Skip to main content
Top
Published in: La radiologia medica 6/2018

01-06-2018 | SHORT COMMUNICATION

Dentate nucleus T1 hyperintensity: is it always gadolinium all that glitters?

Authors: Luca Pasquini, Maria Camilla Rossi Espagnet, Antonio Napolitano, Daniela Longo, Alice Bertaina, Emiliano Visconti, Paolo Tomà

Published in: La radiologia medica | Issue 6/2018

Login to get access

Abstract

In the last few years, several scientific papers and reports have demonstrated magnetic resonance (MR) signal intensity (SI) changes on pre-contrast T1-weighted images following multiple gadolinium-based contrast agents (GBCA) administrations, particularly following the exposure to linear GBCAs. Pathological animal and human post-mortem studies have confirmed the relationship between this radiological finding and the presence of gadolinium accumulation in vulnerable brain regions in patients with normal renal function. In this short communication, we report the case of a 15-year-old patient affected by b-cell acute lymphoblastic leukemia (bALL) who developed a hyperintense signal in the dentate nuclei following multiple administrations of a macrocyclic GBCA. The purpose of this report is to discuss possible differential diagnoses of this radiological finding with special focus on the differentiation between iron or manganese accumulation, post-irradiation changes and GBCA-related Gd deposition, highlighting the importance of the acquisition of accurate clinical data to improve our scientific knowledge.
Literature
1.
go back to reference Radbruch A, Weberling LD, Kieslich PJ et al (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275:783–791CrossRefPubMed Radbruch A, Weberling LD, Kieslich PJ et al (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275:783–791CrossRefPubMed
2.
go back to reference Kanda T, Osawa M, Oba H et al (2015) High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 275:803–809CrossRefPubMed Kanda T, Osawa M, Oba H et al (2015) High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 275:803–809CrossRefPubMed
3.
go back to reference Cao Y, Huang DQ, Shih G, Prince MR (2016) Signal change in the dentate nucleus on T1-weighted MR images after multiple administrations of gadopentetate dimeglumine versus gadobutrol. AJR Am J Roentgenol 206:414–419CrossRefPubMed Cao Y, Huang DQ, Shih G, Prince MR (2016) Signal change in the dentate nucleus on T1-weighted MR images after multiple administrations of gadopentetate dimeglumine versus gadobutrol. AJR Am J Roentgenol 206:414–419CrossRefPubMed
4.
go back to reference Radbruch A, Weberling LD, Kieslich PJ et al (2016) Intraindividual analysis of signal intensity changes in the dentate nucleus after consecutive serial applications of linear and macrocyclic gadolinium-based contrast agents. Invest Radiol 51:683–690CrossRefPubMed Radbruch A, Weberling LD, Kieslich PJ et al (2016) Intraindividual analysis of signal intensity changes in the dentate nucleus after consecutive serial applications of linear and macrocyclic gadolinium-based contrast agents. Invest Radiol 51:683–690CrossRefPubMed
5.
go back to reference Radbruch A (2016) Are some agents less likely to deposit gadolinium in the brain? Magn Reson Imaging 34:1351–1354CrossRefPubMed Radbruch A (2016) Are some agents less likely to deposit gadolinium in the brain? Magn Reson Imaging 34:1351–1354CrossRefPubMed
6.
go back to reference Lohrke J, Frisk AL, Frenzel T et al (2017) Histology and gadolinium distribution in the rodent brain after the administration of cumulative high doses of linear and macrocyclic gadolinium-based contrast agents. Invest Radiol 52:324–333CrossRefPubMedPubMedCentral Lohrke J, Frisk AL, Frenzel T et al (2017) Histology and gadolinium distribution in the rodent brain after the administration of cumulative high doses of linear and macrocyclic gadolinium-based contrast agents. Invest Radiol 52:324–333CrossRefPubMedPubMedCentral
7.
go back to reference Frenzel T, Apte C, Jost G, Schöckel L, Lohrke J, Pietsch H (2017) Quantification and assessment of the chemical form of residual gadolinium in the brain after repeated administration of gadolinium-based contrast agents: comparative study in rats. Invest Radiol 52:396–404. https://doi.org/10.1097/rli.0000000000000352. [Epub ahead of print] Frenzel T, Apte C, Jost G, Schöckel L, Lohrke J, Pietsch H (2017) Quantification and assessment of the chemical form of residual gadolinium in the brain after repeated administration of gadolinium-based contrast agents: comparative study in rats. Invest Radiol 52:396–404. https://​doi.​org/​10.​1097/​rli.​0000000000000352​. [Epub ahead of print]
8.
go back to reference McDonald RJ, McDonald JS, Kallmes DF et al (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782CrossRefPubMed McDonald RJ, McDonald JS, Kallmes DF et al (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782CrossRefPubMed
10.
go back to reference Rossi Espagnet MC, Bernardi B, Pasquini L, Figà-Talamanca L, Tomà P, Napolitano A (2017) Signal intensity at unenhanced T1-weighted magnetic resonance in the globus pallidus and dentate nucleus after serial administrations of a macrocyclic gadolinium-based contrast agent in children. Pediatr Radiol. https://doi.org/10.1007/s00247-017-3874-38 CrossRefPubMed Rossi Espagnet MC, Bernardi B, Pasquini L, Figà-Talamanca L, Tomà P, Napolitano A (2017) Signal intensity at unenhanced T1-weighted magnetic resonance in the globus pallidus and dentate nucleus after serial administrations of a macrocyclic gadolinium-based contrast agent in children. Pediatr Radiol. https://​doi.​org/​10.​1007/​s00247-017-3874-38 CrossRefPubMed
12.
go back to reference Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann H (2008) Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37°C. Invest Radiol 43:817–828CrossRefPubMed Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann H (2008) Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37°C. Invest Radiol 43:817–828CrossRefPubMed
14.
go back to reference Murata N, Gonzalez-Cuyar LF, Murata K et al (2016) Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Invest Radiol 51:447–453CrossRefPubMed Murata N, Gonzalez-Cuyar LF, Murata K et al (2016) Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Invest Radiol 51:447–453CrossRefPubMed
17.
go back to reference Kasahara S, Miki Y, Kanagaki M et al (2011) Hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with a history of brain irradiation. Radiology 258:222–228CrossRefPubMed Kasahara S, Miki Y, Kanagaki M et al (2011) Hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with a history of brain irradiation. Radiology 258:222–228CrossRefPubMed
18.
go back to reference Adin ME, Kleinberg L, Vaidya D et al (2015) Hyperintense dentate nuclei on T1-weighted MRI: relation to repeat gadolinium administration. AJNR Am J Neuroradiol 36:1859–1865CrossRefPubMedPubMedCentral Adin ME, Kleinberg L, Vaidya D et al (2015) Hyperintense dentate nuclei on T1-weighted MRI: relation to repeat gadolinium administration. AJNR Am J Neuroradiol 36:1859–1865CrossRefPubMedPubMedCentral
20.
go back to reference Qiu D, Chan GC, Chu J et al (2014) MR quantitative susceptibility imaging for the evaluation of iron loading in the brains of patients with β-thalassemia major. AJNR Am J Neuroradiol 35:1085–1090CrossRefPubMed Qiu D, Chan GC, Chu J et al (2014) MR quantitative susceptibility imaging for the evaluation of iron loading in the brains of patients with β-thalassemia major. AJNR Am J Neuroradiol 35:1085–1090CrossRefPubMed
21.
go back to reference Maximova N, Gregori M, Zennaro F, Sonzogni A, Simeone R, Zanon D (2016) Hepatic gadolinium deposition and reversibility after contrast agent-enhanced MR imaging of pediatric hematopoietic stem cell transplant recipients. Radiology 281:418–426CrossRefPubMed Maximova N, Gregori M, Zennaro F, Sonzogni A, Simeone R, Zanon D (2016) Hepatic gadolinium deposition and reversibility after contrast agent-enhanced MR imaging of pediatric hematopoietic stem cell transplant recipients. Radiology 281:418–426CrossRefPubMed
Metadata
Title
Dentate nucleus T1 hyperintensity: is it always gadolinium all that glitters?
Authors
Luca Pasquini
Maria Camilla Rossi Espagnet
Antonio Napolitano
Daniela Longo
Alice Bertaina
Emiliano Visconti
Paolo Tomà
Publication date
01-06-2018
Publisher
Springer Milan
Published in
La radiologia medica / Issue 6/2018
Print ISSN: 0033-8362
Electronic ISSN: 1826-6983
DOI
https://doi.org/10.1007/s11547-017-0846-3

Other articles of this Issue 6/2018

La radiologia medica 6/2018 Go to the issue