Skip to main content
Top
Published in: La radiologia medica 3/2021

01-03-2021 | Computed Tomography | Chest Radiology

Radiation dose reduction considerations and imaging patterns of ground glass opacities in coronavirus: risk of over exposure in computed tomography

Authors: Mohammad Ahmmad Rawashdeh, Charbel Saade

Published in: La radiologia medica | Issue 3/2021

Login to get access

Abstract

This article aims to summarize the available data on the severe acute respiratory syndrome coronavirus 2 (SAR-CoV-2) imaging patterns as well as reducing radiation dose exposure in chest computed tomography (CT) protocols. First, the general aspects of radiation dose in CT and radiation risk are discussed, followed by the effect of changing parameters on image quality. This article attempts to highlight some of the common chest CT signs that radiologists and emergency physicians are likely to encounter. With the increasing trend of using chest CT scans as an imaging tool to diagnose and monitor SAR-CoV-2, we emphasize that pattern recognition is the key, and this pictorial essay should serve as a guide to help establish correct diagnosis coupled with correct scanner parameters to reduce radiation dose without affecting imaging quality in this tragic pandemic the world is facing.
Literature
1.
go back to reference Lai C-C et al. (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrobial Agents:105924 Lai C-C et al. (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrobial Agents:105924
2.
go back to reference Porcheddu R et al (2020) Similarity in case fatality rates (CFR) of COVID-19/SARS-COV-2 in Italy and China. J Infect Dev Countries 14(02):125–128CrossRef Porcheddu R et al (2020) Similarity in case fatality rates (CFR) of COVID-19/SARS-COV-2 in Italy and China. J Infect Dev Countries 14(02):125–128CrossRef
3.
go back to reference Li Y, Xia L (2020) Coronavirus Disease 2019 (COVID-19): role of chest CT in diagnosis and management. Am J Roentgenol 214(6):1–7CrossRef Li Y, Xia L (2020) Coronavirus Disease 2019 (COVID-19): role of chest CT in diagnosis and management. Am J Roentgenol 214(6):1–7CrossRef
4.
go back to reference Zu ZY et al (2020) Coronavirus Disease 2019 (COVID-19): a perspective from China. Radiology 296:200490 Zu ZY et al (2020) Coronavirus Disease 2019 (COVID-19): a perspective from China. Radiology 296:200490
5.
go back to reference Chan M (2009) World now at the start of 2009 influenza pandemic Chan M (2009) World now at the start of 2009 influenza pandemic
6.
go back to reference Chung M et al (2020) CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 200230 Chung M et al (2020) CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 200230
9.
go back to reference Pan F et al (2020) Time course of lung changes on chest CT during recovery from, novel coronavirus (COVID-19) pneumonia. Radiology 200370 Pan F et al (2020) Time course of lung changes on chest CT during recovery from, novel coronavirus (COVID-19) pneumonia. Radiology 200370
11.
go back to reference Svahn TM, Sjöberg T, Ast JC (2019) Dose estimation of ultra-low-dose chest CT to different sized adult patients. Eur Radiol 29(8):4315–4323CrossRef Svahn TM, Sjöberg T, Ast JC (2019) Dose estimation of ultra-low-dose chest CT to different sized adult patients. Eur Radiol 29(8):4315–4323CrossRef
12.
go back to reference Ludwig M et al (2019) Detection of pulmonary nodules: a clinical study protocol to compare ultra-low dose chest CT and standard low-dose CT using ASIR-V. BMJ Open 9(8):e025661CrossRef Ludwig M et al (2019) Detection of pulmonary nodules: a clinical study protocol to compare ultra-low dose chest CT and standard low-dose CT using ASIR-V. BMJ Open 9(8):e025661CrossRef
13.
go back to reference Sakane H et al. (2020) Biological effects of low-dose chest CT on chromosomal DNA. Radiology:190389 Sakane H et al. (2020) Biological effects of low-dose chest CT on chromosomal DNA. Radiology:190389
14.
go back to reference Liu K-C et al. (2020) CT manifestations of coronavirus disease-2019: a retrospective analysis of 73 cases by disease severity. Eur J Radiol 126:108941 Liu K-C et al. (2020) CT manifestations of coronavirus disease-2019: a retrospective analysis of 73 cases by disease severity. Eur J Radiol 126:108941
15.
go back to reference Wang J et al. (2020) Dynamic changes of chest CT imaging in patients with corona virus disease-19 (COVID-19). Zhejiang da xue xue bao. Yi xue ban. J Zhejiang Univ Med Sci 49(1) Wang J et al. (2020) Dynamic changes of chest CT imaging in patients with corona virus disease-19 (COVID-19). Zhejiang da xue xue bao. Yi xue ban. J Zhejiang Univ Med Sci 49(1)
16.
go back to reference Protection R (2007) ICRP publication 103. Ann ICRP 37(2.4):2 Protection R (2007) ICRP publication 103. Ann ICRP 37(2.4):2
20.
go back to reference Mueller-Mang C, Ringl H, Herold C (2019) Interstitial lung diseases. In: Nikolaou K et al (eds) Multislice CT. Springer, Cham, pp 261–288 Mueller-Mang C, Ringl H, Herold C (2019) Interstitial lung diseases. In: Nikolaou K et al (eds) Multislice CT. Springer, Cham, pp 261–288
21.
go back to reference Webb WR (2006) Thin-section CT of the secondary pulmonary lobule: anatomy and the image—the 2004 Fleischner lecture. Radiology 239(2):322–338CrossRef Webb WR (2006) Thin-section CT of the secondary pulmonary lobule: anatomy and the image—the 2004 Fleischner lecture. Radiology 239(2):322–338CrossRef
22.
go back to reference Kandathil A, Chamarthy M (2018) Pulmonary vascular anatomy & anatomical variants. Cardiovasc Diagn Ther 8(3):201CrossRef Kandathil A, Chamarthy M (2018) Pulmonary vascular anatomy & anatomical variants. Cardiovasc Diagn Ther 8(3):201CrossRef
23.
go back to reference Verschakelen JA, De Wever W (2018) Basic anatomy and CT of the normal lung. In: Computed tomography of the lung, Springer, p 3–19 Verschakelen JA, De Wever W (2018) Basic anatomy and CT of the normal lung. In: Computed tomography of the lung, Springer, p 3–19
24.
go back to reference Couture C (2017) Embryology, anatomy, and histology of the lung. In: Applied respiratory pathophysiology. CRC Press, p 1–14 Couture C (2017) Embryology, anatomy, and histology of the lung. In: Applied respiratory pathophysiology. CRC Press, p 1–14
25.
go back to reference Xu Z et al. (2020) Key points of clinical and CT imaging features of 2019 novel coronavirus (2019-nCoV) imported pneumonia based On 21 cases analysis. Available at SSRN 3543610 Xu Z et al. (2020) Key points of clinical and CT imaging features of 2019 novel coronavirus (2019-nCoV) imported pneumonia based On 21 cases analysis. Available at SSRN 3543610
26.
go back to reference Pan Y et al (2020) Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. Eur Radiol:1–4 Pan Y et al (2020) Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. Eur Radiol:1–4
27.
go back to reference Salehi S et al (2020) Coronavirus Disease 2019 (COVID-19): A Systematic Review of Imaging Findings in 919 Patients. Amer J Roentgenol 1–7 Salehi S et al (2020) Coronavirus Disease 2019 (COVID-19): A Systematic Review of Imaging Findings in 919 Patients. Amer J Roentgenol 1–7
28.
go back to reference Martínez-Jiménez S, Rosado-de-Christenson ML, Carter BW (2017) Specialty Imaging: HRCT of the Lung E-Book. Elsevier, Amsterdam Martínez-Jiménez S, Rosado-de-Christenson ML, Carter BW (2017) Specialty Imaging: HRCT of the Lung E-Book. Elsevier, Amsterdam
29.
go back to reference Huang C et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506CrossRef Huang C et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506CrossRef
30.
go back to reference Bai HX et al (2020) Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT. Radiology:200823 Bai HX et al (2020) Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT. Radiology:200823
31.
go back to reference Gordic S et al (2014) Ultralow-dose chest computed tomography for pulmonary nodule detection Gordic S et al (2014) Ultralow-dose chest computed tomography for pulmonary nodule detection
32.
go back to reference Kubo T et al (2014) Radiation dose reduction in chest CT—review of available options. Eur J Radiol 83(10):1953–1961CrossRef Kubo T et al (2014) Radiation dose reduction in chest CT—review of available options. Eur J Radiol 83(10):1953–1961CrossRef
33.
go back to reference Costello JE et al (2013) CT radiation dose: current controversies and dose reduction strategies. Am J Roentgenol 201(6):1283–1290CrossRef Costello JE et al (2013) CT radiation dose: current controversies and dose reduction strategies. Am J Roentgenol 201(6):1283–1290CrossRef
34.
go back to reference Colletti PM, Micheli OA, Lee KH (2013) To shield or not to shield: application of bismuth breast shields. Am J Roentgenol 200(3):503–507CrossRef Colletti PM, Micheli OA, Lee KH (2013) To shield or not to shield: application of bismuth breast shields. Am J Roentgenol 200(3):503–507CrossRef
35.
go back to reference Wang J et al (2011) Radiation dose reduction to the breast in thoracic CT: comparison of bismuth shielding, organ-based tube current modulation, and use of a globally decreased tube current. Med Phys 38(11):6084–6092CrossRef Wang J et al (2011) Radiation dose reduction to the breast in thoracic CT: comparison of bismuth shielding, organ-based tube current modulation, and use of a globally decreased tube current. Med Phys 38(11):6084–6092CrossRef
36.
go back to reference Mussmann B et al. (2020) Organ-based tube current modulation in chest CT. A comparison of three vendors. Radiography Mussmann B et al. (2020) Organ-based tube current modulation in chest CT. A comparison of three vendors. Radiography
37.
go back to reference Hanley O et al (2017) Radiologists’ recommendations for additional imaging on inpatient CT studies: Do referring physicians follow them? South Med J 110(12):770CrossRef Hanley O et al (2017) Radiologists’ recommendations for additional imaging on inpatient CT studies: Do referring physicians follow them? South Med J 110(12):770CrossRef
38.
go back to reference Ishihara T et al. (2019) Impact of low-tube-voltage protocol on low-contrast detectability in ultra-high-resolution CT: an investigation for use of 1024 × 1024 and 2048 × 2048 matrix images. Eur Congr Radiol Ishihara T et al. (2019) Impact of low-tube-voltage protocol on low-contrast detectability in ultra-high-resolution CT: an investigation for use of 1024 × 1024 and 2048 × 2048 matrix images. Eur Congr Radiol
39.
go back to reference van Ommen F et al (2019) Dose of CT protocols acquired in clinical routine using a dual-layer detector CT scanner: a preliminary report. Eur J Radiol 112:65–71CrossRef van Ommen F et al (2019) Dose of CT protocols acquired in clinical routine using a dual-layer detector CT scanner: a preliminary report. Eur J Radiol 112:65–71CrossRef
40.
go back to reference Kubo T et al (2008) Radiation dose reduction in chest CT: a review. Am J Roentgenol 190(2):335–343CrossRef Kubo T et al (2008) Radiation dose reduction in chest CT: a review. Am J Roentgenol 190(2):335–343CrossRef
41.
go back to reference Prakash P et al (2010) Is weight-based adjustment of automatic exposure control necessary for the reduction of chest ct radiation dose? Korean J Radiol 11(1):46–53CrossRef Prakash P et al (2010) Is weight-based adjustment of automatic exposure control necessary for the reduction of chest ct radiation dose? Korean J Radiol 11(1):46–53CrossRef
42.
go back to reference Christe A et al (2013) Accuracy of low-dose computed tomography (CT) for detecting and characterizing the most common CT-patterns of pulmonary disease. Eur J Radiol 82(3):e142–e150CrossRef Christe A et al (2013) Accuracy of low-dose computed tomography (CT) for detecting and characterizing the most common CT-patterns of pulmonary disease. Eur J Radiol 82(3):e142–e150CrossRef
43.
go back to reference Xie X et al (2014) Small irregular pulmonary nodules in low-dose CT: observer detection sensitivity and volumetry accuracy. Am J Roentgenol 202(3):W202–W209CrossRef Xie X et al (2014) Small irregular pulmonary nodules in low-dose CT: observer detection sensitivity and volumetry accuracy. Am J Roentgenol 202(3):W202–W209CrossRef
44.
go back to reference Armato SG et al (2002) Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program 1. Radiology 225(3):685–692CrossRef Armato SG et al (2002) Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program 1. Radiology 225(3):685–692CrossRef
45.
go back to reference Båth M et al (2005) Nodule detection in digital chest radiography: introduction to the RADIUS chest trial. Radiat Prot Dosimetry 114(1–3):85–91CrossRef Båth M et al (2005) Nodule detection in digital chest radiography: introduction to the RADIUS chest trial. Radiat Prot Dosimetry 114(1–3):85–91CrossRef
46.
go back to reference Prasad SR et al (2002) Standard-dose and 50%—reduced-dose chest CT: comparing the effect on image quality. Am J Roentgenol 179(2):461–465CrossRef Prasad SR et al (2002) Standard-dose and 50%—reduced-dose chest CT: comparing the effect on image quality. Am J Roentgenol 179(2):461–465CrossRef
47.
go back to reference Zhu X, Yu J, Huang Z (2004) Low-dose chest CT: optimizing radiation protection for patients. Am J Roentgenol 183(3):809–816CrossRef Zhu X, Yu J, Huang Z (2004) Low-dose chest CT: optimizing radiation protection for patients. Am J Roentgenol 183(3):809–816CrossRef
48.
go back to reference Li F et al (2002) Lung cancers missed at low-dose helical CT screening in a general population: comparison of clinical, histopathologic, and imaging findings 1. Radiology 225(3):673–683CrossRef Li F et al (2002) Lung cancers missed at low-dose helical CT screening in a general population: comparison of clinical, histopathologic, and imaging findings 1. Radiology 225(3):673–683CrossRef
49.
go back to reference Christe A et al (2013) Impact of image quality, radiologists, lung segments, and Gunnar eyewear on detectability of lung nodules in chest CT. Acta Radiol 54(6):646–651CrossRef Christe A et al (2013) Impact of image quality, radiologists, lung segments, and Gunnar eyewear on detectability of lung nodules in chest CT. Acta Radiol 54(6):646–651CrossRef
50.
go back to reference Cheng Y et al (2019) Validation of algorithmic CT image quality metrics with preferences of radiologists. Med Phys 46(11):4837–4846CrossRef Cheng Y et al (2019) Validation of algorithmic CT image quality metrics with preferences of radiologists. Med Phys 46(11):4837–4846CrossRef
51.
go back to reference Mettler FA Jr et al (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog 1. Radiology 248(1):254–263CrossRef Mettler FA Jr et al (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog 1. Radiology 248(1):254–263CrossRef
52.
go back to reference Karabulut N et al (2002) Comparison of low-dose and standard-dose helical CT in the evaluation of pulmonary nodules. Eur Radiol 12(11):2764–2769CrossRef Karabulut N et al (2002) Comparison of low-dose and standard-dose helical CT in the evaluation of pulmonary nodules. Eur Radiol 12(11):2764–2769CrossRef
53.
go back to reference Mazzei FG et al. (2014) Reduced time CT perfusion acquisitions are sufficient to measure the permeability surface area product with a deconvolution method. BioMed Res Int 2014 Mazzei FG et al. (2014) Reduced time CT perfusion acquisitions are sufficient to measure the permeability surface area product with a deconvolution method. BioMed Res Int 2014
54.
go back to reference Mazzei MA et al (2013) La perfusione con TC nella caratterizzazione del nodulo polmonare solitario: possibilità e limiti in uno studio preliminare. Recenti Prog Med 104(7):430–437PubMed Mazzei MA et al (2013) La perfusione con TC nella caratterizzazione del nodulo polmonare solitario: possibilità e limiti in uno studio preliminare. Recenti Prog Med 104(7):430–437PubMed
55.
go back to reference Higuchi K et al (2013) Detection of ground-glass opacities by use of hybrid iterative reconstruction (iDose) and low-dose 256-section computed tomography: a phantom study. Radiol Phys Technol 6(2):299–304CrossRef Higuchi K et al (2013) Detection of ground-glass opacities by use of hybrid iterative reconstruction (iDose) and low-dose 256-section computed tomography: a phantom study. Radiol Phys Technol 6(2):299–304CrossRef
56.
go back to reference Pontana F et al (2011) Chest computed tomography using iterative reconstruction vs filtered back projection (Part 2): image quality of low-dose CT examinations in 80 patients. Eur Radiol 21(3):636–643CrossRef Pontana F et al (2011) Chest computed tomography using iterative reconstruction vs filtered back projection (Part 2): image quality of low-dose CT examinations in 80 patients. Eur Radiol 21(3):636–643CrossRef
57.
go back to reference Pontana F et al (2011) Chest computed tomography using iterative reconstruction vs filtered back projection (Part 1): evaluation of image noise reduction in 32 patients. Eur Radiol 21(3):627–635CrossRef Pontana F et al (2011) Chest computed tomography using iterative reconstruction vs filtered back projection (Part 1): evaluation of image noise reduction in 32 patients. Eur Radiol 21(3):627–635CrossRef
58.
go back to reference Willemink MJ et al (2013) Iterative reconstruction techniques for computed tomography Part 1: technical principles. Eur Radiol 23(6):1623–1631CrossRef Willemink MJ et al (2013) Iterative reconstruction techniques for computed tomography Part 1: technical principles. Eur Radiol 23(6):1623–1631CrossRef
59.
go back to reference Solomon J et al. (2020) Noise and spatial resolution properties of a commercially available deep‐learning based CT reconstruction algorithm. Med Phys Solomon J et al. (2020) Noise and spatial resolution properties of a commercially available deep‐learning based CT reconstruction algorithm. Med Phys
60.
go back to reference Pavarani A et al (2016) Effect of iterative reconstruction on image quality of low-dose chest computed tomography. Acta Biomed 87(2):168–176PubMed Pavarani A et al (2016) Effect of iterative reconstruction on image quality of low-dose chest computed tomography. Acta Biomed 87(2):168–176PubMed
61.
go back to reference Lim H-J et al (2016) The impact of iterative reconstruction in low-dose computed tomography on the evaluation of diffuse interstitial lung disease. Korean J Radiol 17(6):950–960CrossRef Lim H-J et al (2016) The impact of iterative reconstruction in low-dose computed tomography on the evaluation of diffuse interstitial lung disease. Korean J Radiol 17(6):950–960CrossRef
Metadata
Title
Radiation dose reduction considerations and imaging patterns of ground glass opacities in coronavirus: risk of over exposure in computed tomography
Authors
Mohammad Ahmmad Rawashdeh
Charbel Saade
Publication date
01-03-2021
Publisher
Springer Milan
Published in
La radiologia medica / Issue 3/2021
Print ISSN: 0033-8362
Electronic ISSN: 1826-6983
DOI
https://doi.org/10.1007/s11547-020-01271-2

Other articles of this Issue 3/2021

La radiologia medica 3/2021 Go to the issue