Skip to main content
Top
Published in: Pediatric Radiology 6/2017

01-05-2017 | Review

Magnetic resonance imaging patterns of treatment-related toxicity in the pediatric brain: an update and review of the literature

Authors: Maria Camilla Rossi Espagnet, Luca Pasquini, Antonio Napolitano, Antonella Cacchione, Angela Mastronuzzi, Roberta Caruso, Paolo Tomà, Daniela Longo

Published in: Pediatric Radiology | Issue 6/2017

Login to get access

Abstract

Treatment-related neurotoxicity is a potentially life-threatening clinical condition that can represent a diagnostic challenge. Differentiating diagnoses between therapy-associated brain injury and recurrent disease can be difficult, and the immediate recognition of neurotoxicity is crucial to providing correct therapeutic management, ensuring damage reversibility. For these purposes, the knowledge of clinical timing and specific treatment protocols is extremely important for interpreting MRI patterns. Neuroradiologic findings are heterogeneous and sometimes overlapping, representing the compounding effect of the different treatments. Moreover, MRI patterns can be acute, subacute or delayed and involve different brain regions, depending on (1) the mechanism of action of the specific medication and (2) which brain regions are selectively vulnerable to specific toxic effects. This review illustrates the most common radiologic appearance of radiotherapy, chemotherapy and medication-associated brain injury in children, with special focus on the application of advanced MRI techniques (diffusion, perfusion and proton spectroscopy) in the diagnosis of the underlying processes leading to brain toxicity.
Literature
1.
go back to reference Pružincová Ľ, Šteňo J, Srbecký M et al (2009) MR imaging of late radiation therapy- and chemotherapy-induced injury: a pictorial essay. Eur Radiol 19:2716–2727CrossRefPubMed Pružincová Ľ, Šteňo J, Srbecký M et al (2009) MR imaging of late radiation therapy- and chemotherapy-induced injury: a pictorial essay. Eur Radiol 19:2716–2727CrossRefPubMed
2.
go back to reference Ball WS Jr, Prenger EC, Ballard ET (1992) Neurotoxicity of radio/chemotherapy in children: pathologic and MR correlation. AJNR Am J Neuroradiol 13:761–776PubMed Ball WS Jr, Prenger EC, Ballard ET (1992) Neurotoxicity of radio/chemotherapy in children: pathologic and MR correlation. AJNR Am J Neuroradiol 13:761–776PubMed
3.
go back to reference Iyer RS, Chaturvedi A, Pruthiet S et al (2011) Medication neurotoxicity in children. Pediatr Radiol 41:1455–1464CrossRefPubMed Iyer RS, Chaturvedi A, Pruthiet S et al (2011) Medication neurotoxicity in children. Pediatr Radiol 41:1455–1464CrossRefPubMed
4.
go back to reference Vázquez E, Lucaya J, Castellote A et al (2002) Neuroimaging in pediatric leukemia and lymphoma: differential diagnosis. Radiographics 22:1411–1428CrossRefPubMed Vázquez E, Lucaya J, Castellote A et al (2002) Neuroimaging in pediatric leukemia and lymphoma: differential diagnosis. Radiographics 22:1411–1428CrossRefPubMed
5.
go back to reference Vázquez E, Delgado I, Sánchez-Montañez A et al (2011) Side effects of oncologic therapies in the pediatric central nervous system: update on neuroimaging findings. Radiographics 31:1123–1139CrossRefPubMed Vázquez E, Delgado I, Sánchez-Montañez A et al (2011) Side effects of oncologic therapies in the pediatric central nervous system: update on neuroimaging findings. Radiographics 31:1123–1139CrossRefPubMed
6.
go back to reference Valk J, Van der Knaap S (1992) Toxic encephalopathy. AJNR Am J Neuroradiol 13:747–760PubMed Valk J, Van der Knaap S (1992) Toxic encephalopathy. AJNR Am J Neuroradiol 13:747–760PubMed
7.
go back to reference Reddick WE, Taghipour DJ, Glass JO et al (2014) Prognostic factors that increase the risk for reduced white matter volumes and deficits in attention and learning for survivors of childhood cancers. Pediatr Blood Cancer 61:1074–1079CrossRefPubMedPubMedCentral Reddick WE, Taghipour DJ, Glass JO et al (2014) Prognostic factors that increase the risk for reduced white matter volumes and deficits in attention and learning for survivors of childhood cancers. Pediatr Blood Cancer 61:1074–1079CrossRefPubMedPubMedCentral
8.
go back to reference Oeffinger K, Mertens A, Sklar C et al (2006) Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 355:1572–1582CrossRefPubMed Oeffinger K, Mertens A, Sklar C et al (2006) Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 355:1572–1582CrossRefPubMed
9.
10.
go back to reference Quattrocchi CC, Errante Y, Rossi Espagnet MC (2016) Magnetic resonance imaging differential diagnosis of brainstem lesions in children. World J Radiol 8:1–20CrossRefPubMedPubMedCentral Quattrocchi CC, Errante Y, Rossi Espagnet MC (2016) Magnetic resonance imaging differential diagnosis of brainstem lesions in children. World J Radiol 8:1–20CrossRefPubMedPubMedCentral
11.
go back to reference Greene-Schloesser D, Robbins ME, Peiffer AM et al (2012) Radiation-induced brain injury: a review. Front Oncol 19:2–73 Greene-Schloesser D, Robbins ME, Peiffer AM et al (2012) Radiation-induced brain injury: a review. Front Oncol 19:2–73
12.
go back to reference Perry A, Schmidt RE (2006) Cancer therapy-associated CNS neuropathology: an update and review of the literature. Acta Neuropathol 111:197–212CrossRefPubMed Perry A, Schmidt RE (2006) Cancer therapy-associated CNS neuropathology: an update and review of the literature. Acta Neuropathol 111:197–212CrossRefPubMed
13.
go back to reference O’Brien BJ, Colen RR (2014) Post-treatment imaging changes in primary brain tumors. Curr Oncol Rep 16:397CrossRefPubMed O’Brien BJ, Colen RR (2014) Post-treatment imaging changes in primary brain tumors. Curr Oncol Rep 16:397CrossRefPubMed
14.
go back to reference Murphy ES, Merchant TE, Wu S et al (2012) Necrosis after craniospinal irradiation: results from a prospective series of children with central nervous system embryonal tumors. Int J Radiat Oncol Biol Phys 83:e655–e660CrossRefPubMedPubMedCentral Murphy ES, Merchant TE, Wu S et al (2012) Necrosis after craniospinal irradiation: results from a prospective series of children with central nervous system embryonal tumors. Int J Radiat Oncol Biol Phys 83:e655–e660CrossRefPubMedPubMedCentral
15.
go back to reference Kumar AJ, Leeds NE, Fuller GN et al (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384CrossRefPubMed Kumar AJ, Leeds NE, Fuller GN et al (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384CrossRefPubMed
16.
go back to reference Poussaint TY, Rodriguez D (2006) Advanced neuroimaging of pediatric brain tumors: MR diffusion, MR perfusion, and MR spectroscopy. Neuroimaging Clin N Am 16:169–192CrossRefPubMed Poussaint TY, Rodriguez D (2006) Advanced neuroimaging of pediatric brain tumors: MR diffusion, MR perfusion, and MR spectroscopy. Neuroimaging Clin N Am 16:169–192CrossRefPubMed
17.
go back to reference Ball WS, Holland SK (2001) Perfusion imaging in the pediatric patient. Magn Reson Imaging Clin N Am 9:207–230PubMed Ball WS, Holland SK (2001) Perfusion imaging in the pediatric patient. Magn Reson Imaging Clin N Am 9:207–230PubMed
18.
go back to reference Bangiyev L, Rossi Espagnet MC, Young R (2014) Adult brain tumor imaging: state of the art. Semin Roentgenol 49:39–52CrossRefPubMed Bangiyev L, Rossi Espagnet MC, Young R (2014) Adult brain tumor imaging: state of the art. Semin Roentgenol 49:39–52CrossRefPubMed
19.
go back to reference Sugahara T, Korogi Y, Tomiguchi S et al (2000) Post-therapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 21:901–909PubMed Sugahara T, Korogi Y, Tomiguchi S et al (2000) Post-therapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 21:901–909PubMed
20.
go back to reference Hu LS, Baxter LC, Smith KA et al (2009) Relative cerebral blood volume values to differentiate high-grade glioma recurrence from post-treatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 30:552–558CrossRefPubMed Hu LS, Baxter LC, Smith KA et al (2009) Relative cerebral blood volume values to differentiate high-grade glioma recurrence from post-treatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 30:552–558CrossRefPubMed
21.
go back to reference Verma N, Cowperthwaite MC, Burnett MG et al (2013) Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro Oncol 15:515–534CrossRefPubMedPubMedCentral Verma N, Cowperthwaite MC, Burnett MG et al (2013) Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro Oncol 15:515–534CrossRefPubMedPubMedCentral
22.
go back to reference Merchant T, Farr JB (2014) Proton beam therapy: a fad or a new standard of care. Curr Opin Pediatr 26:3–8CrossRefPubMed Merchant T, Farr JB (2014) Proton beam therapy: a fad or a new standard of care. Curr Opin Pediatr 26:3–8CrossRefPubMed
23.
go back to reference Faraci M, Morana G, Bagnasco F et al (2011) Magnetic resonance imaging in childhood leukemia survivors treated with cranial radiotherapy: a cross sectional, single center study. Pediatr Blood Cancer 57:240–246CrossRefPubMed Faraci M, Morana G, Bagnasco F et al (2011) Magnetic resonance imaging in childhood leukemia survivors treated with cranial radiotherapy: a cross sectional, single center study. Pediatr Blood Cancer 57:240–246CrossRefPubMed
24.
go back to reference Koike T, Yanagimachi N, Ishiguro H et al (2012) High incidence of radiation-induced cavernous hemangioma in long-term survivors who underwent hematopoietic stem cell transplantation with radiation therapy during childhood or adolescence. Biol Blood Marrow Transplant 18:1090–1098CrossRefPubMed Koike T, Yanagimachi N, Ishiguro H et al (2012) High incidence of radiation-induced cavernous hemangioma in long-term survivors who underwent hematopoietic stem cell transplantation with radiation therapy during childhood or adolescence. Biol Blood Marrow Transplant 18:1090–1098CrossRefPubMed
25.
go back to reference Huisman TAGM, Singhi S, Pinto PS (2010) Non-invasive imaging of intracranial pediatric vascular lesions. Childs Nerv Syst 26:1275–1295CrossRefPubMed Huisman TAGM, Singhi S, Pinto PS (2010) Non-invasive imaging of intracranial pediatric vascular lesions. Childs Nerv Syst 26:1275–1295CrossRefPubMed
26.
go back to reference Di Giannatale A, Morana G, Rossi A et al (2014) Natural history of cavernous malformations in children with brain tumors treated with radiotherapy and chemotherapy. J Neuro Oncol 117:311–320CrossRef Di Giannatale A, Morana G, Rossi A et al (2014) Natural history of cavernous malformations in children with brain tumors treated with radiotherapy and chemotherapy. J Neuro Oncol 117:311–320CrossRef
27.
go back to reference Nimjee SM, Powers CJ, Bulsara KR (2004) Review of the literature on de novo formation of cavernous malformations of the central nervous system after radiation therapy. Neurosurg Focus 21:e4 Nimjee SM, Powers CJ, Bulsara KR (2004) Review of the literature on de novo formation of cavernous malformations of the central nervous system after radiation therapy. Neurosurg Focus 21:e4
28.
go back to reference Acciarri N, Galassi E, Giulioni M et al (2009) Cavernous malformations of the central nervous system in the pediatric age group. Pediatr Neurosurg 45:81–104CrossRefPubMed Acciarri N, Galassi E, Giulioni M et al (2009) Cavernous malformations of the central nervous system in the pediatric age group. Pediatr Neurosurg 45:81–104CrossRefPubMed
29.
go back to reference Chen CY, Zimmerman RA, Faro S et al (1996) Childhood leukemia: central nervous system abnormalities during and after treatment. AJNR Am J Neuroradiol 17:295–310PubMed Chen CY, Zimmerman RA, Faro S et al (1996) Childhood leukemia: central nervous system abnormalities during and after treatment. AJNR Am J Neuroradiol 17:295–310PubMed
30.
go back to reference Löning L, Zimmermann M, Reiter A et al (2000) Secondary neoplasms subsequent to Berlin-Frankfurt-Münster therapy of acute lymphoblastic leukemia in childhood: significantly lower risk without cranial radiotherapy. Blood 95:2770–2775PubMed Löning L, Zimmermann M, Reiter A et al (2000) Secondary neoplasms subsequent to Berlin-Frankfurt-Münster therapy of acute lymphoblastic leukemia in childhood: significantly lower risk without cranial radiotherapy. Blood 95:2770–2775PubMed
31.
go back to reference Hijiya N, Hudson MM, Lensing S et al (2007) Cumulative incidence of secondary neoplasms as a first event after childhood acute lymphoblastic leukemia. JAMA 297:1207–1215CrossRefPubMed Hijiya N, Hudson MM, Lensing S et al (2007) Cumulative incidence of secondary neoplasms as a first event after childhood acute lymphoblastic leukemia. JAMA 297:1207–1215CrossRefPubMed
32.
go back to reference Bartynski WS (2008) Posterior reversible encephalopathy syndrome, part 1: fundamental imaging and clinical features. AJNR Am J Neuroradiol 29:1036–1042CrossRefPubMed Bartynski WS (2008) Posterior reversible encephalopathy syndrome, part 1: fundamental imaging and clinical features. AJNR Am J Neuroradiol 29:1036–1042CrossRefPubMed
33.
go back to reference Morris EB, Laningham FH, Sandlund JT et al (2007) Posterior reversible encephalopathy syndrome in children with cancer. Pediatr Blood Cancer 48:152–159CrossRefPubMed Morris EB, Laningham FH, Sandlund JT et al (2007) Posterior reversible encephalopathy syndrome in children with cancer. Pediatr Blood Cancer 48:152–159CrossRefPubMed
34.
go back to reference Bartynski WS (2008) Posterior reversible encephalopathy syndrome, part 2: controversies surrounding pathophysiology of vasogenic edema. AJNR Am J Neuroradiol 29:1043–1049CrossRefPubMed Bartynski WS (2008) Posterior reversible encephalopathy syndrome, part 2: controversies surrounding pathophysiology of vasogenic edema. AJNR Am J Neuroradiol 29:1043–1049CrossRefPubMed
35.
go back to reference Patel AJ, Fox BD, Fulkerson DH et al (2010) Posterior reversible encephalopathy syndrome during posterior fossa tumor resection in a child. J Neurosurg Pediatr 6:377–380CrossRefPubMed Patel AJ, Fox BD, Fulkerson DH et al (2010) Posterior reversible encephalopathy syndrome during posterior fossa tumor resection in a child. J Neurosurg Pediatr 6:377–380CrossRefPubMed
36.
go back to reference Hodnett P, Coyle J, O’Regan K et al (2009) PRES (posterior reversible encephalopathy syndrome), a rare complication of tacrolimus therapy. Emerg Radiol 16:493–496CrossRefPubMed Hodnett P, Coyle J, O’Regan K et al (2009) PRES (posterior reversible encephalopathy syndrome), a rare complication of tacrolimus therapy. Emerg Radiol 16:493–496CrossRefPubMed
37.
go back to reference Donmez FY, Guleryuz P, Agildere M (2014) MRI findings in childhood PRES: what is different than the adults? Clin Neuroradiol 26:209–213CrossRefPubMed Donmez FY, Guleryuz P, Agildere M (2014) MRI findings in childhood PRES: what is different than the adults? Clin Neuroradiol 26:209–213CrossRefPubMed
38.
go back to reference McKinney AM, Short J, Truwit CL et al (2007) Posterior reversible encephalopathy syndrome: incidence of atypical regions of involvement and imaging findings. AJR Am J Roentgenol 189:904–912CrossRefPubMed McKinney AM, Short J, Truwit CL et al (2007) Posterior reversible encephalopathy syndrome: incidence of atypical regions of involvement and imaging findings. AJR Am J Roentgenol 189:904–912CrossRefPubMed
39.
go back to reference McKinney AM, Kieffer SA, Paylor RT et al (2009) Acute toxic leukoencephalopathy: potential for reversibility clinically and on MRI with diffusion-weighted and FLAIR imaging. AJR Am J Roentgenol 193:192–206CrossRefPubMed McKinney AM, Kieffer SA, Paylor RT et al (2009) Acute toxic leukoencephalopathy: potential for reversibility clinically and on MRI with diffusion-weighted and FLAIR imaging. AJR Am J Roentgenol 193:192–206CrossRefPubMed
40.
41.
go back to reference Akiba T, Okeda R, Tajima T (1996) Metabolites of 5-fluorouracil, alpha-fluoro-beta-alanine and fluoroacetic acid, directly injure myelinated fibers in tissue culture. Acta Neuropathol 92:8–13CrossRefPubMed Akiba T, Okeda R, Tajima T (1996) Metabolites of 5-fluorouracil, alpha-fluoro-beta-alanine and fluoroacetic acid, directly injure myelinated fibers in tissue culture. Acta Neuropathol 92:8–13CrossRefPubMed
43.
go back to reference Beitinjaneh A, McKinney AM, Cao Q et al (2011) Toxic leukoencephalopathy following fludarabine-associated hematopoietic cell transplantation. Biol Blood Marrow Transplant 17:300–308CrossRefPubMed Beitinjaneh A, McKinney AM, Cao Q et al (2011) Toxic leukoencephalopathy following fludarabine-associated hematopoietic cell transplantation. Biol Blood Marrow Transplant 17:300–308CrossRefPubMed
44.
go back to reference Gandola L, Massimino M, Cefalo G et al (2009) Hyperfractionated accelerated radiotherapy in the Milan strategy for metastatic medulloblastoma. J Clin Oncol 27:566–571CrossRefPubMed Gandola L, Massimino M, Cefalo G et al (2009) Hyperfractionated accelerated radiotherapy in the Milan strategy for metastatic medulloblastoma. J Clin Oncol 27:566–571CrossRefPubMed
45.
go back to reference Vivekanandan S, Breene R, Ramanujachar R et al (2015) The UK experience of a treatment strategy for pediatric metastatic medulloblastoma comprising intensive induction chemotherapy, hyperfractionated accelerated radiotherapy and response directed high dose myeloablative chemotherapy or maintenance chemotherapy (Milan strategy). Pediatr Blood Cancer 62:2132–2139CrossRefPubMed Vivekanandan S, Breene R, Ramanujachar R et al (2015) The UK experience of a treatment strategy for pediatric metastatic medulloblastoma comprising intensive induction chemotherapy, hyperfractionated accelerated radiotherapy and response directed high dose myeloablative chemotherapy or maintenance chemotherapy (Milan strategy). Pediatr Blood Cancer 62:2132–2139CrossRefPubMed
46.
go back to reference Spreafico F, Gandola L, Marchianò A et al (2008) Brain magnetic resonance imaging after high-dose chemotherapy and radiotherapy for childhood brain. Int J Radiat Oncol Biol Phys 70:1011–1019CrossRefPubMed Spreafico F, Gandola L, Marchianò A et al (2008) Brain magnetic resonance imaging after high-dose chemotherapy and radiotherapy for childhood brain. Int J Radiat Oncol Biol Phys 70:1011–1019CrossRefPubMed
47.
go back to reference Thust SC, Blanco E, Michalski AJ et al (2014) MRI abnormalities in children following sequential chemotherapy, hyperfractionated accelerated radiotherapy and high-dose thiotepa for high-risk primitive neuroectodermal tumours of the central nervous system. J Med Imaging Radiat Oncol 58:683–690CrossRefPubMed Thust SC, Blanco E, Michalski AJ et al (2014) MRI abnormalities in children following sequential chemotherapy, hyperfractionated accelerated radiotherapy and high-dose thiotepa for high-risk primitive neuroectodermal tumours of the central nervous system. J Med Imaging Radiat Oncol 58:683–690CrossRefPubMed
48.
go back to reference Fouladi M, Chintaqumpala M, Laningham FH et al (2004) White matter lesions detected by magnetic resonance imaging after radiotherapy and high-dose chemotherapy in children with medulloblastoma or primitive neuroectodermal tumor. J Clin Oncol 22:4551–4560CrossRefPubMed Fouladi M, Chintaqumpala M, Laningham FH et al (2004) White matter lesions detected by magnetic resonance imaging after radiotherapy and high-dose chemotherapy in children with medulloblastoma or primitive neuroectodermal tumor. J Clin Oncol 22:4551–4560CrossRefPubMed
49.
go back to reference Dietrich U, Wanke I, Mueller T et al (2001) White matter disease in children treated for malignant brain tumors. Childs Nerv Syst 17:731–738CrossRefPubMed Dietrich U, Wanke I, Mueller T et al (2001) White matter disease in children treated for malignant brain tumors. Childs Nerv Syst 17:731–738CrossRefPubMed
50.
go back to reference Edelmann MN, Krull KR, Liu W et al (2014) Diffusion tensor imaging and neurocognition in survivors of childhood acute lymphoblastic leukaemia. Brain 137:2973–2983CrossRefPubMedPubMedCentral Edelmann MN, Krull KR, Liu W et al (2014) Diffusion tensor imaging and neurocognition in survivors of childhood acute lymphoblastic leukaemia. Brain 137:2973–2983CrossRefPubMedPubMedCentral
51.
go back to reference Khong PL, Leung LH, Chan GC et al (2005) White matter anisotropy in childhood medulloblastoma survivors: association with neurotoxicity risk factors. Radiology 236:647–652CrossRefPubMed Khong PL, Leung LH, Chan GC et al (2005) White matter anisotropy in childhood medulloblastoma survivors: association with neurotoxicity risk factors. Radiology 236:647–652CrossRefPubMed
52.
go back to reference Khong PL, Leung LH, Fung AS et al (2006) White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. J Clin Oncol 24:884–890CrossRefPubMed Khong PL, Leung LH, Fung AS et al (2006) White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. J Clin Oncol 24:884–890CrossRefPubMed
53.
go back to reference Palmer SL, Reddick WE, Glass JO et al (2010) Regional white matter anisotropy and reading ability in patients treated for pediatric embryonal tumors. Brain Imaging Behav 4:132–140CrossRefPubMedPubMedCentral Palmer SL, Reddick WE, Glass JO et al (2010) Regional white matter anisotropy and reading ability in patients treated for pediatric embryonal tumors. Brain Imaging Behav 4:132–140CrossRefPubMedPubMedCentral
54.
go back to reference Massimino M, Spreafico F, Pignoli E et al (2016) Comment on: The UK experience of a treatment strategy for pediatric metastatic medulloblastoma comprising intensive induction chemotherapy, hyperfractionated accelerated radiotherapy and response directed high-dose myeloablative chemotherapy or maintenance chemotherapy (Milan strategy). Pediatr Blood Cancer 63:1123–1124CrossRefPubMed Massimino M, Spreafico F, Pignoli E et al (2016) Comment on: The UK experience of a treatment strategy for pediatric metastatic medulloblastoma comprising intensive induction chemotherapy, hyperfractionated accelerated radiotherapy and response directed high-dose myeloablative chemotherapy or maintenance chemotherapy (Milan strategy). Pediatr Blood Cancer 63:1123–1124CrossRefPubMed
55.
go back to reference Vivekanandan S (2016) Reply to comment on: The UK experience of a treatment strategy for pediatric metastatic medulloblastoma comprising intensive induction chemotherapy, hyperfractionated accelerated radiotherapy, and response-directed high-dose myeloablative chemotherapy or maintenance chemotherapy (Milan strategy). Pediatr Blood Cancer 63:1125–1126CrossRefPubMed Vivekanandan S (2016) Reply to comment on: The UK experience of a treatment strategy for pediatric metastatic medulloblastoma comprising intensive induction chemotherapy, hyperfractionated accelerated radiotherapy, and response-directed high-dose myeloablative chemotherapy or maintenance chemotherapy (Milan strategy). Pediatr Blood Cancer 63:1125–1126CrossRefPubMed
56.
go back to reference Fisher MJ, Khademian ZP, Simon EM et al (2005) Diffusion-weighted MR imaging of early methotrexate-related neurotoxicity in children. AJNR Am J Neuroradiol 26:1686–1689PubMed Fisher MJ, Khademian ZP, Simon EM et al (2005) Diffusion-weighted MR imaging of early methotrexate-related neurotoxicity in children. AJNR Am J Neuroradiol 26:1686–1689PubMed
57.
go back to reference Rollins N, Winick N, Bash R et al (2004) Acute methotrexate neurotoxicity: findings on diffusion-weighted imaging and correlation with clinical outcome. AJNR Am J Neuroradiol 25:1688–1695PubMed Rollins N, Winick N, Bash R et al (2004) Acute methotrexate neurotoxicity: findings on diffusion-weighted imaging and correlation with clinical outcome. AJNR Am J Neuroradiol 25:1688–1695PubMed
58.
go back to reference Reddick WE, Glass JO, Helton KJ et al (2005) Prevalence of leukoencephalopathy in children treated for acute lymphoblastic leukemia with high-dose methotrexate. AJNR Am J Neuroradiol 26:1263–1269PubMedPubMedCentral Reddick WE, Glass JO, Helton KJ et al (2005) Prevalence of leukoencephalopathy in children treated for acute lymphoblastic leukemia with high-dose methotrexate. AJNR Am J Neuroradiol 26:1263–1269PubMedPubMedCentral
59.
go back to reference Reddick WE, Glass JO, Helton KJ et al (2005) A quantitative MR imaging assessment of leukoencephalopathy in children treated for acute lymphoblastic leukemia without irradiation. AJNR Am J Neuroradiol 26:2371–2377PubMedPubMedCentral Reddick WE, Glass JO, Helton KJ et al (2005) A quantitative MR imaging assessment of leukoencephalopathy in children treated for acute lymphoblastic leukemia without irradiation. AJNR Am J Neuroradiol 26:2371–2377PubMedPubMedCentral
60.
go back to reference Sandoval C, Kutscher M, Jayabose S et al (2003) Neurotoxicity of intrathecal methotrexate: MR imaging findings. AJNR Am J Neuroradiol 24:1887–1890PubMed Sandoval C, Kutscher M, Jayabose S et al (2003) Neurotoxicity of intrathecal methotrexate: MR imaging findings. AJNR Am J Neuroradiol 24:1887–1890PubMed
61.
go back to reference Schulz U, Mann G, Zoubek A et al (1994) Venous thrombosis of cranial sinuses in asparaginase therapy: a case report. Klin Padiatr 206:342–345CrossRefPubMed Schulz U, Mann G, Zoubek A et al (1994) Venous thrombosis of cranial sinuses in asparaginase therapy: a case report. Klin Padiatr 206:342–345CrossRefPubMed
63.
go back to reference Boukobza M, Crassard I, Bousser MG et al (2009) MR imaging features of isolated cortical vein thrombosis: diagnosis and follow-up. AJNR Am J Neuroradiol 30:344–348CrossRefPubMed Boukobza M, Crassard I, Bousser MG et al (2009) MR imaging features of isolated cortical vein thrombosis: diagnosis and follow-up. AJNR Am J Neuroradiol 30:344–348CrossRefPubMed
64.
go back to reference Wheless JW, Carmant L, Bebin M et al (2009) Magnetic resonance imaging abnormalities associated with vigabatrin in patients with epilepsy. Epilepsia 50:195–205CrossRefPubMed Wheless JW, Carmant L, Bebin M et al (2009) Magnetic resonance imaging abnormalities associated with vigabatrin in patients with epilepsy. Epilepsia 50:195–205CrossRefPubMed
65.
go back to reference Pearl PL, Vezina LG, Saneto RP et al (2009) Cerebral MRI abnormalities associated with vigabatrin therapy. Epilepsia 50:184–194CrossRefPubMed Pearl PL, Vezina LG, Saneto RP et al (2009) Cerebral MRI abnormalities associated with vigabatrin therapy. Epilepsia 50:184–194CrossRefPubMed
66.
go back to reference Milh M, Villeneuve N, Chapon F et al (2009) Transient brain magnetic resonance imaging hyperintensity in basal ganglia and brain stem of epileptic infants treated with vigabatrin. J Child Neurol 24:305–315CrossRefPubMed Milh M, Villeneuve N, Chapon F et al (2009) Transient brain magnetic resonance imaging hyperintensity in basal ganglia and brain stem of epileptic infants treated with vigabatrin. J Child Neurol 24:305–315CrossRefPubMed
67.
go back to reference Frytak S, Moertel CH (1978) Childs DS neurologic toxicity associated with high-dose metronidazole therapy. Ann Intern Med 88:361–362CrossRefPubMed Frytak S, Moertel CH (1978) Childs DS neurologic toxicity associated with high-dose metronidazole therapy. Ann Intern Med 88:361–362CrossRefPubMed
68.
go back to reference Heaney CJ, Campeau NG, Lindell EP (2003) MR imaging and diffusion-weighted imaging changes in metronidazole (Flagyl)-induced cerebellar toxicity. AJNR Am J Neuroradiol 24:1615–1617PubMed Heaney CJ, Campeau NG, Lindell EP (2003) MR imaging and diffusion-weighted imaging changes in metronidazole (Flagyl)-induced cerebellar toxicity. AJNR Am J Neuroradiol 24:1615–1617PubMed
69.
go back to reference Kim E, Na DG, Kim EY et al (2007) MR imaging of metronidazole-induced encephalopathy: lesion distribution and diffusion-weighted imaging findings. AJNR Am J Neuroradiol 28:1652–1658CrossRefPubMed Kim E, Na DG, Kim EY et al (2007) MR imaging of metronidazole-induced encephalopathy: lesion distribution and diffusion-weighted imaging findings. AJNR Am J Neuroradiol 28:1652–1658CrossRefPubMed
70.
go back to reference McErlean A, Abdalia K, Donoghue V et al (2010) The dentate nucleus in children: normal development and patterns of disease. Pediatr Radiol 40:326–339CrossRefPubMed McErlean A, Abdalia K, Donoghue V et al (2010) The dentate nucleus in children: normal development and patterns of disease. Pediatr Radiol 40:326–339CrossRefPubMed
71.
go back to reference Rovira A, Alonso J, Córdoba J (2008) MR imaging findings in hepatic encephalopathy. AJNR Am J Neuroradiol 29:1612–1621CrossRefPubMed Rovira A, Alonso J, Córdoba J (2008) MR imaging findings in hepatic encephalopathy. AJNR Am J Neuroradiol 29:1612–1621CrossRefPubMed
72.
go back to reference Aschner J, Anderson A, Slaughter J et al (2015) Neuroimaging identifies increased manganese deposition in infants receiving parenteral nutrition. Am J Clin Nutr 102:1482–1489CrossRefPubMedPubMedCentral Aschner J, Anderson A, Slaughter J et al (2015) Neuroimaging identifies increased manganese deposition in infants receiving parenteral nutrition. Am J Clin Nutr 102:1482–1489CrossRefPubMedPubMedCentral
73.
go back to reference Jiang J, Shi S, Zhou Q et al (2014) Downregulation of the Wnt/β-catenin signaling pathway is involved in manganese-induced neurotoxicity in rat striatum and PC12 cells. J Neurosci Res 92:783–794CrossRefPubMed Jiang J, Shi S, Zhou Q et al (2014) Downregulation of the Wnt/β-catenin signaling pathway is involved in manganese-induced neurotoxicity in rat striatum and PC12 cells. J Neurosci Res 92:783–794CrossRefPubMed
Metadata
Title
Magnetic resonance imaging patterns of treatment-related toxicity in the pediatric brain: an update and review of the literature
Authors
Maria Camilla Rossi Espagnet
Luca Pasquini
Antonio Napolitano
Antonella Cacchione
Angela Mastronuzzi
Roberta Caruso
Paolo Tomà
Daniela Longo
Publication date
01-05-2017
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 6/2017
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-016-3750-4

Other articles of this Issue 6/2017

Pediatric Radiology 6/2017 Go to the issue