Skip to main content
Top
Published in: Molecular Imaging and Biology 4/2015

01-08-2015 | Research Article

Biodistribution and Radiation Dosimetry for the Novel SV2A Radiotracer [18F]UCB-H: First-in-Human Study

Authors: F. Bretin, M. A. Bahri, C. Bernard, G. Warnock, J. Aerts, N. Mestdagh, T. Buchanan, C. Otoul, F. Koestler, F. Mievis, F. Giacomelli, C. Degueldre, R. Hustinx, A. Luxen, A. Seret, A. Plenevaux, E. Salmon

Published in: Molecular Imaging and Biology | Issue 4/2015

Login to get access

Abstract

Purpose

[18F]UCB-H is a novel radiotracer with a high affinity for synaptic vesicle glycoprotein 2A (SV2A), a protein expressed in synaptic vesicles. SV2A is the binding site of levetiracetam, a “first-in-class” antiepileptic drug with a distinct but still poorly understood mechanism of action. The objective of this study was to determine the biodistribution and radiation dosimetry of [18F]UCB-H in a human clinical trial and to establish injection limits according to biomedical research guidelines. Additionally, the clinical radiation dosimetry results were compared to estimations in previously published preclinical data.

Procedures

Dynamic whole body positron emission tomography/X-ray computed tomography (PET/CT) imaging was performed over approximately 110 min on five healthy male volunteers after injection of 144.5 ± 7.1 MBq (range, 139.1–156.5 MBq) of [18F]UCB-H. Major organs were delineated on CT images, and time–activity curves were obtained from co-registered dynamic PET emission scans. The bladder could only be delineated on PET images. Time-integrated activity coefficients were calculated as area under the curve using trapezoidal numerical integration. Urinary excretion data based on PET activities including voiding was also simulated using the dynamic bladder module of OLINDA/EXM. The radiation dosimetry was calculated using OLINDA/EXM.

Results

The effective dose to the OLINDA/EXM 70-kg standard male was 1.54 × 10−2 ± 6.84 × 10−4 millisieverts (mSv)/MBq, with urinary bladder wall, gallbladder wall, and the liver receiving the highest absorbed dose. The brain, the tracer’s main organ of interest, received an absorbed dose of 1.89 × 10−2 ± 2.32 × 10−3 mGy/MBq.

Conclusions

This first human dosimetry study of [18F]UCB-H indicated that the tracer shows similar radiation burdens to widely used common clinical tracers. Single injections of at maximum 672 MBq for US practice and 649 MBq for European practice keep radiation exposure below recommended limits. Recently published preclinical dosimetry data extrapolated from mice provided satisfactory prediction of total body and effective dose but showed significant differences in organ absorbed doses compared to human data.
Literature
2.
go back to reference Janz R, Südhof TC, Hammer RE et al (1999) Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron 24:687–700PubMedCrossRef Janz R, Südhof TC, Hammer RE et al (1999) Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron 24:687–700PubMedCrossRef
3.
go back to reference Crevecoer J, Kaminski RM, Rogister B et al (2014) Expression pattern of synaptic vesicle protein 2 (SV2) isoforms in patients with temporal lobe epilepsy and hippocamal sclerosis. Neuropathol Appl Neurobiol 40:191–204CrossRef Crevecoer J, Kaminski RM, Rogister B et al (2014) Expression pattern of synaptic vesicle protein 2 (SV2) isoforms in patients with temporal lobe epilepsy and hippocamal sclerosis. Neuropathol Appl Neurobiol 40:191–204CrossRef
4.
go back to reference Nowack A, Yao J, Custer KL, Bajjalieh SM (2010) SV2 regulates neurotransmitter release via multiple mechanisms. Am J Physiol Cell Physiol 299:C960–C967PubMedCentralPubMedCrossRef Nowack A, Yao J, Custer KL, Bajjalieh SM (2010) SV2 regulates neurotransmitter release via multiple mechanisms. Am J Physiol Cell Physiol 299:C960–C967PubMedCentralPubMedCrossRef
5.
go back to reference Bajjalieh SM, Frantz GD, Weimann JM et al (1994) Differential expression of synaptic vesicle protein 2 (SV2). J Neurosci 14:5223–5235PubMed Bajjalieh SM, Frantz GD, Weimann JM et al (1994) Differential expression of synaptic vesicle protein 2 (SV2). J Neurosci 14:5223–5235PubMed
6.
go back to reference Janz R, Sudhof TC (1999) SV2C is a synaptic vesicle protein with an unusually restricted localization: anatomy of a synaptic vesicle protein family. Neuroscience 94:1279–1290PubMedCrossRef Janz R, Sudhof TC (1999) SV2C is a synaptic vesicle protein with an unusually restricted localization: anatomy of a synaptic vesicle protein family. Neuroscience 94:1279–1290PubMedCrossRef
7.
go back to reference Janz R, Goda Y, Geppert M, Missler M, Sudhof TC (1999) SV2A and SV2B function as redundant CA2+ regulators in neurotransmitter release. Neuron 24:1003–1016PubMedCrossRef Janz R, Goda Y, Geppert M, Missler M, Sudhof TC (1999) SV2A and SV2B function as redundant CA2+ regulators in neurotransmitter release. Neuron 24:1003–1016PubMedCrossRef
8.
go back to reference Lynch BA, Lambeng N, Nocka K et al (2004) The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci U S A 101:9861–9866PubMedCentralPubMedCrossRef Lynch BA, Lambeng N, Nocka K et al (2004) The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci U S A 101:9861–9866PubMedCentralPubMedCrossRef
9.
go back to reference Bakker A, Krauss GL, Albert MS et al (2012) Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74:467–474PubMedCentralPubMedCrossRef Bakker A, Krauss GL, Albert MS et al (2012) Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74:467–474PubMedCentralPubMedCrossRef
10.
go back to reference Patsalos PN (2000) Pharmacokinetic profile of levetiracetam: toward ideal characteristics. Pharmacol Ther 85:77–85PubMedCrossRef Patsalos PN (2000) Pharmacokinetic profile of levetiracetam: toward ideal characteristics. Pharmacol Ther 85:77–85PubMedCrossRef
11.
go back to reference Cai H, Mangner TJ, Muzik O et al (2014) Radiosynthesis of 11C-Levetiracetam: a potential marker for PET imaging of SV2A expression. ACS Med Chem Lett 5:1152–1155PubMedCrossRef Cai H, Mangner TJ, Muzik O et al (2014) Radiosynthesis of 11C-Levetiracetam: a potential marker for PET imaging of SV2A expression. ACS Med Chem Lett 5:1152–1155PubMedCrossRef
12.
go back to reference Warnock GI, Aerts J, Bahri MA et al (2014) Evaluation of 18F-UCB-H as a novel PET tracer for synaptic vesicle protein 2A in the brain. J Nucl Med 55:1336–1341PubMedCrossRef Warnock GI, Aerts J, Bahri MA et al (2014) Evaluation of 18F-UCB-H as a novel PET tracer for synaptic vesicle protein 2A in the brain. J Nucl Med 55:1336–1341PubMedCrossRef
13.
go back to reference Bretin F, Warnock G, Bahri MA et al (2013) Preclinical radiation dosimetry for the novel SV2A radiotracer [18F]UCB-H. Eur J Nucl Med Mol Imaging Res 3:35–42 Bretin F, Warnock G, Bahri MA et al (2013) Preclinical radiation dosimetry for the novel SV2A radiotracer [18F]UCB-H. Eur J Nucl Med Mol Imaging Res 3:35–42
14.
go back to reference Verbruggen A, Coenen HH, Deverre JR et al (2008) Guideline to regulations for radiopharmaceuticals in early phase clinical trials in the EU. Eur J Nucl Med Mol Imaging 35:2144–2151PubMedCrossRef Verbruggen A, Coenen HH, Deverre JR et al (2008) Guideline to regulations for radiopharmaceuticals in early phase clinical trials in the EU. Eur J Nucl Med Mol Imaging 35:2144–2151PubMedCrossRef
15.
go back to reference Siegel JA, Thomas SR, Stubbs JB, et al. (1999) MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 4037S-61S Siegel JA, Thomas SR, Stubbs JB, et al. (1999) MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 4037S-61S
16.
go back to reference Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS (2007) Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 48:471–480PubMed Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS (2007) Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 48:471–480PubMed
17.
go back to reference Feldkamp LA, Davis LC, Wress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A Opt Image Sci Vis 1:612–619CrossRef Feldkamp LA, Davis LC, Wress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A Opt Image Sci Vis 1:612–619CrossRef
18.
go back to reference Wang W, Hu Z, Gualtieri EE et al (2006) Systematic and distributed time-of-flight list mode PET reconstruction [proceeding]. IEEE Nucl Sci Symposium Conference Record 3:1715–1722 Wang W, Hu Z, Gualtieri EE et al (2006) Systematic and distributed time-of-flight list mode PET reconstruction [proceeding]. IEEE Nucl Sci Symposium Conference Record 3:1715–1722
19.
go back to reference Boellaard R, Hristova I, Ettinger S et al (2013) EARL FDG-PET/CT accreditation program: feasibility, overview and results of first 55 successfully accredited sites [abstract]. Soc Nucl Med Ann Meet Abs 54:2052 Boellaard R, Hristova I, Ettinger S et al (2013) EARL FDG-PET/CT accreditation program: feasibility, overview and results of first 55 successfully accredited sites [abstract]. Soc Nucl Med Ann Meet Abs 54:2052
20.
go back to reference Eckerman KF, Cristy M, Ryman JC (1996) The ORNL mathematical phantom series. Oak Ridge National Laboratory, Oak Ridge Eckerman KF, Cristy M, Ryman JC (1996) The ORNL mathematical phantom series. Oak Ridge National Laboratory, Oak Ridge
21.
go back to reference Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027PubMed Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027PubMed
22.
go back to reference Stabin MG (2008) Steps in dose calculations. In: Fundamentals of nuclear medicine dosimetry. Springer, pp 77-118 Stabin MG (2008) Steps in dose calculations. In: Fundamentals of nuclear medicine dosimetry. Springer, pp 77-118
23.
go back to reference Laymon CM, Narendran R, Mason NS et al (2011) Human biodistribution and dosimetry of the PET radioligand [11C] flumazenil (FMZ). Mol Imag Biol 14:115–122CrossRef Laymon CM, Narendran R, Mason NS et al (2011) Human biodistribution and dosimetry of the PET radioligand [11C] flumazenil (FMZ). Mol Imag Biol 14:115–122CrossRef
24.
go back to reference Bullich S, Slifstein M, Passchier J et al (2011) Biodistribution and radiation dosimetry of the glycine transporter-1 ligand 11C-GSK931145 determined from primate and human whole-body PET. Mol Imag Biol 13:776–784CrossRef Bullich S, Slifstein M, Passchier J et al (2011) Biodistribution and radiation dosimetry of the glycine transporter-1 ligand 11C-GSK931145 determined from primate and human whole-body PET. Mol Imag Biol 13:776–784CrossRef
25.
go back to reference Mizrahi R, Rusjan PM, Vitcu I et al (2013) Whole body biodistribution and radiation dosimetry in humans of a new PET ligand, [18F]-FEPPA, to image translocator protein (18 kDa). Mol Imag Biol 15:353–359CrossRef Mizrahi R, Rusjan PM, Vitcu I et al (2013) Whole body biodistribution and radiation dosimetry in humans of a new PET ligand, [18F]-FEPPA, to image translocator protein (18 kDa). Mol Imag Biol 15:353–359CrossRef
26.
go back to reference ICRP (1991) 1990 Recommendations of the international commission on radiological protection. In: ICRP Publication 60. Pergamon, New York ICRP (1991) 1990 Recommendations of the international commission on radiological protection. In: ICRP Publication 60. Pergamon, New York
27.
go back to reference ICRP (2007) ICRP publication 103. Ann ICPR 37:1–332 ICRP (2007) ICRP publication 103. Ann ICPR 37:1–332
28.
go back to reference Eberlein U, Bröer JH, Vandevoorde C et al (2011) Biokinetics and dosimetry of commonly used radiopharmaceuticals in diagnostic nuclear medicine—a review. Eur J Nucl Med Mol Imaging 38:2269–2281PubMedCentralPubMedCrossRef Eberlein U, Bröer JH, Vandevoorde C et al (2011) Biokinetics and dosimetry of commonly used radiopharmaceuticals in diagnostic nuclear medicine—a review. Eur J Nucl Med Mol Imaging 38:2269–2281PubMedCentralPubMedCrossRef
29.
go back to reference Deloar HM, Fujiwara T, Shidahara M et al (1998) Estimation of absorbed dose for 2-[F-18] fluoro-2-deoxy-D-glucose using whole-body positron emission tomography and magnetic resonance imaging. Eur J Nucl Med Mol Imaging 25:565–574CrossRef Deloar HM, Fujiwara T, Shidahara M et al (1998) Estimation of absorbed dose for 2-[F-18] fluoro-2-deoxy-D-glucose using whole-body positron emission tomography and magnetic resonance imaging. Eur J Nucl Med Mol Imaging 25:565–574CrossRef
30.
go back to reference Waxman AD, Herholz K, Lewis DH, et al. (2009) Society of nuclear medicine procedure guideline for FDG PET brain imaging. Soc Nucl Med (Version 1.0) Waxman AD, Herholz K, Lewis DH, et al. (2009) Society of nuclear medicine procedure guideline for FDG PET brain imaging. Soc Nucl Med (Version 1.0)
32.
go back to reference Kirschner AS, Ice RD, Beierwaltes WH (1975) Radiation dosimetry of 131I-19-iodocholesterol: the pitfalls of using tissue concentration data, the author’s reply. J Nucl Med 16:248–249 Kirschner AS, Ice RD, Beierwaltes WH (1975) Radiation dosimetry of 131I-19-iodocholesterol: the pitfalls of using tissue concentration data, the author’s reply. J Nucl Med 16:248–249
33.
go back to reference McParland BJ (2010) Nuclear medicine radiation dosimetry. In: The biodistribution I—preclinical. Springer, pp 519-532 McParland BJ (2010) Nuclear medicine radiation dosimetry. In: The biodistribution I—preclinical. Springer, pp 519-532
34.
go back to reference Fueger BJ, Czernin J, Hildebrandt I et al (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47:999–1006PubMed Fueger BJ, Czernin J, Hildebrandt I et al (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47:999–1006PubMed
35.
go back to reference Sakata M, Oda K, Toyohara J et al (2013) Direct comparison of radiation dosimetry of six PET tracers using human whole-body imaging and murine biodistribution studies. Ann Nucl Med 27:285–296PubMedCrossRef Sakata M, Oda K, Toyohara J et al (2013) Direct comparison of radiation dosimetry of six PET tracers using human whole-body imaging and murine biodistribution studies. Ann Nucl Med 27:285–296PubMedCrossRef
36.
go back to reference Zanotti-Fregonara P, Innis RB (2012) Suggested pathway to assess the radiation safety of 11C-labeled tracers for first-in-human studies. Eur J Nucl Med Mol Imaging 39:544–547PubMedCentralPubMedCrossRef Zanotti-Fregonara P, Innis RB (2012) Suggested pathway to assess the radiation safety of 11C-labeled tracers for first-in-human studies. Eur J Nucl Med Mol Imaging 39:544–547PubMedCentralPubMedCrossRef
Metadata
Title
Biodistribution and Radiation Dosimetry for the Novel SV2A Radiotracer [18F]UCB-H: First-in-Human Study
Authors
F. Bretin
M. A. Bahri
C. Bernard
G. Warnock
J. Aerts
N. Mestdagh
T. Buchanan
C. Otoul
F. Koestler
F. Mievis
F. Giacomelli
C. Degueldre
R. Hustinx
A. Luxen
A. Seret
A. Plenevaux
E. Salmon
Publication date
01-08-2015
Publisher
Springer US
Published in
Molecular Imaging and Biology / Issue 4/2015
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-014-0820-6

Other articles of this Issue 4/2015

Molecular Imaging and Biology 4/2015 Go to the issue