Skip to main content
Top
Published in: Molecular Imaging and Biology 3/2011

01-06-2011 | Research Article

Uptake Decrease of Proliferative PET Tracer 18FLT in Bone Marrow after Carbon Ion Therapy in Lung Cancer

Authors: Mitsuru Koizumi, Tsuneo Saga, Masayuki Inubushi, Toshimitsu Fukumura, Kyosan Yoshikawa, Naoyoshi Yamamoto, Mio Nakajima, Toshio Sugane, Masayuki Baba

Published in: Molecular Imaging and Biology | Issue 3/2011

Login to get access

Abstract

Purpose

The aim of this study was to investigate the change of 3′-[18F]fluoro-3′-deoxy-l-thymidine (18FLT) uptake in normal bone marrow (BM) after inevitable radiation.

Procedures

Twenty-one non-small cell lung cancer patients who received carbon ion radiotherapy (CIRT) were studied with 18FLT-positron emission tomography/computed tomography (PET/CT) at pre- and post-CIRT. Radiation dose was calculated by radiation planning. Irradiated BM was divided into three groups (<10% of maximum dose, 10–30%, and >30%).

Results

18FLT uptake clearly decreased at >10% irradiated areas and mildly decreased at <10% areas. 18FLT uptake was lowest just after CIRT, somewhat increased at 3 months, and remained unchanged for more than 1 year. There was no significant difference between 10–30% and >30% areas.

Conclusion

18FLT revealed that BM function decreased by small dose such as <4.2–4.4 GyE/1 fraction of CIRT and is eradicated by >4.2–4.4 GyE/1 fraction.
Literature
1.
go back to reference Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [F-18] FLT and positron emission tomography. Nat Med 4:1334–1336PubMedCrossRef Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [F-18] FLT and positron emission tomography. Nat Med 4:1334–1336PubMedCrossRef
2.
go back to reference Salskov A, Tammisetti VS, Grierson J et al (2007) FLT: measuring tumor cell proliferation in vivo with positron emission tomography and 3′-deoxy-3′-[18F]fluorothymidine. Sem Nucl Med 37:429–439CrossRef Salskov A, Tammisetti VS, Grierson J et al (2007) FLT: measuring tumor cell proliferation in vivo with positron emission tomography and 3′-deoxy-3′-[18F]fluorothymidine. Sem Nucl Med 37:429–439CrossRef
3.
go back to reference Yamamoto Y, Nishiyama Y, Ishikawa S et al (2007) Correlation of (18)F-FLT and (18)F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer. Eur J Nucl Med Mol Imaging 34:1610–1616PubMedCrossRef Yamamoto Y, Nishiyama Y, Ishikawa S et al (2007) Correlation of (18)F-FLT and (18)F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer. Eur J Nucl Med Mol Imaging 34:1610–1616PubMedCrossRef
4.
go back to reference Saga T, Kawashima H, Araki N et al (2006) Evaluation of primary brain tumors with FLT-PET: usefulness and limitations. Clin Nucl Med 31:774–780PubMedCrossRef Saga T, Kawashima H, Araki N et al (2006) Evaluation of primary brain tumors with FLT-PET: usefulness and limitations. Clin Nucl Med 31:774–780PubMedCrossRef
5.
go back to reference Buck AK, Bommer M, Sulgenbauer S et al (2006) Molecular imaging of proliferation in malignant lymphoma. Cancer Res 66:11055–11061PubMedCrossRef Buck AK, Bommer M, Sulgenbauer S et al (2006) Molecular imaging of proliferation in malignant lymphoma. Cancer Res 66:11055–11061PubMedCrossRef
6.
go back to reference Kenny LM, Vigushin DM, Al-Nahhas A et al (2005) Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 65:10104–10112PubMedCrossRef Kenny LM, Vigushin DM, Al-Nahhas A et al (2005) Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 65:10104–10112PubMedCrossRef
7.
go back to reference Francis DL, Visvikis D, Costa DC et al (2003) Potential impact of [18F]3-deoxy-3′-fluorothymidine versus [18F]fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 30:988–994PubMedCrossRef Francis DL, Visvikis D, Costa DC et al (2003) Potential impact of [18F]3-deoxy-3′-fluorothymidine versus [18F]fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 30:988–994PubMedCrossRef
8.
go back to reference van Westreenen HL, Cobben DC, Jager PL et al (2005) Comparison of 18FFLT PET and F-18 FDG PET in esophageal cancer. J Nucl Med 46:400–404PubMed van Westreenen HL, Cobben DC, Jager PL et al (2005) Comparison of 18FFLT PET and F-18 FDG PET in esophageal cancer. J Nucl Med 46:400–404PubMed
9.
go back to reference Cobben DC, van der Laan BF, Maas B et al (2004) F-18 FLT PET for visualization of laryngeal cancer: comparison with F-18 FDG PET. J Nucl Med 45:226–231PubMed Cobben DC, van der Laan BF, Maas B et al (2004) F-18 FLT PET for visualization of laryngeal cancer: comparison with F-18 FDG PET. J Nucl Med 45:226–231PubMed
10.
go back to reference Hermann K, Ott K, Buck AK et al (2007) Imaging gastric cancer with PET and radiotracers F-18 FLT and F-18 FDG: a comparative analysis. J Nucl Med 48:1945–1950CrossRef Hermann K, Ott K, Buck AK et al (2007) Imaging gastric cancer with PET and radiotracers F-18 FLT and F-18 FDG: a comparative analysis. J Nucl Med 48:1945–1950CrossRef
11.
go back to reference Toyohara J, Waki A, Takamatsu S et al (2002) Basis of FLT as a cell proliferation marker comparative uptake studies with [3H]thymidine and [3H]arabinothymidine, and cell-analysis in 22 asynchronously growing tumor cell lines. Nucl Med Biol 29:281–287PubMedCrossRef Toyohara J, Waki A, Takamatsu S et al (2002) Basis of FLT as a cell proliferation marker comparative uptake studies with [3H]thymidine and [3H]arabinothymidine, and cell-analysis in 22 asynchronously growing tumor cell lines. Nucl Med Biol 29:281–287PubMedCrossRef
12.
go back to reference Agool A, Schot BW, Jager PL et al (2006) F-18 FLT PET in hemoatologic disorders: a novel technique to analyze the bone marrow compartment. J Nucl Med 47:1592–1598PubMed Agool A, Schot BW, Jager PL et al (2006) F-18 FLT PET in hemoatologic disorders: a novel technique to analyze the bone marrow compartment. J Nucl Med 47:1592–1598PubMed
13.
go back to reference Miyamoto T, Yamamoto N, Nishimura H et al (2003) Carbon ion radiotherapy for stage I non-small cell lung cancer. Radiother Oncol 66:127–140PubMedCrossRef Miyamoto T, Yamamoto N, Nishimura H et al (2003) Carbon ion radiotherapy for stage I non-small cell lung cancer. Radiother Oncol 66:127–140PubMedCrossRef
14.
go back to reference Miyamoto T, Baba M, Sugane T et al (2007) Carbon ion radiotherapy for stage I non-small cell lung cancer using a regimen of four fractions during 1 week. J Thorac Oncol 2:916–926PubMedCrossRef Miyamoto T, Baba M, Sugane T et al (2007) Carbon ion radiotherapy for stage I non-small cell lung cancer using a regimen of four fractions during 1 week. J Thorac Oncol 2:916–926PubMedCrossRef
15.
go back to reference Kanai T, Matsufuji N, Miyamoto T et al (2006) Examination of GyE system for HIMAC carbon therapy. Int J Radiat Oncol Biol Phys 64:650–656PubMedCrossRef Kanai T, Matsufuji N, Miyamoto T et al (2006) Examination of GyE system for HIMAC carbon therapy. Int J Radiat Oncol Biol Phys 64:650–656PubMedCrossRef
16.
go back to reference Martin SJ, Eisenbarth JA, Wagner-Utermann U et al (2002) A new precursor for the radiosynthesis of [18F]FLT. Nucl Med Biol 29:263–273PubMedCrossRef Martin SJ, Eisenbarth JA, Wagner-Utermann U et al (2002) A new precursor for the radiosynthesis of [18F]FLT. Nucl Med Biol 29:263–273PubMedCrossRef
17.
go back to reference Nishimura H, Miyamoto T, Yamamoto N et al (2003) Radiographic pulmonary and pleural changes after carbon ion irradiation. Int J Radiat Oncol Biol Phys 55:861–866PubMedCrossRef Nishimura H, Miyamoto T, Yamamoto N et al (2003) Radiographic pulmonary and pleural changes after carbon ion irradiation. Int J Radiat Oncol Biol Phys 55:861–866PubMedCrossRef
18.
go back to reference Minohara S, Kanai T, Endo M et al (2000) Respiratory gated irradiation system for heavy-ion radiotherapy. Int J Radiat Oncol Biol Phys 47:1097–1103PubMedCrossRef Minohara S, Kanai T, Endo M et al (2000) Respiratory gated irradiation system for heavy-ion radiotherapy. Int J Radiat Oncol Biol Phys 47:1097–1103PubMedCrossRef
19.
go back to reference Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist, 6th edn, Chapter 8. Accute effects of total-body irradiation. Lippincott Williams & Wilkins, Philadelphia, pp 117–128 Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist, 6th edn, Chapter 8. Accute effects of total-body irradiation. Lippincott Williams & Wilkins, Philadelphia, pp 117–128
20.
go back to reference Higashi T, Fisher SJ, Brown RS et al (2000) Evaluation of early effect of local irradiation on normal rodent bone marrow metabolism using FDG: preclinical PET studies. J Nucl Med 41:2026–2035PubMed Higashi T, Fisher SJ, Brown RS et al (2000) Evaluation of early effect of local irradiation on normal rodent bone marrow metabolism using FDG: preclinical PET studies. J Nucl Med 41:2026–2035PubMed
21.
go back to reference Higashi K, Clavo AC, Wahl RL (1993) Does FDG uptake measure proliferative activity of human cancer cells? J Nucl Med 34:414–419PubMed Higashi K, Clavo AC, Wahl RL (1993) Does FDG uptake measure proliferative activity of human cancer cells? J Nucl Med 34:414–419PubMed
22.
go back to reference Everitt S, Hicks R, Ball D et al (2009) Imaging cellular proliferation during chemo-radiotherapy: a pilot study of serial F-18 FLT positron emission tomography/computed tomography imaging for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 75:1098–1104PubMedCrossRef Everitt S, Hicks R, Ball D et al (2009) Imaging cellular proliferation during chemo-radiotherapy: a pilot study of serial F-18 FLT positron emission tomography/computed tomography imaging for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 75:1098–1104PubMedCrossRef
23.
go back to reference Menda Y, Ponto LB, Dornfeld KJ et al (2009) Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine (18F-FLT) in head and neck cancer patients before and early after initiation of chemoradiation therapy. J Nucl Med 50:1028–1035PubMedCrossRef Menda Y, Ponto LB, Dornfeld KJ et al (2009) Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine (18F-FLT) in head and neck cancer patients before and early after initiation of chemoradiation therapy. J Nucl Med 50:1028–1035PubMedCrossRef
24.
go back to reference Wieder HA, Geinitz H, Rosenberg R et al (2007) PET imaging with [18F]3′-deoxy-3′-fluorothymidine for prediction of response to neoadjuvant treatment in patients with rectal cancer. Eur J Nucl Med Mol Imaging 34:878–883PubMedCrossRef Wieder HA, Geinitz H, Rosenberg R et al (2007) PET imaging with [18F]3′-deoxy-3′-fluorothymidine for prediction of response to neoadjuvant treatment in patients with rectal cancer. Eur J Nucl Med Mol Imaging 34:878–883PubMedCrossRef
Metadata
Title
Uptake Decrease of Proliferative PET Tracer 18FLT in Bone Marrow after Carbon Ion Therapy in Lung Cancer
Authors
Mitsuru Koizumi
Tsuneo Saga
Masayuki Inubushi
Toshimitsu Fukumura
Kyosan Yoshikawa
Naoyoshi Yamamoto
Mio Nakajima
Toshio Sugane
Masayuki Baba
Publication date
01-06-2011
Publisher
Springer-Verlag
Published in
Molecular Imaging and Biology / Issue 3/2011
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-010-0363-4

Other articles of this Issue 3/2011

Molecular Imaging and Biology 3/2011 Go to the issue