Skip to main content
Top
Published in: Molecular Imaging and Biology 4/2017

01-08-2017 | Research Article

Toxicity and Pharmacokinetic Profile for Single-Dose Injection of ABY-029: a Fluorescent Anti-EGFR Synthetic Affibody Molecule for Human Use

Authors: Kimberley S. Samkoe, Jason R. Gunn, Kayla Marra, Sally M. Hull, Karen L. Moodie, Joachim Feldwisch, Theresa V. Strong, Daniel R. Draney, P. Jack Hoopes, David W. Roberts, Keith Paulsen, Brian W. Pogue

Published in: Molecular Imaging and Biology | Issue 4/2017

Login to get access

Abstract

Purpose

ABY-029, a synthetic Affibody peptide, Z03115-Cys, labeled with a near-infrared fluorophore, IRDye® 800CW, targeting epidermal growth factor receptor (EGFR) has been produced under good manufacturing practices for a US Food and Drug Administration-approved first-in-use human study during surgical resection of glioma, as well as other tumors. Here, the pharmacology, phototoxicity, receptor activity, and biodistribution studies of ABY-029 were completed in rats, prior to the intended human use.

Procedures

Male and female Sprague Dawley rats were administered a single intravenous dose of varying concentrations (0, 245, 2449, and 24,490 μg/kg corresponding to 10×, 100×, and 1000× an equivalent human microdose level) of ABY-029 and observed for up to 14 days. Histopathological assessment of organs and tissues, clinical chemistry, and hematology were performed. In addition, pharmacokinetic clearance and biodistribution of ABY-029 were studied in subgroups of the animals. Phototoxicity and ABY-029 binding to human and rat EGFR were assessed in cell culture and on immobilized receptors, respectively.

Results

Histopathological assessment and hematological and clinical chemistry analysis demonstrated that single-dose ABY-029 produced no pathological evidence of toxicity at any dose level. No phototoxicity was observed in EGFR-positive and EGFR-negative glioma cell lines. Binding strength and pharmacokinetics of the anti-EGFR Affibody molecules were retained after labeling with the dye.

Conclusion

Based on the successful safety profile of ABY-029, the 1000× human microdose 24.5 mg/kg was identified as the no observed adverse effect level following intravenous administration. Conserved binding strength and no observed light toxicity also demonstrated ABY-029 safety for human use.
Appendix
Available only for authorised users
Literature
1.
go back to reference DSouza AV, Lin H, Elliott JT et al (2016) Review of fluorescence guidance systems: identification of key performance capabilities beyond indocyanine green imaging. JBO 21:080901CrossRef DSouza AV, Lin H, Elliott JT et al (2016) Review of fluorescence guidance systems: identification of key performance capabilities beyond indocyanine green imaging. JBO 21:080901CrossRef
3.
go back to reference Stummer W, Stepp H, Möller G et al (1998) Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue. Acta Neurochir 140:995–1000CrossRefPubMed Stummer W, Stepp H, Möller G et al (1998) Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue. Acta Neurochir 140:995–1000CrossRefPubMed
4.
go back to reference Stummer W, Tonn J-C, Goetz C et al (2014) 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery 74:310–320CrossRefPubMed Stummer W, Tonn J-C, Goetz C et al (2014) 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery 74:310–320CrossRefPubMed
5.
go back to reference Roberts DW, Valdés PA, Harris BT et al (2011) Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid–induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. J Neurosurg 114:595CrossRefPubMed Roberts DW, Valdés PA, Harris BT et al (2011) Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid–induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. J Neurosurg 114:595CrossRefPubMed
6.
go back to reference Roberts DW, Valdés PA, Harris BT et al (2012) Glioblastoma multiforme treatment with clinical trials for surgical resection (aminolevulinic acid). Neurosurg Clin N Am 23:371–377CrossRefPubMedPubMedCentral Roberts DW, Valdés PA, Harris BT et al (2012) Glioblastoma multiforme treatment with clinical trials for surgical resection (aminolevulinic acid). Neurosurg Clin N Am 23:371–377CrossRefPubMedPubMedCentral
7.
go back to reference Valdés PA, Kim A, Brantsch M et al (2011) δ-Aminolevulinic acid–induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy. Neuro-Oncology 13:846–856CrossRefPubMedPubMedCentral Valdés PA, Kim A, Brantsch M et al (2011) δ-Aminolevulinic acid–induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy. Neuro-Oncology 13:846–856CrossRefPubMedPubMedCentral
8.
go back to reference Stummer W, Pichlmeier U, Meinel T et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401CrossRefPubMed Stummer W, Pichlmeier U, Meinel T et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401CrossRefPubMed
9.
go back to reference Stummer W, Reulen H-J, Meinel T et al (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62:564–576CrossRefPubMed Stummer W, Reulen H-J, Meinel T et al (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62:564–576CrossRefPubMed
10.
go back to reference Ekstrand AJ, James CD, Cavenee WK et al (1991) Genes for epidermal growth factor receptor, transforming growth factor α, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 51:2164–2172PubMed Ekstrand AJ, James CD, Cavenee WK et al (1991) Genes for epidermal growth factor receptor, transforming growth factor α, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 51:2164–2172PubMed
11.
go back to reference Zimmermann M, Zouhair A, Azria D, Ozsahin M (2006) The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications. Radiat Oncol J 1:11CrossRef Zimmermann M, Zouhair A, Azria D, Ozsahin M (2006) The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications. Radiat Oncol J 1:11CrossRef
12.
go back to reference Barrett T, Koyama Y, Hama Y et al (2007) In vivo diagnosis of epidermal growth factor receptor expression using molecular imaging with a cocktail of optically labeled monoclonal antibodies. Clin Cancer Res 13:6639–6648CrossRefPubMed Barrett T, Koyama Y, Hama Y et al (2007) In vivo diagnosis of epidermal growth factor receptor expression using molecular imaging with a cocktail of optically labeled monoclonal antibodies. Clin Cancer Res 13:6639–6648CrossRefPubMed
13.
go back to reference Gleysteen JP, Newman JR, Chhieng D, Frost A, Zinn KR, Rosenthal EL (2008) Fluorescent labeled anti-EGFR antibody for identification of regional and distant metastasis in a preclinical xenograft model. Head Neck 30:782–789CrossRefPubMedPubMedCentral Gleysteen JP, Newman JR, Chhieng D, Frost A, Zinn KR, Rosenthal EL (2008) Fluorescent labeled anti-EGFR antibody for identification of regional and distant metastasis in a preclinical xenograft model. Head Neck 30:782–789CrossRefPubMedPubMedCentral
15.
go back to reference Koyama Y, Barrett T, Hama Y et al (2007) In vivo molecular imaging to diagnose and subtype tumors through receptor-targeted optically labeled monoclonal antibodies. Neoplasia 9:1021–1029CrossRefPubMedPubMedCentral Koyama Y, Barrett T, Hama Y et al (2007) In vivo molecular imaging to diagnose and subtype tumors through receptor-targeted optically labeled monoclonal antibodies. Neoplasia 9:1021–1029CrossRefPubMedPubMedCentral
16.
go back to reference Kulbersh BD, Duncan RD, Magnuson JS et al (2007) Sensitivity and specificity of fluorescent immunoguided neoplasm detection in head and neck cancer xenografts. Arch Otolaryngol Head Neck Surg 133:511–515CrossRefPubMed Kulbersh BD, Duncan RD, Magnuson JS et al (2007) Sensitivity and specificity of fluorescent immunoguided neoplasm detection in head and neck cancer xenografts. Arch Otolaryngol Head Neck Surg 133:511–515CrossRefPubMed
17.
go back to reference Rosenthal EL, Warram JM, de Boer E et al (2015) Safety and tumor-specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res 21:3658–3666CrossRefPubMedPubMedCentral Rosenthal EL, Warram JM, de Boer E et al (2015) Safety and tumor-specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res 21:3658–3666CrossRefPubMedPubMedCentral
18.
go back to reference Verbeek FP, van der Vorst JR, Tummers QR et al (2014) Near-infrared fluorescence imaging of both colorectal cancer and ureters using a low-dose integrin targeted probe. Ann Surg Oncol 21:528–537CrossRefPubMedCentral Verbeek FP, van der Vorst JR, Tummers QR et al (2014) Near-infrared fluorescence imaging of both colorectal cancer and ureters using a low-dose integrin targeted probe. Ann Surg Oncol 21:528–537CrossRefPubMedCentral
19.
go back to reference Wang K, Wang K, Li W et al (2009) Characterizing breast cancer xenograft epidermal growth factor receptor expression by using near-infrared optical imaging. Acta Radiol 50:1095–1103CrossRefPubMedPubMedCentral Wang K, Wang K, Li W et al (2009) Characterizing breast cancer xenograft epidermal growth factor receptor expression by using near-infrared optical imaging. Acta Radiol 50:1095–1103CrossRefPubMedPubMedCentral
20.
go back to reference Day K, Sweeny L, Kulbersh B et al (2013) Preclinical comparison of near-infrared-labeled cetuximab and panitumumab for optical imaging of head and neck squamous cell carcinoma. Mol Imaging Biol 15:722–729CrossRefPubMedPubMedCentral Day K, Sweeny L, Kulbersh B et al (2013) Preclinical comparison of near-infrared-labeled cetuximab and panitumumab for optical imaging of head and neck squamous cell carcinoma. Mol Imaging Biol 15:722–729CrossRefPubMedPubMedCentral
21.
go back to reference Heath CH, Deep N, Sweeny L et al (2012) Use of panitumumab-IRDye800 to image microscopic head and neck cancer in an orthotopic surgical model. Ann Surg Oncol 19:3879–3887CrossRefPubMedPubMedCentral Heath CH, Deep N, Sweeny L et al (2012) Use of panitumumab-IRDye800 to image microscopic head and neck cancer in an orthotopic surgical model. Ann Surg Oncol 19:3879–3887CrossRefPubMedPubMedCentral
22.
go back to reference Rosenthal EL, Kulbersh BD, Duncan RD et al (2006) In vivo detection of head and neck cancer orthotopic xenografts by immunofluorescence. Laryngoscope 116:1636–1641CrossRefPubMed Rosenthal EL, Kulbersh BD, Duncan RD et al (2006) In vivo detection of head and neck cancer orthotopic xenografts by immunofluorescence. Laryngoscope 116:1636–1641CrossRefPubMed
23.
go back to reference Rosenthal EL, Kulbersh BD, King T et al (2007) Use of fluorescent labeled anti–epidermal growth factor receptor antibody to image head and neck squamous cell carcinoma xenografts. Mol Cancer Res 6:1230–1238 Rosenthal EL, Kulbersh BD, King T et al (2007) Use of fluorescent labeled anti–epidermal growth factor receptor antibody to image head and neck squamous cell carcinoma xenografts. Mol Cancer Res 6:1230–1238
24.
go back to reference Löfblom J, Feldwisch J, Tolmachev V et al (2010) Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett 584:2670–2680CrossRefPubMed Löfblom J, Feldwisch J, Tolmachev V et al (2010) Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett 584:2670–2680CrossRefPubMed
25.
go back to reference Feldwisch J, Tolmachev V (2012) Engineering of Affibody molecules for therapy and diagnostics. Therapeutic Proteins: Methods and Protocols:103–126 Feldwisch J, Tolmachev V (2012) Engineering of Affibody molecules for therapy and diagnostics. Therapeutic Proteins: Methods and Protocols:103–126
26.
go back to reference Tolmachev V, Orlova A, Nilsson FY et al (2007) Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 7:555–568CrossRefPubMed Tolmachev V, Orlova A, Nilsson FY et al (2007) Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 7:555–568CrossRefPubMed
27.
go back to reference Sandström M, Lindskog K, Velikyan I et al (2016) Biodistribution and radiation dosimetry of the anti-HER2 Affibody molecule 68Ga-ABY-025 in breast cancer patients. J Nucl Med 57:867–871CrossRefPubMed Sandström M, Lindskog K, Velikyan I et al (2016) Biodistribution and radiation dosimetry of the anti-HER2 Affibody molecule 68Ga-ABY-025 in breast cancer patients. J Nucl Med 57:867–871CrossRefPubMed
28.
go back to reference Sörensen J, Sandberg D, Sandström M et al (2014) First-in-human molecular imaging of HER2 expression in breast cancer metastases using the 111In-ABY-025 affibody molecule. J Nucl Med 55:730–735CrossRefPubMed Sörensen J, Sandberg D, Sandström M et al (2014) First-in-human molecular imaging of HER2 expression in breast cancer metastases using the 111In-ABY-025 affibody molecule. J Nucl Med 55:730–735CrossRefPubMed
29.
go back to reference Sörensen J, Velikyan I, Sandberg D et al (2015) Measuring HER2-receptor expression in metastatic breast cancer using [68 Ga] ABY-025 Affibody PET/CT. Theranostics 6:262–271CrossRef Sörensen J, Velikyan I, Sandberg D et al (2015) Measuring HER2-receptor expression in metastatic breast cancer using [68 Ga] ABY-025 Affibody PET/CT. Theranostics 6:262–271CrossRef
30.
go back to reference Baum RP, Prasad V, Müller D et al (2010) Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In-or 68Ga-labeled Affibody molecules. J Nucl Med 51:892–897CrossRefPubMed Baum RP, Prasad V, Müller D et al (2010) Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In-or 68Ga-labeled Affibody molecules. J Nucl Med 51:892–897CrossRefPubMed
31.
go back to reference Marshall MV, Draney D, Sevick-Muraca E, Olive DM (2010) Single-dose intravenous toxicity study of IRDye 800CW in Sprague-Dawley rats. Mol Imaging Biol 12:583–594CrossRefPubMedPubMedCentral Marshall MV, Draney D, Sevick-Muraca E, Olive DM (2010) Single-dose intravenous toxicity study of IRDye 800CW in Sprague-Dawley rats. Mol Imaging Biol 12:583–594CrossRefPubMedPubMedCentral
32.
go back to reference van Scheltinga AGT, van Dam GM, Nagengast WB et al (2011) Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies. J Nucl Med 52:1778–1785CrossRef van Scheltinga AGT, van Dam GM, Nagengast WB et al (2011) Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies. J Nucl Med 52:1778–1785CrossRef
33.
go back to reference Hekman M, Mulders P, de Weijert M et al (2015) Ex vivo perfusion of tumorous kidneys with a dual-modality imaging probe. J Nucl Med 56:1209 Hekman M, Mulders P, de Weijert M et al (2015) Ex vivo perfusion of tumorous kidneys with a dual-modality imaging probe. J Nucl Med 56:1209
34.
go back to reference Ribeiro de Souza, AL, Marra K, Gunn J, et al. (2016) Fluorescent Affibody molecule administered in vivo at a microdose level labels EGFR expressing glioma tumor regions. Mol Imaging Biol First Online 05 July 2016:1–8 Ribeiro de Souza, AL, Marra K, Gunn J, et al. (2016) Fluorescent Affibody molecule administered in vivo at a microdose level labels EGFR expressing glioma tumor regions. Mol Imaging Biol First Online 05 July 2016:1–8
35.
36.
go back to reference Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661CrossRefPubMed Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661CrossRefPubMed
37.
go back to reference Giknis M, Clifford C (2006) Clinical laboratory parametes for Crl:CD (SD) rats. Charles River Laboratories:1–14 Giknis M, Clifford C (2006) Clinical laboratory parametes for Crl:CD (SD) rats. Charles River Laboratories:1–14
38.
go back to reference Lillie LE, Temple NJ, Florence LZ (1996) Reference values for young normal Sprague-Dawley rats: weight gain, hematology and clinical chemistry. Hum Exp Toxicol 15:612–616CrossRefPubMed Lillie LE, Temple NJ, Florence LZ (1996) Reference values for young normal Sprague-Dawley rats: weight gain, hematology and clinical chemistry. Hum Exp Toxicol 15:612–616CrossRefPubMed
39.
go back to reference Friedman M, Orlova A, Johansson E et al (2008) Directed evolution to low nanomolar affinity of a tumor-targeting epidermal growth factor receptor-binding affibody molecule. J Mol Biol 376:1388–1402CrossRefPubMed Friedman M, Orlova A, Johansson E et al (2008) Directed evolution to low nanomolar affinity of a tumor-targeting epidermal growth factor receptor-binding affibody molecule. J Mol Biol 376:1388–1402CrossRefPubMed
40.
go back to reference Mitsunaga M, Ogawa M, Kosaka N et al (2011) Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med 17:1685–1691CrossRefPubMedPubMedCentral Mitsunaga M, Ogawa M, Kosaka N et al (2011) Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med 17:1685–1691CrossRefPubMedPubMedCentral
41.
go back to reference Group ToA-rMDWPTS (1999) Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials—TAP report 1. Arch Ophthalmol 117:1329CrossRef Group ToA-rMDWPTS (1999) Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials—TAP report 1. Arch Ophthalmol 117:1329CrossRef
42.
go back to reference Miller JW, Schmidt-Erfurth U, Sickenberg M et al (1999) Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration: results of a single treatment in a phase 1 and 2 study. Arch Ophthalmol 117:1161–1173CrossRefPubMed Miller JW, Schmidt-Erfurth U, Sickenberg M et al (1999) Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration: results of a single treatment in a phase 1 and 2 study. Arch Ophthalmol 117:1161–1173CrossRefPubMed
43.
go back to reference Schmidt-Erfurth U, Miller JW, Sickenberg M et al (1999) Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration: results of retreatments in a phase 1 and 2 study. Arch Ophthalmol 117:1177–1187CrossRefPubMed Schmidt-Erfurth U, Miller JW, Sickenberg M et al (1999) Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration: results of retreatments in a phase 1 and 2 study. Arch Ophthalmol 117:1177–1187CrossRefPubMed
44.
go back to reference Chung H, Dai T, Sharma SK et al (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40:516–533CrossRefPubMed Chung H, Dai T, Sharma SK et al (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40:516–533CrossRefPubMed
Metadata
Title
Toxicity and Pharmacokinetic Profile for Single-Dose Injection of ABY-029: a Fluorescent Anti-EGFR Synthetic Affibody Molecule for Human Use
Authors
Kimberley S. Samkoe
Jason R. Gunn
Kayla Marra
Sally M. Hull
Karen L. Moodie
Joachim Feldwisch
Theresa V. Strong
Daniel R. Draney
P. Jack Hoopes
David W. Roberts
Keith Paulsen
Brian W. Pogue
Publication date
01-08-2017
Publisher
Springer US
Published in
Molecular Imaging and Biology / Issue 4/2017
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-016-1033-y

Other articles of this Issue 4/2017

Molecular Imaging and Biology 4/2017 Go to the issue