Technical report of 13 cases. World Neurosurg. 2017;98:594–602.CrossRefPubMed Maduri R, Bobinski L, Duff JM. Image merge tailored access resection (IMTAR) of spinal intradural tumors. Technical report of 13 cases. World Neurosurg. 2017;98:594–602.CrossRefPubMed
Metadata
Title
Magnetic resonance bone imaging: applications to vertebral lesions
Authors
Kazuhiro Tsuchiya
Miho Gomyo
Shichiro Katase
Sayuki Hiraoka
Hidekatsu Tateishi
Publication date
20-05-2023
Publisher
Springer Nature Singapore
Published in
Japanese Journal of Radiology / Issue 11/2023
Print ISSN: 1867-1071
Electronic ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-023-01449-4

Other articles of this Issue 11/2023

Japanese Journal of Radiology 11/2023 Go to the issue