Skip to main content
Top
Published in: Reviews in Endocrine and Metabolic Disorders 4/2014

01-12-2014

Fat sensing and metabolic syndrome

Author: Jang H. Youn

Published in: Reviews in Endocrine and Metabolic Disorders | Issue 4/2014

Login to get access

Abstract

Overconsumption of dietary fat contributes to the development of obesity and metabolic syndrome. Recent evidence suggests that high dietary fat may promote these metabolic states not only by providing calories but also by inducing impaired control of energy balance. In normal metabolic states, fat interacts with various organs or receptors to generate signals for the regulation of energy balance. Many of these interactions are impaired by high-fat diets or in obesity, contributing to the development or maintenance of obesity. These impairments may arise largely from fundamental alterations in the hypothalamus where all peripheral signals are integrated to regulate energy balance. This review focuses on various mechanisms by which fat is sensed at different stages of ingestion, circulation, storage, and utilization to regulate food intake, and how these individual mechanisms are altered by high-fat diets or in obesity.
Literature
1.
go back to reference Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. American heart association; national heart, lung, and blood institute. Diagnosis and management of the metabolic syndrome: An american heart association/national heart, lung, and blood institute scientific statement. Circulation. 2005;112(17):2735–52.PubMed Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. American heart association; national heart, lung, and blood institute. Diagnosis and management of the metabolic syndrome: An american heart association/national heart, lung, and blood institute scientific statement. Circulation. 2005;112(17):2735–52.PubMed
2.
go back to reference Kopelman PG. Obesity as a medical problem. Nature. 2000;404(6778):635–43.PubMed Kopelman PG. Obesity as a medical problem. Nature. 2000;404(6778):635–43.PubMed
3.
go back to reference Lissner L, Heitmann BL. Dietary fat and obesity: Evidence from epidemiology. Eur J Clin Nutr. 1995;49(2):79–90.PubMed Lissner L, Heitmann BL. Dietary fat and obesity: Evidence from epidemiology. Eur J Clin Nutr. 1995;49(2):79–90.PubMed
4.
go back to reference Lichtenstein AH, Kennedy E, Barrier P, Danford D, Ernst ND, Grundy SM, et al. Dietary fat consumption and health. Nutr Rev. 1998;56(5 Pt 2):S3–19. discussion S19-28.PubMed Lichtenstein AH, Kennedy E, Barrier P, Danford D, Ernst ND, Grundy SM, et al. Dietary fat consumption and health. Nutr Rev. 1998;56(5 Pt 2):S3–19. discussion S19-28.PubMed
5.
go back to reference Riccardi G, Giacco R, Rivellese AA. Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr. 2004;23:447–56.PubMed Riccardi G, Giacco R, Rivellese AA. Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr. 2004;23:447–56.PubMed
6.
go back to reference Lee JS, Pinnamaneni SK, Eo SJ, Cho IH, Pyo JH, Kim CK, et al. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: Role of intramuscular accumulation of lipid metabolites. J Appl Physiol. 2006;100:1467–74.PubMed Lee JS, Pinnamaneni SK, Eo SJ, Cho IH, Pyo JH, Kim CK, et al. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: Role of intramuscular accumulation of lipid metabolites. J Appl Physiol. 2006;100:1467–74.PubMed
7.
go back to reference Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring). 2009;17(11):2100–2. Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring). 2009;17(11):2100–2.
8.
go back to reference Bray MS, Tsai JY, Villegas-Montoya C, Boland BB, Blasier Z, Egbejimi O, et al. Time-of-day-dependent dietary fat consumption influences multiple cardiometabolic syndrome parameters in mice. Int J Obes (Lond). 2010;34(11):1589–98. Bray MS, Tsai JY, Villegas-Montoya C, Boland BB, Blasier Z, Egbejimi O, et al. Time-of-day-dependent dietary fat consumption influences multiple cardiometabolic syndrome parameters in mice. Int J Obes (Lond). 2010;34(11):1589–98.
9.
go back to reference Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15(6):848–60.PubMedPubMedCentral Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15(6):848–60.PubMedPubMedCentral
10.
go back to reference Seeley RJ, Woods SC. Monitoring of stored and available fuel by the CNS: Implications for obesity. Nat Rev Neurosci. 2003;4(11):901–9.PubMed Seeley RJ, Woods SC. Monitoring of stored and available fuel by the CNS: Implications for obesity. Nat Rev Neurosci. 2003;4(11):901–9.PubMed
11.
go back to reference Ryan KK, Woods SC, Seeley RJ. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab. 2012;15(2):137–49.PubMedPubMedCentral Ryan KK, Woods SC, Seeley RJ. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab. 2012;15(2):137–49.PubMedPubMedCentral
12.
go back to reference Yue JT, Lam TK. Lipid sensing and insulin resistance in the brain. Cell Metab. 2012;15(5):646–55.PubMed Yue JT, Lam TK. Lipid sensing and insulin resistance in the brain. Cell Metab. 2012;15(5):646–55.PubMed
13.
go back to reference Neel JV. Diabetes mellitus: A “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14(4):353–62.PubMedPubMedCentral Neel JV. Diabetes mellitus: A “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14(4):353–62.PubMedPubMedCentral
14.
go back to reference Speakman JR. A nonadaptive scenario explaining the genetic predisposition to obesity: The “predation release” hypothesis. Cell Metab. 2007;6(1):5–12.PubMed Speakman JR. A nonadaptive scenario explaining the genetic predisposition to obesity: The “predation release” hypothesis. Cell Metab. 2007;6(1):5–12.PubMed
15.
go back to reference Jordan SD, Könner AC, Brüning JC. Sensing the fuels: Glucose and lipid signaling in the CNS controlling energy homeostasis. Cell Mol Life Sci. 2010;67(19):3255–73.PubMedPubMedCentral Jordan SD, Könner AC, Brüning JC. Sensing the fuels: Glucose and lipid signaling in the CNS controlling energy homeostasis. Cell Mol Life Sci. 2010;67(19):3255–73.PubMedPubMedCentral
16.
go back to reference Caspi L, Wang PY, Lam TK. A balance of lipid-sensing mechanisms in the brain and liver. Cell Metab. 2007;6(2):99–104.PubMed Caspi L, Wang PY, Lam TK. A balance of lipid-sensing mechanisms in the brain and liver. Cell Metab. 2007;6(2):99–104.PubMed
17.
go back to reference Hevener AL, Bergman RN, Donovan CM. Novel glucosensor for hypoglycemic detection localized to the portal vein. Diabetes. 1997;46(9):1521–5.PubMed Hevener AL, Bergman RN, Donovan CM. Novel glucosensor for hypoglycemic detection localized to the portal vein. Diabetes. 1997;46(9):1521–5.PubMed
18.
go back to reference Stewart JE, Newman LP, Keast RS. Oral sensitivity to oleic acid is associated with fat intake and body mass index. Clin Nutr. 2011;30(6):838–44.PubMed Stewart JE, Newman LP, Keast RS. Oral sensitivity to oleic acid is associated with fat intake and body mass index. Clin Nutr. 2011;30(6):838–44.PubMed
19.
go back to reference Covasa M. Deficits in gastrointestinal responses controlling food intake and body weight. Am J Physiol Regul Integr Comp Physiol. 2010;299(6):R1423–39.PubMed Covasa M. Deficits in gastrointestinal responses controlling food intake and body weight. Am J Physiol Regul Integr Comp Physiol. 2010;299(6):R1423–39.PubMed
20.
go back to reference Ritter S, Taylor JS. Vagal sensory neurons are required for lipoprivic but not glucoprivic feeding in rats. Am J Physiol. 1990;258(6 Pt 2):R1395–401.PubMed Ritter S, Taylor JS. Vagal sensory neurons are required for lipoprivic but not glucoprivic feeding in rats. Am J Physiol. 1990;258(6 Pt 2):R1395–401.PubMed
21.
go back to reference Gilbertson TA, Liu L, York DA, Bray GA. Dietary fat preferences are inversely correlated with peripheral gustatory fatty acid sensitivity. Ann N Y Acad Sci. 1998;855:165–8.PubMed Gilbertson TA, Liu L, York DA, Bray GA. Dietary fat preferences are inversely correlated with peripheral gustatory fatty acid sensitivity. Ann N Y Acad Sci. 1998;855:165–8.PubMed
22.
go back to reference Khan NA, Besnard P. Oro-sensory perception of dietary lipids: New insights into the fat taste transduction. Biochim Biophys Acta. 2009;1791(3):149–55.PubMed Khan NA, Besnard P. Oro-sensory perception of dietary lipids: New insights into the fat taste transduction. Biochim Biophys Acta. 2009;1791(3):149–55.PubMed
23.
go back to reference Newman L, Haryono R, Keast R. Functionality of fatty acid chemoreception: A potential factor in the development of obesity? Nutrients. 2013;5(4):1287–300.PubMedPubMedCentral Newman L, Haryono R, Keast R. Functionality of fatty acid chemoreception: A potential factor in the development of obesity? Nutrients. 2013;5(4):1287–300.PubMedPubMedCentral
25.
go back to reference Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, et al. Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci. 2010;30(25):8376–82.PubMed Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, et al. Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci. 2010;30(25):8376–82.PubMed
26.
go back to reference Matsumura S, Eguchi A, Mizushige T, Kitabayashi N, Tsuzuki S, Inoue K, et al. Colocalization of GPR120 with phospholipase-Cbeta2 and alpha-gustducin in the taste bud cells in mice. Neurosci Lett. 2009;450(2):186–90.PubMed Matsumura S, Eguchi A, Mizushige T, Kitabayashi N, Tsuzuki S, Inoue K, et al. Colocalization of GPR120 with phospholipase-Cbeta2 and alpha-gustducin in the taste bud cells in mice. Neurosci Lett. 2009;450(2):186–90.PubMed
27.
go back to reference Pepino MY, Love-Gregory L, Klein S, Abumrad NA. The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects. J Lipid Res. 2012;53(3):561–6.PubMedPubMedCentral Pepino MY, Love-Gregory L, Klein S, Abumrad NA. The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects. J Lipid Res. 2012;53(3):561–6.PubMedPubMedCentral
28.
go back to reference Chen CS, Bench EM, Allerton TD, Schreiber AL, Arceneaux 3rd KP, Primeaux SD. Preference for linoleic acid in obesity-prone and obesity-resistant rats is attenuated by the reduction of CD36 on the tongue. Am J Physiol Regul Integr Comp Physiol. 2013;305(11):R1346–55.PubMed Chen CS, Bench EM, Allerton TD, Schreiber AL, Arceneaux 3rd KP, Primeaux SD. Preference for linoleic acid in obesity-prone and obesity-resistant rats is attenuated by the reduction of CD36 on the tongue. Am J Physiol Regul Integr Comp Physiol. 2013;305(11):R1346–55.PubMed
29.
go back to reference Mattes RD. Oral detection of short-, medium-, and long-chain free fatty acids in humans. Chem Senses. 2009;34(2):145–50.PubMedPubMedCentral Mattes RD. Oral detection of short-, medium-, and long-chain free fatty acids in humans. Chem Senses. 2009;34(2):145–50.PubMedPubMedCentral
30.
go back to reference Rolls ET. Mechanisms for sensing fat in food in the mouth: Presented at the Symposium “The Taste for Fat: New Discoveries on the Role of Fat in Sensory Perception, Metabolism, Sensory Pleasure and Beyond” held at the Institute of Food Technologists 2011 Annual Meeting, New Orleans, LA, USA., June 12, 2011 Rolls ET. Mechanisms for sensing fat in food in the mouth: Presented at the Symposium “The Taste for Fat: New Discoveries on the Role of Fat in Sensory Perception, Metabolism, Sensory Pleasure and Beyond” held at the Institute of Food Technologists 2011 Annual Meeting, New Orleans, LA, USA., June 12, 2011
31.
go back to reference Grabenhorst F, Rolls ET. The representation of oral fat texture in the human somatosensory cortex. Hum Brain Mapp. 2014;35(6):2521–30.PubMed Grabenhorst F, Rolls ET. The representation of oral fat texture in the human somatosensory cortex. Hum Brain Mapp. 2014;35(6):2521–30.PubMed
32.
go back to reference Stewart JE, Newman LP, Keast RS. Oral sensitivity to oleic acid is associated with fat intake and body mass index. Clin Nutr. 2011;30(6):838–44.PubMed Stewart JE, Newman LP, Keast RS. Oral sensitivity to oleic acid is associated with fat intake and body mass index. Clin Nutr. 2011;30(6):838–44.PubMed
33.
go back to reference Stewart JE, Seimon RV, Otto B, Keast RS, Clifton PM, Feinle-Bisset C. Marked differences in gustatory and gastrointestinal sensitivity to oleic acid between lean and obese men. Am J Clin Nutr. 2011;93(4):703–11.PubMed Stewart JE, Seimon RV, Otto B, Keast RS, Clifton PM, Feinle-Bisset C. Marked differences in gustatory and gastrointestinal sensitivity to oleic acid between lean and obese men. Am J Clin Nutr. 2011;93(4):703–11.PubMed
34.
go back to reference Stewart JE, Feinle-Bisset C, Golding M, Delahunty C, Clifton PM, Keast RS. Oral sensitivity to fatty acids, food consumption and BMI in human subjects. Br J Nutr. 2010;104(1):145–52.PubMed Stewart JE, Feinle-Bisset C, Golding M, Delahunty C, Clifton PM, Keast RS. Oral sensitivity to fatty acids, food consumption and BMI in human subjects. Br J Nutr. 2010;104(1):145–52.PubMed
35.
go back to reference Keast RS, Azzopardi KM, Newman LP, Haryono RY. Impaired oral fatty acid chemoreception is associated with acute excess energy consumption. Appetite. 2014;80:1–6.PubMed Keast RS, Azzopardi KM, Newman LP, Haryono RY. Impaired oral fatty acid chemoreception is associated with acute excess energy consumption. Appetite. 2014;80:1–6.PubMed
36.
go back to reference Little TJ, Feinle-Bisset C. Effects of dietary fat on appetite and energy intake in health and obesity–oral and gastrointestinal sensory contributions. Physiol Behav. 2011;104(4):613–20.PubMed Little TJ, Feinle-Bisset C. Effects of dietary fat on appetite and energy intake in health and obesity–oral and gastrointestinal sensory contributions. Physiol Behav. 2011;104(4):613–20.PubMed
37.
go back to reference Little TJ, Feinle-Bisset C. Oral and gastrointestinal sensing of dietary fat and appetite regulation in humans: Modification by diet and obesity. Front Neurosci. 2010;4:178.PubMedPubMedCentral Little TJ, Feinle-Bisset C. Oral and gastrointestinal sensing of dietary fat and appetite regulation in humans: Modification by diet and obesity. Front Neurosci. 2010;4:178.PubMedPubMedCentral
38.
go back to reference Chevrot M, Bernard A, Ancel D, Buttet M, Martin C, Abdoul-Azize S, et al. Obesity alters the gustatory perception of lipids in the mouse: Plausible involvement of lingual CD36. J Lipid Res. 2013;54(9):2485–94.PubMedPubMedCentral Chevrot M, Bernard A, Ancel D, Buttet M, Martin C, Abdoul-Azize S, et al. Obesity alters the gustatory perception of lipids in the mouse: Plausible involvement of lingual CD36. J Lipid Res. 2013;54(9):2485–94.PubMedPubMedCentral
39.
go back to reference Chevrot M, Passilly-Degrace P, Ancel D, Bernard A, Enderli G, Gomes M, et al. Obesity interferes with the orosensory detection of long-chain fatty acids in humans. Am J Clin Nutr. 2014;99(5):975–83.PubMed Chevrot M, Passilly-Degrace P, Ancel D, Bernard A, Enderli G, Gomes M, et al. Obesity interferes with the orosensory detection of long-chain fatty acids in humans. Am J Clin Nutr. 2014;99(5):975–83.PubMed
40.
go back to reference Zhang XJ, Zhou LH, Ban X, Liu DX, Jiang W, Liu XM. Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats. Acta Histochem. 2011;113(6):663–67.PubMed Zhang XJ, Zhou LH, Ban X, Liu DX, Jiang W, Liu XM. Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats. Acta Histochem. 2011;113(6):663–67.PubMed
41.
go back to reference Stewart JE, Keast RS. Recent fat intake modulates fat taste sensitivity in lean and overweight subjects. Int J Obes (Lond). 2012;36(6):834–42. Stewart JE, Keast RS. Recent fat intake modulates fat taste sensitivity in lean and overweight subjects. Int J Obes (Lond). 2012;36(6):834–42.
42.
go back to reference Welch I, Saunders K, Read NW. Effect of ileal and intravenous infusions of fat emulsions on feeding and satiety in human volunteers. Gastroenterology. 1985;89(6):1293–7.PubMed Welch I, Saunders K, Read NW. Effect of ileal and intravenous infusions of fat emulsions on feeding and satiety in human volunteers. Gastroenterology. 1985;89(6):1293–7.PubMed
43.
go back to reference Welch IM, Sepple CP, Read NW. Comparisons of the effects on satiety and eating behaviour of infusion of lipid into the different regions of the small intestine. Gut. 1988;29(3):306–11.PubMedPubMedCentral Welch IM, Sepple CP, Read NW. Comparisons of the effects on satiety and eating behaviour of infusion of lipid into the different regions of the small intestine. Gut. 1988;29(3):306–11.PubMedPubMedCentral
44.
go back to reference Drewe J, Gadient A, Rovati LC, Beglinger C. Role of circulating cholecystokinin in control of fat-induced inhibition of food intake in humans. Gastroenterology. 1992;102(5):1654–9.PubMed Drewe J, Gadient A, Rovati LC, Beglinger C. Role of circulating cholecystokinin in control of fat-induced inhibition of food intake in humans. Gastroenterology. 1992;102(5):1654–9.PubMed
45.
go back to reference Greenberg D, Smith GP, Gibbs J. Intraduodenal infusions of fats elicit satiety in sham-feeding rats. Am J Physiol. 1990;259(1 Pt 2):R110–8.PubMed Greenberg D, Smith GP, Gibbs J. Intraduodenal infusions of fats elicit satiety in sham-feeding rats. Am J Physiol. 1990;259(1 Pt 2):R110–8.PubMed
46.
go back to reference Yox DP, Stokesberry H, Ritter RC. Vagotomy attenuates suppression of sham feeding induced by intestinal nutrients. Am J Physiol. 1991;260(3 Pt 2):R503–8.PubMed Yox DP, Stokesberry H, Ritter RC. Vagotomy attenuates suppression of sham feeding induced by intestinal nutrients. Am J Physiol. 1991;260(3 Pt 2):R503–8.PubMed
47.
go back to reference Yox DP, Stokesberry H, Ritter RC. Fourth ventricular capsaicin attenuates suppression of sham feeding induced by intestinal nutrients. Am J Physiol. 1991;260(4 Pt 2):R681–7.PubMed Yox DP, Stokesberry H, Ritter RC. Fourth ventricular capsaicin attenuates suppression of sham feeding induced by intestinal nutrients. Am J Physiol. 1991;260(4 Pt 2):R681–7.PubMed
48.
go back to reference Cox JE, Kelm GR, Meller ST, Randich A. Suppression of food intake by GI fatty acid infusions: Roles of celiac vagal afferents and cholecystokinin. Physiol Behav. 2004;82(1):27–33.PubMed Cox JE, Kelm GR, Meller ST, Randich A. Suppression of food intake by GI fatty acid infusions: Roles of celiac vagal afferents and cholecystokinin. Physiol Behav. 2004;82(1):27–33.PubMed
49.
go back to reference Tamura CS, Ritter RC. Intestinal capsaicin transiently attenuates suppression of sham feeding by oleate. Am J Physiol. 1994;267(2 Pt 2):R561–8.PubMed Tamura CS, Ritter RC. Intestinal capsaicin transiently attenuates suppression of sham feeding by oleate. Am J Physiol. 1994;267(2 Pt 2):R561–8.PubMed
50.
go back to reference Zittel TT, De Giorgio R, Sternini C, Raybould HE. Fos protein expression in the nucleus of the solitary tract in response to intestinal nutrients in awake rats. Brain Res. 1994;663(2):266–70.PubMed Zittel TT, De Giorgio R, Sternini C, Raybould HE. Fos protein expression in the nucleus of the solitary tract in response to intestinal nutrients in awake rats. Brain Res. 1994;663(2):266–70.PubMed
51.
go back to reference Covasa M, Ritter RC. Attenuated satiation response to intestinal nutrients in rats that do not express CCK-A receptors. Peptides. 2001;22(8):1339–48.PubMed Covasa M, Ritter RC. Attenuated satiation response to intestinal nutrients in rats that do not express CCK-A receptors. Peptides. 2001;22(8):1339–48.PubMed
52.
go back to reference Lieverse RJ, Jansen JB, Masclee AA, Rovati LC, Lamers CB. Effect of a low dose of intraduodenal fat on satiety in humans: Studies using the type a cholecystokinin receptor antagonist loxiglumide. Gut. 1994;35(4):501–5.PubMedPubMedCentral Lieverse RJ, Jansen JB, Masclee AA, Rovati LC, Lamers CB. Effect of a low dose of intraduodenal fat on satiety in humans: Studies using the type a cholecystokinin receptor antagonist loxiglumide. Gut. 1994;35(4):501–5.PubMedPubMedCentral
53.
go back to reference Matzinger D, Degen L, Drewe J, Meuli J, Duebendorfer R, Ruckstuhl N, et al. The role of long chain fatty acids in regulating food intake and cholecystokinin release in humans. Gut. 2000;46(5):688–93.PubMedPubMedCentral Matzinger D, Degen L, Drewe J, Meuli J, Duebendorfer R, Ruckstuhl N, et al. The role of long chain fatty acids in regulating food intake and cholecystokinin release in humans. Gut. 2000;46(5):688–93.PubMedPubMedCentral
54.
go back to reference Schick RR, Harty GJ, Yaksh TL, Go VL. Sites in the brain at which cholecystokinin octapeptide (CCK-8) acts to suppress feeding in rats: A mapping study. Neuropharmacology. 1990;29(2):109–18.PubMed Schick RR, Harty GJ, Yaksh TL, Go VL. Sites in the brain at which cholecystokinin octapeptide (CCK-8) acts to suppress feeding in rats: A mapping study. Neuropharmacology. 1990;29(2):109–18.PubMed
55.
go back to reference Blevins JE, Stanley BG, Reidelberger RD. Brain regions where cholecystokinin suppresses feeding in rats. Brain Res. 2000;860(1–2):1–10.PubMed Blevins JE, Stanley BG, Reidelberger RD. Brain regions where cholecystokinin suppresses feeding in rats. Brain Res. 2000;860(1–2):1–10.PubMed
56.
go back to reference Covasa M, Ritter RC. Rats maintained on high-fat diets exhibit reduced satiety in response to CCK and bombesin. Peptides. 1998;19(8):1407–15.PubMed Covasa M, Ritter RC. Rats maintained on high-fat diets exhibit reduced satiety in response to CCK and bombesin. Peptides. 1998;19(8):1407–15.PubMed
57.
go back to reference Covasa M, Ritter RC. Reduced sensitivity to the satiation effect of intestinal oleate in rats adapted to high-fat diet. Am J Physiol. 1999;277(1 Pt 2):R279–85.PubMed Covasa M, Ritter RC. Reduced sensitivity to the satiation effect of intestinal oleate in rats adapted to high-fat diet. Am J Physiol. 1999;277(1 Pt 2):R279–85.PubMed
58.
go back to reference Savastano DM, Covasa M. Adaptation to a high-fat diet leads to hyperphagia and diminished sensitivity to cholecystokinin in rats. J Nutr. 2005;135(8):1953–9.PubMed Savastano DM, Covasa M. Adaptation to a high-fat diet leads to hyperphagia and diminished sensitivity to cholecystokinin in rats. J Nutr. 2005;135(8):1953–9.PubMed
59.
go back to reference Covasa M, Ritter RC. Adaptation to high-fat diet reduces inhibition of gastric emptying by CCK and intestinal oleate. Am J Physiol Regul Integr Comp Physiol. 2000;278(1):R166–70.PubMed Covasa M, Ritter RC. Adaptation to high-fat diet reduces inhibition of gastric emptying by CCK and intestinal oleate. Am J Physiol Regul Integr Comp Physiol. 2000;278(1):R166–70.PubMed
60.
go back to reference Covasa M, Grahn J, Ritter RC. High fat maintenance diet attenuates hindbrain neuronal response to CCK. Regul Pept. 2000;86(1–3):83–8.PubMed Covasa M, Grahn J, Ritter RC. High fat maintenance diet attenuates hindbrain neuronal response to CCK. Regul Pept. 2000;86(1–3):83–8.PubMed
61.
go back to reference Covasa M, Grahn J, Ritter RC. Reduced hindbrain and enteric neuronal response to intestinal oleate in rats maintained on high-fat diet. Auton Neurosci. 2000;84(1–2):8–18.PubMed Covasa M, Grahn J, Ritter RC. Reduced hindbrain and enteric neuronal response to intestinal oleate in rats maintained on high-fat diet. Auton Neurosci. 2000;84(1–2):8–18.PubMed
62.
go back to reference Greenberg D, McCaffery J, Potack JZ, Bray GA, York DA. Differential satiating effects of fats in the small intestine of obesity-resistant and obesity-prone rats. Physiol Behav. 1999;66(4):621–6.PubMed Greenberg D, McCaffery J, Potack JZ, Bray GA, York DA. Differential satiating effects of fats in the small intestine of obesity-resistant and obesity-prone rats. Physiol Behav. 1999;66(4):621–6.PubMed
63.
go back to reference Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86(12):5992.PubMed Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86(12):5992.PubMed
64.
go back to reference Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 1985;89(5):1070–7.PubMed Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 1985;89(5):1070–7.PubMed
65.
go back to reference Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest. 1998;101(3):515–20.PubMedPubMedCentral Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest. 1998;101(3):515–20.PubMedPubMedCentral
66.
go back to reference Gutzwiller JP, Göke B, Drewe J, Hildebrand P, Ketterer S, Handschin D, et al. Glucagon-like peptide-1: A potent regulator of food intake in humans. Gut. 1999;44(1):81–6.PubMedPubMedCentral Gutzwiller JP, Göke B, Drewe J, Hildebrand P, Ketterer S, Handschin D, et al. Glucagon-like peptide-1: A potent regulator of food intake in humans. Gut. 1999;44(1):81–6.PubMedPubMedCentral
67.
go back to reference Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349(10):941–8.PubMed Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349(10):941–8.PubMed
68.
go back to reference Karra E, Chandarana K, Batterham RL. The role of peptide YY in appetite regulation and obesity. J Physiol. 2009;587(Pt 1):19–25.PubMedPubMedCentral Karra E, Chandarana K, Batterham RL. The role of peptide YY in appetite regulation and obesity. J Physiol. 2009;587(Pt 1):19–25.PubMedPubMedCentral
69.
go back to reference Degen L, Drewe J, Piccoli F, Gräni K, Oesch S, Bunea R, et al. Effect of CCK-1 receptor blockade on ghrelin and PYY secretion in men. Am J Physiol Regul Integr Comp Physiol. 2007;292(4):R1391–9.PubMed Degen L, Drewe J, Piccoli F, Gräni K, Oesch S, Bunea R, et al. Effect of CCK-1 receptor blockade on ghrelin and PYY secretion in men. Am J Physiol Regul Integr Comp Physiol. 2007;292(4):R1391–9.PubMed
70.
go back to reference Beglinger S, Drewe J, Schirra J, Göke B, D'Amato M, Beglinger C. Role of fat hydrolysis in regulating glucagon-like Peptide-1 secretion. J Clin Endocrinol Metab. 2010;95(2):879–86.PubMed Beglinger S, Drewe J, Schirra J, Göke B, D'Amato M, Beglinger C. Role of fat hydrolysis in regulating glucagon-like Peptide-1 secretion. J Clin Endocrinol Metab. 2010;95(2):879–86.PubMed
71.
go back to reference Feinle-Bisset C, Patterson M, Ghatei MA, Bloom SR, Horowitz M. Fat digestion is required for suppression of ghrelin and stimulation of peptide YY and pancreatic polypeptide secretion by intraduodenal lipid. Am J Physiol Endocrinol Metab. 2005;289(6):E948–53.PubMed Feinle-Bisset C, Patterson M, Ghatei MA, Bloom SR, Horowitz M. Fat digestion is required for suppression of ghrelin and stimulation of peptide YY and pancreatic polypeptide secretion by intraduodenal lipid. Am J Physiol Endocrinol Metab. 2005;289(6):E948–53.PubMed
72.
go back to reference Tschöp M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50(4):707–9.PubMed Tschöp M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50(4):707–9.PubMed
73.
go back to reference Druce MR, Wren AM, Park AJ, Milton JE, Patterson M, Frost G, et al. Ghrelin increases food intake in obese as well as lean subjects. Int J Obes (Lond). 2005;29(9):1130–6. Druce MR, Wren AM, Park AJ, Milton JE, Patterson M, Frost G, et al. Ghrelin increases food intake in obese as well as lean subjects. Int J Obes (Lond). 2005;29(9):1130–6.
74.
go back to reference English PJ, Ghatei MA, Malik IA, Bloom SR, Wilding JP. Food fails to suppress ghrelin levels in obese humans. J Clin Endocrinol Metab. 2002;87(6):2984.PubMed English PJ, Ghatei MA, Malik IA, Bloom SR, Wilding JP. Food fails to suppress ghrelin levels in obese humans. J Clin Endocrinol Metab. 2002;87(6):2984.PubMed
75.
go back to reference le Roux CW, Patterson M, Vincent RP, Hunt C, Ghatei MA, Bloom SR. Postprandial plasma ghrelin is suppressed proportional to meal calorie content in normal-weight but not obese subjects. J Clin Endocrinol Metab. 2005;90(2):1068–71.PubMed le Roux CW, Patterson M, Vincent RP, Hunt C, Ghatei MA, Bloom SR. Postprandial plasma ghrelin is suppressed proportional to meal calorie content in normal-weight but not obese subjects. J Clin Endocrinol Metab. 2005;90(2):1068–71.PubMed
76.
go back to reference Mittelman SD, Klier K, Braun S, Azen C, Geffner ME, Buchanan TA. Obese adolescents show impaired meal responses of the appetite-regulating hormones ghrelin and PYY. Obesity (Silver Spring). 2010;18(5):918–25.PubMedCentral Mittelman SD, Klier K, Braun S, Azen C, Geffner ME, Buchanan TA. Obese adolescents show impaired meal responses of the appetite-regulating hormones ghrelin and PYY. Obesity (Silver Spring). 2010;18(5):918–25.PubMedCentral
77.
go back to reference McFarlane MR, Brown MS, Goldstein JL, Zhao TJ. Induced Ablation of Ghrelin Cells in Adult Mice Does Not Decrease Food Intake, Body Weight, or Response to High-Fat Diet. Cell Metab. 2014 May 14 McFarlane MR, Brown MS, Goldstein JL, Zhao TJ. Induced Ablation of Ghrelin Cells in Adult Mice Does Not Decrease Food Intake, Body Weight, or Response to High-Fat Diet. Cell Metab. 2014 May 14
78.
go back to reference le Roux CW, Batterham RL, Aylwin SJ, Patterson M, Borg CM, Wynne KJ, et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology. 2006;147(1):3–8.PubMed le Roux CW, Batterham RL, Aylwin SJ, Patterson M, Borg CM, Wynne KJ, et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology. 2006;147(1):3–8.PubMed
79.
go back to reference Guo Y, Ma L, Enriori PJ, Koska J, Franks PW, Brookshire T, et al. Delparigi A, Tataranni PA. Physiological evidence for the involvement of peptide YY in the regulation of energy homeostasis in humans. Obesity (Silver Spring). 2006;14(9):1562–70. Guo Y, Ma L, Enriori PJ, Koska J, Franks PW, Brookshire T, et al. Delparigi A, Tataranni PA. Physiological evidence for the involvement of peptide YY in the regulation of energy homeostasis in humans. Obesity (Silver Spring). 2006;14(9):1562–70.
80.
go back to reference Boey D, Lin S, Enriquez RF, Lee NJ, Slack K, Couzens M, et al. PYY transgenic mice are protected against diet-induced and genetic obesity. Neuropeptides. 2008;42(1):19–30.PubMed Boey D, Lin S, Enriquez RF, Lee NJ, Slack K, Couzens M, et al. PYY transgenic mice are protected against diet-induced and genetic obesity. Neuropeptides. 2008;42(1):19–30.PubMed
81.
go back to reference Boey D, Lin S, Karl T, Baldock P, Lee N, Enriquez R, et al. Peptide YY ablation in mice leads to the development of hyperinsulinaemia and obesity. Diabetologia. 2006;49(6):1360–70.PubMed Boey D, Lin S, Karl T, Baldock P, Lee N, Enriquez R, et al. Peptide YY ablation in mice leads to the development of hyperinsulinaemia and obesity. Diabetologia. 2006;49(6):1360–70.PubMed
82.
go back to reference Fineman MS, Cirincione BB, Maggs D, Diamant M. GLP-1 based therapies: Differential effects on fasting and postprandial glucose. Diabetes Obes Metab. 2012;14(8):675–88.PubMed Fineman MS, Cirincione BB, Maggs D, Diamant M. GLP-1 based therapies: Differential effects on fasting and postprandial glucose. Diabetes Obes Metab. 2012;14(8):675–88.PubMed
83.
go back to reference Van Bloemendaal L, Ten Kulve JS, la Fleur SE, Ijzerman RG, Diamant M. Effects of glucagon-like peptide 1 on appetite and body weight: Focus on the CNS. J Endocrinol. 2014;221(1):T1–16.PubMed Van Bloemendaal L, Ten Kulve JS, la Fleur SE, Ijzerman RG, Diamant M. Effects of glucagon-like peptide 1 on appetite and body weight: Focus on the CNS. J Endocrinol. 2014;221(1):T1–16.PubMed
85.
go back to reference Hansen HS. Role of anorectic N-acylethanolamines in intestinal physiology and satiety control with respect to dietary fat. Pharmacol Res. 2014 Mar 28 Hansen HS. Role of anorectic N-acylethanolamines in intestinal physiology and satiety control with respect to dietary fat. Pharmacol Res. 2014 Mar 28
86.
go back to reference Rodríguez De Fonseca F, Navarro M, Gómez R, Escuredo L, Nava F, Fu J, et al. An anorexic lipid mediator regulated by feeding. Nature. 2001;414(6860):209–12.PubMed Rodríguez De Fonseca F, Navarro M, Gómez R, Escuredo L, Nava F, Fu J, et al. An anorexic lipid mediator regulated by feeding. Nature. 2001;414(6860):209–12.PubMed
87.
go back to reference Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez De Fonseca F, et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature. 2003;425(6953):90–3.PubMed Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez De Fonseca F, et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature. 2003;425(6953):90–3.PubMed
88.
go back to reference Schwartz GJ, Fu J, Astarita G, Li X, Gaetani S, Campolongo P, et al. The lipid messenger OEA links dietary fat intake to satiety. Cell Metab. 2008;8(4):281–8.PubMedPubMedCentral Schwartz GJ, Fu J, Astarita G, Li X, Gaetani S, Campolongo P, et al. The lipid messenger OEA links dietary fat intake to satiety. Cell Metab. 2008;8(4):281–8.PubMedPubMedCentral
89.
go back to reference Guijarro A, Fu J, Astarita G, Piomelli D. CD36 gene deletion decreases oleoylethanolamide levels in small intestine of free-feeding mice. Pharmacol Res. 2010;61(1):27–33.PubMedPubMedCentral Guijarro A, Fu J, Astarita G, Piomelli D. CD36 gene deletion decreases oleoylethanolamide levels in small intestine of free-feeding mice. Pharmacol Res. 2010;61(1):27–33.PubMedPubMedCentral
90.
go back to reference Romano A, Karimian Azari E, Tempesta B, Mansouri A, Micioni Di Bonaventura MV, Ramachandran D, Lutz TA, Bedse G, Langhans W, Gaetani S. High dietary fat intake influences the activation of specific hindbrain and hypothalamic nuclei by the satiety factor oleoylethanolamide. Physiol Behav. 2014 May 5 Romano A, Karimian Azari E, Tempesta B, Mansouri A, Micioni Di Bonaventura MV, Ramachandran D, Lutz TA, Bedse G, Langhans W, Gaetani S. High dietary fat intake influences the activation of specific hindbrain and hypothalamic nuclei by the satiety factor oleoylethanolamide. Physiol Behav. 2014 May 5
91.
go back to reference Oveisi F, Gaetani S, Eng KT, Piomelli D. Oleoylethanolamide inhibits food intake in free-feeding rats after oral administration. Pharmacol Res. 2004;49(5):461–6.PubMed Oveisi F, Gaetani S, Eng KT, Piomelli D. Oleoylethanolamide inhibits food intake in free-feeding rats after oral administration. Pharmacol Res. 2004;49(5):461–6.PubMed
92.
go back to reference Guzmán M, Lo Verme J, Fu J, Oveisi F, Blázquez C, Piomelli D. Oleoylethanolamide stimulates lipolysis by activating the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR-alpha). J Biol Chem. 2004;279(27):27849–54.PubMed Guzmán M, Lo Verme J, Fu J, Oveisi F, Blázquez C, Piomelli D. Oleoylethanolamide stimulates lipolysis by activating the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR-alpha). J Biol Chem. 2004;279(27):27849–54.PubMed
93.
go back to reference Fu J, Oveisi F, Gaetani S, Lin E, Piomelli D. Oleoylethanolamide, an endogenous PPAR-alpha agonist, lowers body weight and hyperlipidemia in obese rats. Neuropharmacology. 2005;48(8):1147–53.PubMed Fu J, Oveisi F, Gaetani S, Lin E, Piomelli D. Oleoylethanolamide, an endogenous PPAR-alpha agonist, lowers body weight and hyperlipidemia in obese rats. Neuropharmacology. 2005;48(8):1147–53.PubMed
94.
go back to reference Romano A, Coccurello R, Giacovazzo G, Bedse G, Moles A, Gaetani S. Oleoylethanolamide: a novel potential pharmacological alternative to cannabinoid antagonists for the control of appetite. Biomed Res Int. 2014;2014:203425.PubMedPubMedCentral Romano A, Coccurello R, Giacovazzo G, Bedse G, Moles A, Gaetani S. Oleoylethanolamide: a novel potential pharmacological alternative to cannabinoid antagonists for the control of appetite. Biomed Res Int. 2014;2014:203425.PubMedPubMedCentral
95.
go back to reference Hansen HS, Diep TA. N-acylethanolamines, anandamide and food intake. Biochem Pharmacol. 2009;78(6):553–60.PubMed Hansen HS, Diep TA. N-acylethanolamines, anandamide and food intake. Biochem Pharmacol. 2009;78(6):553–60.PubMed
96.
go back to reference Diep TA, Madsen AN, Holst B, Kristiansen MM, Wellner N, Hansen SH, et al. Dietary fat decreases intestinal levels of the anorectic lipids through a fat sensor. FASEB J. 2011;25(2):765–74.PubMed Diep TA, Madsen AN, Holst B, Kristiansen MM, Wellner N, Hansen SH, et al. Dietary fat decreases intestinal levels of the anorectic lipids through a fat sensor. FASEB J. 2011;25(2):765–74.PubMed
97.
go back to reference Gillum MP, Zhang D, Zhang XM, Erion DM, Jamison RA, Choi C, et al. N-acylphosphatidylethanolamine, a gut- derived circulating factor induced by fat ingestion, inhibits food intake. Cell. 2008;135(5):813–24.PubMedPubMedCentral Gillum MP, Zhang D, Zhang XM, Erion DM, Jamison RA, Choi C, et al. N-acylphosphatidylethanolamine, a gut- derived circulating factor induced by fat ingestion, inhibits food intake. Cell. 2008;135(5):813–24.PubMedPubMedCentral
98.
go back to reference Wellner N, Tsuboi K, Madsen AN, Holst B, Diep TA, Nakao M, et al. Studies on the anorectic effect of N-acylphosphatidylethanolamine and phosphatidylethanolamine in mice. Biochim Biophys Acta. 2011;1811(9):508–12.PubMed Wellner N, Tsuboi K, Madsen AN, Holst B, Diep TA, Nakao M, et al. Studies on the anorectic effect of N-acylphosphatidylethanolamine and phosphatidylethanolamine in mice. Biochim Biophys Acta. 2011;1811(9):508–12.PubMed
99.
go back to reference Wellner N, Diep TA, Janfelt C, Hansen HS. N-acylation of phosphatidylethanolamine and its biological functions in mammals. Biochim Biophys Acta. 2013;1831(3):652–62.PubMed Wellner N, Diep TA, Janfelt C, Hansen HS. N-acylation of phosphatidylethanolamine and its biological functions in mammals. Biochim Biophys Acta. 2013;1831(3):652–62.PubMed
100.
go back to reference Mattes RD. Oral fatty acid signaling and intestinal lipid processing: Support and supposition. Physiol Behav. 2011;105(1):27–35. Review.PubMed Mattes RD. Oral fatty acid signaling and intestinal lipid processing: Support and supposition. Physiol Behav. 2011;105(1):27–35. Review.PubMed
101.
go back to reference Schwartz GJ. Gut fat sensing in the negative feedback control of energy balance–recent advances. Physiol Behav. 2011;104(4):621–3.PubMedPubMedCentral Schwartz GJ. Gut fat sensing in the negative feedback control of energy balance–recent advances. Physiol Behav. 2011;104(4):621–3.PubMedPubMedCentral
102.
go back to reference Lee CY. The effect of high-Fat diet-induced pathophysiological changes in the Gut on obesity: what should be the ideal treatment? Clin Transl Gastroenterol. 2013;4:e39. Lee CY. The effect of high-Fat diet-induced pathophysiological changes in the Gut on obesity: what should be the ideal treatment? Clin Transl Gastroenterol. 2013;4:e39.
103.
go back to reference Breen DM, Rasmussen BA, Côté CD, Jackson VM, Lam TK. Nutrient-sensing mechanisms in the gut as therapeutic targets for diabetes. Diabetes. 2013;62(9):3005–13.PubMedPubMedCentral Breen DM, Rasmussen BA, Côté CD, Jackson VM, Lam TK. Nutrient-sensing mechanisms in the gut as therapeutic targets for diabetes. Diabetes. 2013;62(9):3005–13.PubMedPubMedCentral
104.
go back to reference Greenberg D, Smith GP, Gibbs J. Intravenous triglycerides fail to elicit satiety in sham-feeding rats. Am J Physiol. 1993;264(2 Pt 2):R409–13.PubMed Greenberg D, Smith GP, Gibbs J. Intravenous triglycerides fail to elicit satiety in sham-feeding rats. Am J Physiol. 1993;264(2 Pt 2):R409–13.PubMed
105.
go back to reference Greenberg D, Kava RA, Lewis DR, Greenwood MR, Smith GP. Time course for entry of intestinally infused lipids into blood of rats. Am J Physiol. 1995;269(2 Pt 2):R432–6.PubMed Greenberg D, Kava RA, Lewis DR, Greenwood MR, Smith GP. Time course for entry of intestinally infused lipids into blood of rats. Am J Physiol. 1995;269(2 Pt 2):R432–6.PubMed
106.
go back to reference Woods SC, Stein LJ, McKay LD, Porte Jr D. Suppression of food intake by intravenous nutrients and insulin in the baboon. Am J Physiol. 1984;247:R393.PubMed Woods SC, Stein LJ, McKay LD, Porte Jr D. Suppression of food intake by intravenous nutrients and insulin in the baboon. Am J Physiol. 1984;247:R393.PubMed
107.
go back to reference Walls EK, Koopmans HS. Effect of intravenous nutrient infusions on food intake in rats. Physiol Behav. 1989;45:1223.PubMed Walls EK, Koopmans HS. Effect of intravenous nutrient infusions on food intake in rats. Physiol Behav. 1989;45:1223.PubMed
108.
go back to reference Gil KM, Skeie B, Kretan V, Askanazi J, Friedman MI. Parenteral nutrition and oral intake: Effect of glucose and fat infusion. JPEN. 1991;15:426. Gil KM, Skeie B, Kretan V, Askanazi J, Friedman MI. Parenteral nutrition and oral intake: Effect of glucose and fat infusion. JPEN. 1991;15:426.
109.
go back to reference Giner M, Meguid MM. Effect of intravenous or intragstric nutrients on food intake in rats. J Surg Res. 1991;51:259.PubMed Giner M, Meguid MM. Effect of intravenous or intragstric nutrients on food intake in rats. J Surg Res. 1991;51:259.PubMed
110.
go back to reference Walls EK, Koopmans HS. Differential effects of intravenous glucose, amino acids, and lipid on daily food intake in rats. Am J Physiol. 1992;262(2 Pt 2):R225–34.PubMed Walls EK, Koopmans HS. Differential effects of intravenous glucose, amino acids, and lipid on daily food intake in rats. Am J Physiol. 1992;262(2 Pt 2):R225–34.PubMed
111.
go back to reference Fantino M. Role of lipids in the control of food intake. Curr Opin Clin Nutr Metab Care. 2011;14(2):138–44.PubMed Fantino M. Role of lipids in the control of food intake. Curr Opin Clin Nutr Metab Care. 2011;14(2):138–44.PubMed
112.
go back to reference Lam TK, Pocai A, Gutierrez-Juarez R, et al. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med. 2005;11:320–7.PubMed Lam TK, Pocai A, Gutierrez-Juarez R, et al. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med. 2005;11:320–7.PubMed
113.
go back to reference Le Foll C, Irani BG, Magnan C, Dunn-Meynell AA, Levin BE. Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R655–64.PubMedPubMedCentral Le Foll C, Irani BG, Magnan C, Dunn-Meynell AA, Levin BE. Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R655–64.PubMedPubMedCentral
114.
go back to reference Le Foll C, Dunn-Meynell A, Musatov S, Magnan C, Levin BE. FAT/CD36: a major regulator of neuronal fatty acid sensing and energy homeostasis in rats and mice. Diabetes. 2013;62(8):2709–16.PubMedPubMedCentral Le Foll C, Dunn-Meynell A, Musatov S, Magnan C, Levin BE. FAT/CD36: a major regulator of neuronal fatty acid sensing and energy homeostasis in rats and mice. Diabetes. 2013;62(8):2709–16.PubMedPubMedCentral
115.
go back to reference Moullé VS, Picard A, Le Foll C, Levin BE, Magnan C. Lipid sensing in the brain and regulation of energy balance. Diabetes Metab. 2014;40(1):29–33.PubMed Moullé VS, Picard A, Le Foll C, Levin BE, Magnan C. Lipid sensing in the brain and regulation of energy balance. Diabetes Metab. 2014;40(1):29–33.PubMed
116.
go back to reference Miller JC, Gnaedinger JM, Rapoport SI. Utilization of plasma fatty acid in rat brain: Distribution of [14C] palmitate between oxidative and synthetic pathways. J Neurochem. 1987;49(5):1507–14.PubMed Miller JC, Gnaedinger JM, Rapoport SI. Utilization of plasma fatty acid in rat brain: Distribution of [14C] palmitate between oxidative and synthetic pathways. J Neurochem. 1987;49(5):1507–14.PubMed
117.
go back to reference Gnaedinger JM, Miller JC, Latker CH, Rapoport SI. Cerebral metabolism of plasma [14C] palmitate in awake, adult rat: Subcellular localization. Neurochem Res. 1988;13(1):21–9.PubMed Gnaedinger JM, Miller JC, Latker CH, Rapoport SI. Cerebral metabolism of plasma [14C] palmitate in awake, adult rat: Subcellular localization. Neurochem Res. 1988;13(1):21–9.PubMed
118.
go back to reference Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes. 2002;51:271–5.PubMed Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes. 2002;51:271–5.PubMed
119.
go back to reference Schwinkendorf DR, Tsatsos NG, Gosnell BA, Mashek DG. Effects of central administration of distinct fatty acids on hypothalamic neuropeptide expression and energy metabolism. Int J Obes (Lond). 2011;35(3):336–44. Schwinkendorf DR, Tsatsos NG, Gosnell BA, Mashek DG. Effects of central administration of distinct fatty acids on hypothalamic neuropeptide expression and energy metabolism. Int J Obes (Lond). 2011;35(3):336–44.
120.
go back to reference Ross RA, Rossetti L, Lam TK, Schwartz GJ. Differential effects of hypothalamic long-chain fatty acid infusions on suppression of hepatic glucose production. Am J Physiol Endocrinol Metab. 2010;299(4):E633–9.PubMedPubMedCentral Ross RA, Rossetti L, Lam TK, Schwartz GJ. Differential effects of hypothalamic long-chain fatty acid infusions on suppression of hepatic glucose production. Am J Physiol Endocrinol Metab. 2010;299(4):E633–9.PubMedPubMedCentral
121.
go back to reference Jambor De Sousa UL, Benthem L, Arsenijevic D, Scheurink AJ, Langhans W, Geary N, et al. Hepatic-portal oleic acid inhibits feeding more potently than hepatic-portal caprylic acid in rats. Physiol Behav. 2006;89(3):329–34.PubMed Jambor De Sousa UL, Benthem L, Arsenijevic D, Scheurink AJ, Langhans W, Geary N, et al. Hepatic-portal oleic acid inhibits feeding more potently than hepatic-portal caprylic acid in rats. Physiol Behav. 2006;89(3):329–34.PubMed
122.
go back to reference Librán-Pérez M, Polakof S, López-Patiño MA, Míguez JM, Soengas JL. Evidence of a metabolic fatty acid-sensing system in the hypothalamus and brockmann bodies of rainbow trout: Implications in food intake regulation. Am J Physiol Regul Integr Comp Physiol. 2012;302(11):R1340–50.PubMed Librán-Pérez M, Polakof S, López-Patiño MA, Míguez JM, Soengas JL. Evidence of a metabolic fatty acid-sensing system in the hypothalamus and brockmann bodies of rainbow trout: Implications in food intake regulation. Am J Physiol Regul Integr Comp Physiol. 2012;302(11):R1340–50.PubMed
123.
go back to reference Librán-Pérez M, López-Patiño MA, Míguez JM, Soengas JL. Oleic acid and octanoic acid sensing capacity in rainbow trout Oncorhynchus mykiss is direct in hypothalamus and Brockmann bodies. PLoS One. 2013;8(3):e59507.PubMedPubMedCentral Librán-Pérez M, López-Patiño MA, Míguez JM, Soengas JL. Oleic acid and octanoic acid sensing capacity in rainbow trout Oncorhynchus mykiss is direct in hypothalamus and Brockmann bodies. PLoS One. 2013;8(3):e59507.PubMedPubMedCentral
124.
go back to reference Librán-Pérez M, Otero-Rodiño C, López-Patiño MA, Míguez JM, Soengas JL. Central administration of oleate or octanoate activates hypothalamic fatty acid sensing and inhibits food intake in rainbow trout. Physiol Behav. 2014;129:272–9.PubMed Librán-Pérez M, Otero-Rodiño C, López-Patiño MA, Míguez JM, Soengas JL. Central administration of oleate or octanoate activates hypothalamic fatty acid sensing and inhibits food intake in rainbow trout. Physiol Behav. 2014;129:272–9.PubMed
125.
go back to reference Oh YT, Youn JH. Circulating oleate, but not other free fatty acids, suppresses food intake in Wistar rats. Diabetes. 2014;63:A471. Oh YT, Youn JH. Circulating oleate, but not other free fatty acids, suppresses food intake in Wistar rats. Diabetes. 2014;63:A471.
126.
go back to reference Reynaert R, De Paepe M, Marcus S, Peeters G. Influence of serum free fatty acid levels on growth hormone secretion in lactating cows. J Endocrinol. 1975;66:213–24.PubMed Reynaert R, De Paepe M, Marcus S, Peeters G. Influence of serum free fatty acid levels on growth hormone secretion in lactating cows. J Endocrinol. 1975;66:213–24.PubMed
127.
go back to reference Kreitschmann-Andermahr I, Suarez P, Jennings R, Evers N, Brabant G. GH/IGF-I regulation in obesity–mechanisms and practical consequences in children and adults. Horm Res Paediatr. 2010;73:153–60.PubMed Kreitschmann-Andermahr I, Suarez P, Jennings R, Evers N, Brabant G. GH/IGF-I regulation in obesity–mechanisms and practical consequences in children and adults. Horm Res Paediatr. 2010;73:153–60.PubMed
128.
go back to reference Briard N, Rico-Gomez M, Guillaume V, Sauze N, Vuaroqueaux V, Dadoun F, et al. Hypothalamic mediated action of free fatty acid on growth hormone secretion in sheep. Endocrinology. 1998;139:4811–9.PubMed Briard N, Rico-Gomez M, Guillaume V, Sauze N, Vuaroqueaux V, Dadoun F, et al. Hypothalamic mediated action of free fatty acid on growth hormone secretion in sheep. Endocrinology. 1998;139:4811–9.PubMed
129.
go back to reference Quabbe HJ, Luyckx AS, L’age M, Schwarz C. Growth hormone, cortisol, and glucagon concentrations during plasma free fatty acid depression: different effects of nicotinic acid and an adenosine derivative (BM 11.189). J Clin Endocrinol Metab. 1983;57:410–4.PubMed Quabbe HJ, Luyckx AS, L’age M, Schwarz C. Growth hormone, cortisol, and glucagon concentrations during plasma free fatty acid depression: different effects of nicotinic acid and an adenosine derivative (BM 11.189). J Clin Endocrinol Metab. 1983;57:410–4.PubMed
130.
go back to reference Watt MJ, Holmes AG, Steinberg GR, Mesa JL, Kemp BE, Febbraio MA. Reduced plasma FFA availability increases net triacylglycerol degradation, but not GPAT or HSL activity, in human skeletal muscle. Am J Physiol Endocrinol Metab. 2004;287:E120–7.PubMed Watt MJ, Holmes AG, Steinberg GR, Mesa JL, Kemp BE, Febbraio MA. Reduced plasma FFA availability increases net triacylglycerol degradation, but not GPAT or HSL activity, in human skeletal muscle. Am J Physiol Endocrinol Metab. 2004;287:E120–7.PubMed
131.
go back to reference Pereira JN. The plasma free fatty acid rebound induced by nicotinic acid. J Lipid Res. 1967;8:239–44.PubMed Pereira JN. The plasma free fatty acid rebound induced by nicotinic acid. J Lipid Res. 1967;8:239–44.PubMed
132.
go back to reference Oh YT, Oh KS, Kang I, Youn JH. A fall in plasma free fatty acid (FFA) level activates the hypothalamic-pituitary-adrenal axis independent of plasma glucose: Evidence for brain sensing of circulating FFA. Endocrinology. 2012;153(8):3587–92.PubMedPubMedCentral Oh YT, Oh KS, Kang I, Youn JH. A fall in plasma free fatty acid (FFA) level activates the hypothalamic-pituitary-adrenal axis independent of plasma glucose: Evidence for brain sensing of circulating FFA. Endocrinology. 2012;153(8):3587–92.PubMedPubMedCentral
133.
go back to reference Oh YT, Kim J, Kang I, Youn JH. Regulation of hypothalamic-pituitary-adrenal axis by circulating free fatty acids in male Wistar rats: Role of individual free fatty acids. Endocrinology. 2014;155(3):923–31.PubMed Oh YT, Kim J, Kang I, Youn JH. Regulation of hypothalamic-pituitary-adrenal axis by circulating free fatty acids in male Wistar rats: Role of individual free fatty acids. Endocrinology. 2014;155(3):923–31.PubMed
134.
go back to reference Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134(6):933–44.PubMedPubMedCentral Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134(6):933–44.PubMedPubMedCentral
135.
go back to reference Yang ZH, Miyahara H, Hatanaka A. Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes. Lipids Health Dis. 2011;10:120.PubMedPubMedCentral Yang ZH, Miyahara H, Hatanaka A. Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes. Lipids Health Dis. 2011;10:120.PubMedPubMedCentral
136.
go back to reference Stefan N, Kantartzis K, Celebi N, Staiger H, Machann J, Schick F, et al. Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans. Diabetes Care. 2010;33(2):405–7.PubMedPubMedCentral Stefan N, Kantartzis K, Celebi N, Staiger H, Machann J, Schick F, et al. Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans. Diabetes Care. 2010;33(2):405–7.PubMedPubMedCentral
137.
go back to reference Mozaffarian D, Cao H, King IB, Lemaitre RN, Song X, Siscovick DS, et al. Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. Am J Clin Nutr. 2010;92(6):1350–8.PubMedPubMedCentral Mozaffarian D, Cao H, King IB, Lemaitre RN, Song X, Siscovick DS, et al. Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. Am J Clin Nutr. 2010;92(6):1350–8.PubMedPubMedCentral
138.
go back to reference Yang ZH, Takeo J, Katayama M. Oral administration of omega-7 palmitoleic acid induces satiety and the release of appetite-related hormones in male rats. Appetite. 2013;65:1–7.PubMed Yang ZH, Takeo J, Katayama M. Oral administration of omega-7 palmitoleic acid induces satiety and the release of appetite-related hormones in male rats. Appetite. 2013;65:1–7.PubMed
139.
go back to reference Gong J, Campos H, McGarvey S, Wu Z, Goldberg R, Baylin A. Adipose tissue palmitoleic acid and obesity in humans: Does it behave as a lipokine? Am J Clin Nutr. 2011;93(1):186–91.PubMedPubMedCentral Gong J, Campos H, McGarvey S, Wu Z, Goldberg R, Baylin A. Adipose tissue palmitoleic acid and obesity in humans: Does it behave as a lipokine? Am J Clin Nutr. 2011;93(1):186–91.PubMedPubMedCentral
140.
go back to reference Hodson L, Karpe F. Is there something special about palmitoleate? Curr Opin Clin Nutr Metab Care. 2013;16(2):225–31.PubMed Hodson L, Karpe F. Is there something special about palmitoleate? Curr Opin Clin Nutr Metab Care. 2013;16(2):225–31.PubMed
141.
go back to reference Huber AH, Kampf JP, Kwan T, Zhu B, Kleinfeld AM. Fatty acid-specific fluorescent probes and their use in resolving mixtures of unbound free fatty acids in equilibrium with albumin. Biochemistry. 2006;45:14263–74.PubMedPubMedCentral Huber AH, Kampf JP, Kwan T, Zhu B, Kleinfeld AM. Fatty acid-specific fluorescent probes and their use in resolving mixtures of unbound free fatty acids in equilibrium with albumin. Biochemistry. 2006;45:14263–74.PubMedPubMedCentral
142.
go back to reference Watt MJ, Hoy AJ, Muoio DM, Coleman RA. Distinct roles of specific fatty acids in cellular processes: Implications for interpreting and reporting experiments. Am J Physiol Endocrinol Metab. 2012;302:E1–3.PubMedPubMedCentral Watt MJ, Hoy AJ, Muoio DM, Coleman RA. Distinct roles of specific fatty acids in cellular processes: Implications for interpreting and reporting experiments. Am J Physiol Endocrinol Metab. 2012;302:E1–3.PubMedPubMedCentral
143.
go back to reference Hummel L. Studies on the metabolism of free fatty acids of the plasma in non-pregnant female and pregnant rats. Acta Biol Med Ger. 1975;34(4):607–11.PubMed Hummel L. Studies on the metabolism of free fatty acids of the plasma in non-pregnant female and pregnant rats. Acta Biol Med Ger. 1975;34(4):607–11.PubMed
144.
go back to reference Nelson RH, Mundi MS, Vlazny DT, Smailovic A, Muthusamy K, Almandoz JP, et al. Kinetics of saturated, monounsaturated, and polyunsaturated fatty acids in humans. Diabetes. 2013;62(3):783–8.PubMedPubMedCentral Nelson RH, Mundi MS, Vlazny DT, Smailovic A, Muthusamy K, Almandoz JP, et al. Kinetics of saturated, monounsaturated, and polyunsaturated fatty acids in humans. Diabetes. 2013;62(3):783–8.PubMedPubMedCentral
145.
go back to reference Bezman-Tarcher A. Method for continuous intravenous infusion of large amounts of oleic acid into rats. J Lipid Res. 1969;10(2):197–206.PubMed Bezman-Tarcher A. Method for continuous intravenous infusion of large amounts of oleic acid into rats. J Lipid Res. 1969;10(2):197–206.PubMed
146.
go back to reference Gould S, Scott RC. 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): a toxicology review. Food Chem Toxicol. 2005;43(10):1451–9.PubMed Gould S, Scott RC. 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): a toxicology review. Food Chem Toxicol. 2005;43(10):1451–9.PubMed
147.
go back to reference Schuster DP. ARDS: clinical lessons from the oleic acid model of acute lung injury. Am J Respir Crit Care Med. 1994;149(1):245–60.PubMed Schuster DP. ARDS: clinical lessons from the oleic acid model of acute lung injury. Am J Respir Crit Care Med. 1994;149(1):245–60.PubMed
148.
go back to reference Richieri GV, Anel A, Kleinfeld AM. Interactions of long-chain fatty acids and albumin: determination of free fatty acid levels using the fluorescent probe ADIFAB. Biochemistry. 1993;32(29):7574–80.PubMed Richieri GV, Anel A, Kleinfeld AM. Interactions of long-chain fatty acids and albumin: determination of free fatty acid levels using the fluorescent probe ADIFAB. Biochemistry. 1993;32(29):7574–80.PubMed
149.
go back to reference Nivala AM, Reese L, Frye M, Gentile CL, Pagliassotti MJ. Fatty acid-mediated endoplasmic reticulum stress in vivo: differential response to the infusion of Soybean and Lard Oil in rats. Metabolism. 2013;62(5):753–60.PubMedPubMedCentral Nivala AM, Reese L, Frye M, Gentile CL, Pagliassotti MJ. Fatty acid-mediated endoplasmic reticulum stress in vivo: differential response to the infusion of Soybean and Lard Oil in rats. Metabolism. 2013;62(5):753–60.PubMedPubMedCentral
150.
go back to reference Morgan K, Obici S, Rossetti L. Hypothalamic responses to long-chain fatty acids are nutritionally regulated. J Biol Chem. 2004;279:31139–48.PubMed Morgan K, Obici S, Rossetti L. Hypothalamic responses to long-chain fatty acids are nutritionally regulated. J Biol Chem. 2004;279:31139–48.PubMed
151.
go back to reference Pocai A, Lam TK, Obici S, et al. Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. J Clin Invest. 2006;116:1081–91.PubMedPubMedCentral Pocai A, Lam TK, Obici S, et al. Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. J Clin Invest. 2006;116:1081–91.PubMedPubMedCentral
152.
go back to reference Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.PubMed Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.PubMed
153.
go back to reference Coleman DL. A historical perspective on leptin. Nat Med. 2010;16(10):1097–9.PubMed Coleman DL. A historical perspective on leptin. Nat Med. 2010;16(10):1097–9.PubMed
154.
go back to reference Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MS, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334:292–5.PubMed Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MS, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334:292–5.PubMed
155.
go back to reference Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, et al. Leptin levels in human and rodent: Measurement of plasma leptin and ob mRNA in obese and weight reduced subjects. Nat Med. 1995;1:1155–61.PubMed Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, et al. Leptin levels in human and rodent: Measurement of plasma leptin and ob mRNA in obese and weight reduced subjects. Nat Med. 1995;1:1155–61.PubMed
156.
go back to reference Frederich RC, Hamann A, Anderson S, Löllmann B, Lowell BB, Flier JS. Leptin levels reflect body lipid content in mice: Evidence for diet-induced resistance to leptin action. Nat Med. 1995;1:1311–4.PubMed Frederich RC, Hamann A, Anderson S, Löllmann B, Lowell BB, Flier JS. Leptin levels reflect body lipid content in mice: Evidence for diet-induced resistance to leptin action. Nat Med. 1995;1:1311–4.PubMed
157.
go back to reference Munzberg H. Leptin-signaling pathways and leptin resistance. Forum Nutr. 2010;63:123–32.PubMed Munzberg H. Leptin-signaling pathways and leptin resistance. Forum Nutr. 2010;63:123–32.PubMed
158.
go back to reference Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol. 2008;70:537–56.PubMed Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol. 2008;70:537–56.PubMed
159.
go back to reference Morris DL, Rui L. Recent advances in understanding Leptin signaling and Leptin resistance. Am J Physiol Endocrinol Metab. 2009;297:E1247–59.PubMedPubMedCentral Morris DL, Rui L. Recent advances in understanding Leptin signaling and Leptin resistance. Am J Physiol Endocrinol Metab. 2009;297:E1247–59.PubMedPubMedCentral
160.
go back to reference Seeley RJ, Woods SC. Monitoring of stored and available fuel by the CNS: Implications for obesity. Nat Rev Neurosci. 2003;4(11):901–9.PubMed Seeley RJ, Woods SC. Monitoring of stored and available fuel by the CNS: Implications for obesity. Nat Rev Neurosci. 2003;4(11):901–9.PubMed
161.
go back to reference Lin L, Martin R, Schaffhauser AO, York DA. Acute changes in the response to peripheral leptin with alteration in diet composition. Am J Physiol Regul Integr Comp Physiol. 2001;280:R504–9.PubMed Lin L, Martin R, Schaffhauser AO, York DA. Acute changes in the response to peripheral leptin with alteration in diet composition. Am J Physiol Regul Integr Comp Physiol. 2001;280:R504–9.PubMed
162.
go back to reference Wang J, Obici S, Morgan K, Barzilai N, Feng Z, Rossetti L. Overfeeding rapidly induces leptin and insulin resistance. Diabetes. 2001;50:2786–91.PubMed Wang J, Obici S, Morgan K, Barzilai N, Feng Z, Rossetti L. Overfeeding rapidly induces leptin and insulin resistance. Diabetes. 2001;50:2786–91.PubMed
163.
go back to reference Myers Jr MG, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: Distinguishing cause from effect. Trends Endocrinol Metab. 2010;21(11):643–51.PubMedPubMedCentral Myers Jr MG, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: Distinguishing cause from effect. Trends Endocrinol Metab. 2010;21(11):643–51.PubMedPubMedCentral
164.
go back to reference Thaler JP, Guyenet SJ, Dorfman MD, Wisse BE, Schwartz MW. Hypothalamic inflammation: Marker or mechanism of obesity pathogenesis? Diabetes. 2013;62(8):2629–34.PubMedPubMedCentral Thaler JP, Guyenet SJ, Dorfman MD, Wisse BE, Schwartz MW. Hypothalamic inflammation: Marker or mechanism of obesity pathogenesis? Diabetes. 2013;62(8):2629–34.PubMedPubMedCentral
165.
go back to reference Scarpace PJ, Zhang Y. Leptin resistance: A predisposing factor for diet-induced obesity. Am J Physioql Regul Comp Physiol. 2009;296:R493–500. Scarpace PJ, Zhang Y. Leptin resistance: A predisposing factor for diet-induced obesity. Am J Physioql Regul Comp Physiol. 2009;296:R493–500.
166.
go back to reference El-Haschimi K, Pierroz DD, Hileman SM, Bjørbæk C, Flier JS. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Invest. 2000;105:1827–32.PubMedPubMedCentral El-Haschimi K, Pierroz DD, Hileman SM, Bjørbæk C, Flier JS. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Invest. 2000;105:1827–32.PubMedPubMedCentral
167.
go back to reference Banks WA. The blood–brain barrier as a cause of obesity. Curr Pharm Des. 2008;14:1606–14.PubMed Banks WA. The blood–brain barrier as a cause of obesity. Curr Pharm Des. 2008;14:1606–14.PubMed
168.
go back to reference Velloso LA, Schwartz MW. Altered hypothalamic function in diet-induced obesity. Int J Obes (Lond). 2011;35(12):1455–65. Velloso LA, Schwartz MW. Altered hypothalamic function in diet-induced obesity. Int J Obes (Lond). 2011;35(12):1455–65.
169.
go back to reference Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides. 1996;17:305–11.PubMed Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides. 1996;17:305–11.PubMed
170.
go back to reference Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, et al. Triglycerides induce leptin resistance at the blood–brain barrier. Diabetes. 2004;53(5):1253–60.PubMed Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, et al. Triglycerides induce leptin resistance at the blood–brain barrier. Diabetes. 2004;53(5):1253–60.PubMed
171.
go back to reference Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: A possible mechanism for leptin resistance. Lancet. 1996;348:159–61.PubMed Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: A possible mechanism for leptin resistance. Lancet. 1996;348:159–61.PubMed
172.
go back to reference Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte Jr D. Cerebrospinal fluid leptin levels: Relationship to plasma levels and adiposity in humans. Nat Med. 1996;2:589–93.PubMed Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte Jr D. Cerebrospinal fluid leptin levels: Relationship to plasma levels and adiposity in humans. Nat Med. 1996;2:589–93.PubMed
173.
go back to reference Shapiro A, Mu W, Roncal CA, Cheng KY, Johnson RJ, Scarpace PJ. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high fat feeding. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1370–5.PubMedPubMedCentral Shapiro A, Mu W, Roncal CA, Cheng KY, Johnson RJ, Scarpace PJ. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high fat feeding. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1370–5.PubMedPubMedCentral
174.
go back to reference Vasselli JR, Scarpace PJ, Harris RB, Banks WA. Dietary components in the development of leptin resistance. Adv Nutr. 2013;4(2):164–75.PubMedPubMedCentral Vasselli JR, Scarpace PJ, Harris RB, Banks WA. Dietary components in the development of leptin resistance. Adv Nutr. 2013;4(2):164–75.PubMedPubMedCentral
175.
go back to reference Adam CL, Findlay PA. Decreased blood–brain leptin transfer in an ovine model of obesity and weight loss: Resolving the cause of leptin resistance. Int J Obes (Lond). 2010;34(6):980–8. Adam CL, Findlay PA. Decreased blood–brain leptin transfer in an ovine model of obesity and weight loss: Resolving the cause of leptin resistance. Int J Obes (Lond). 2010;34(6):980–8.
176.
go back to reference Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers Jr MG, et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: A key mediator of insulin-induced anorexia. Diabetes. 2003;52:227–31.PubMed Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers Jr MG, et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: A key mediator of insulin-induced anorexia. Diabetes. 2003;52:227–31.PubMed
177.
go back to reference Polonsky KS, Given BD, Hirsch L, Shapiro ET, Tillil H, Beebe C, et al. Quantitative study of insulin secretion and clearance in normal and obese subjects. J Clin Invest. 1988;81(2):435–41.PubMedPubMedCentral Polonsky KS, Given BD, Hirsch L, Shapiro ET, Tillil H, Beebe C, et al. Quantitative study of insulin secretion and clearance in normal and obese subjects. J Clin Invest. 1988;81(2):435–41.PubMedPubMedCentral
178.
go back to reference Heni M1, Schöpfer P, Peter A, Sartorius T, Fritsche A, Synofzik M, Häring HU, Maetzler W, Hennige AM. Evidence for altered transport of insulin across the blood–brain barrier in insulin-resistant humans. Acta Diabetol. 2013 Dec 27 Heni M1, Schöpfer P, Peter A, Sartorius T, Fritsche A, Synofzik M, Häring HU, Maetzler W, Hennige AM. Evidence for altered transport of insulin across the blood–brain barrier in insulin-resistant humans. Acta Diabetol. 2013 Dec 27
179.
go back to reference Mayer J. Glucostatic mechanism of regulation of food intake. N Engl J Med. 1953;249(1):13–6.PubMed Mayer J. Glucostatic mechanism of regulation of food intake. N Engl J Med. 1953;249(1):13–6.PubMed
180.
go back to reference Ritter S, Taylor JS. Capsaicin abolishes lipoprivic but not glucoprivic feeding in rats. Am J Physiol. 1989;256(6 Pt 2):R1232–9.PubMed Ritter S, Taylor JS. Capsaicin abolishes lipoprivic but not glucoprivic feeding in rats. Am J Physiol. 1989;256(6 Pt 2):R1232–9.PubMed
181.
go back to reference Leonhardt M, Langhans W. Fatty acid oxidation and control of food intake. Physiol Behav. 2004;83(4):645–51.PubMed Leonhardt M, Langhans W. Fatty acid oxidation and control of food intake. Physiol Behav. 2004;83(4):645–51.PubMed
182.
go back to reference Scharrer E. Control of food intake by fatty acid oxidation and ketogenesis. Nutrition. 1999;15(9):704–14.PubMed Scharrer E. Control of food intake by fatty acid oxidation and ketogenesis. Nutrition. 1999;15(9):704–14.PubMed
183.
go back to reference Langhans W, Leitner C, Arnold M. Dietary fat sensing via fatty acid oxidation in enterocytes: possible role in the control of eating. Am J Physiol Regul Integr Comp Physiol. 2011;300(3):R554–65.PubMed Langhans W, Leitner C, Arnold M. Dietary fat sensing via fatty acid oxidation in enterocytes: possible role in the control of eating. Am J Physiol Regul Integr Comp Physiol. 2011;300(3):R554–65.PubMed
184.
go back to reference Karimian Azari E, Leitner C, Jaggi T, Langhans W, Mansouri A. Possible role of intestinal fatty acid oxidation in the eating-inhibitory effect of the PPAR-α agonist Wy-14643 in high-fat diet fed rats. PLoS One. 2013;8(9):e74869.PubMedPubMedCentral Karimian Azari E, Leitner C, Jaggi T, Langhans W, Mansouri A. Possible role of intestinal fatty acid oxidation in the eating-inhibitory effect of the PPAR-α agonist Wy-14643 in high-fat diet fed rats. PLoS One. 2013;8(9):e74869.PubMedPubMedCentral
185.
go back to reference Clegg DJ, Gotoh K, Kemp C, Wortman MD, Benoit SC, Brown LM, et al. Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiol Behav. 2011;103(1):10–6.PubMedPubMedCentral Clegg DJ, Gotoh K, Kemp C, Wortman MD, Benoit SC, Brown LM, et al. Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiol Behav. 2011;103(1):10–6.PubMedPubMedCentral
186.
go back to reference Pimentel GD, Dornellas AP, Rosa JC, Lira FS, Cunha CA, Boldarine VT, et al. High-fat diets rich in soy or fish oil distinctly alter hypothalamic insulin signaling in rats. J Nutr Biochem. 2012;23(7):822–8.PubMed Pimentel GD, Dornellas AP, Rosa JC, Lira FS, Cunha CA, Boldarine VT, et al. High-fat diets rich in soy or fish oil distinctly alter hypothalamic insulin signaling in rats. J Nutr Biochem. 2012;23(7):822–8.PubMed
187.
go back to reference Olofsson LE, Unger EK, Cheung CC, Xu AW. Modulation of AgRP-neuronal function by SOCS3 as an initiating event in diet-induced hypothalamic leptin resistance. Proc Natl Acad Sci U S A. 2013;110(8):E697–706.PubMedPubMedCentral Olofsson LE, Unger EK, Cheung CC, Xu AW. Modulation of AgRP-neuronal function by SOCS3 as an initiating event in diet-induced hypothalamic leptin resistance. Proc Natl Acad Sci U S A. 2013;110(8):E697–706.PubMedPubMedCentral
188.
go back to reference Duca FA, Swartz TD, Sakar Y, Covasa M. Decreased intestinal nutrient response in diet-induced obese rats: role of gut peptides and nutrient receptors. Int J Obes (Lond). 2013;37(3):375–81. Duca FA, Swartz TD, Sakar Y, Covasa M. Decreased intestinal nutrient response in diet-induced obese rats: role of gut peptides and nutrient receptors. Int J Obes (Lond). 2013;37(3):375–81.
189.
go back to reference De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 2005;146(10):4192–9.PubMed De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 2005;146(10):4192–9.PubMed
190.
go back to reference Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135(1):61–73.PubMedPubMedCentral Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135(1):61–73.PubMedPubMedCentral
191.
go back to reference Oh-I S, Thaler JP, Ogimoto K, Wisse BE, Morton GJ, Schwartz MW. Central administration of interleukin-4 exacerbates hypothalamic inflammation and weight gain during high-fat feeding. Am J Physiol Endocrinol Metab. 2010;299(1):E47–53.PubMedPubMedCentral Oh-I S, Thaler JP, Ogimoto K, Wisse BE, Morton GJ, Schwartz MW. Central administration of interleukin-4 exacerbates hypothalamic inflammation and weight gain during high-fat feeding. Am J Physiol Endocrinol Metab. 2010;299(1):E47–53.PubMedPubMedCentral
192.
go back to reference Chiarreotto-Ropelle EC, Pauli LS, Katashima CK, Pimentel GD, Picardi PK, Silva VR, et al. Acute exercise suppresses hypothalamic PTP1B protein level and improves insulin and leptin signaling in obese rats. Am J Physiol Endocrinol Metab. 2013;305(5):E649–59.PubMed Chiarreotto-Ropelle EC, Pauli LS, Katashima CK, Pimentel GD, Picardi PK, Silva VR, et al. Acute exercise suppresses hypothalamic PTP1B protein level and improves insulin and leptin signaling in obese rats. Am J Physiol Endocrinol Metab. 2013;305(5):E649–59.PubMed
193.
go back to reference Weissmann L, Quaresma PG, Santos AC, de Matos AH, D'Ávila Bittencourt Pascoal V, Zanotto TM, Castro G, Guadgnini D, Martins da Silva J, Velloso LA, Bittencourt JC, Lopes-Cendes I, Saad MJ, Prada PO. IKK epsilon is key to induction of insulin resistance in the hypothalamus and its inhibition reverses obesity. Diabetes. 2014 May 8 Weissmann L, Quaresma PG, Santos AC, de Matos AH, D'Ávila Bittencourt Pascoal V, Zanotto TM, Castro G, Guadgnini D, Martins da Silva J, Velloso LA, Bittencourt JC, Lopes-Cendes I, Saad MJ, Prada PO. IKK epsilon is key to induction of insulin resistance in the hypothalamus and its inhibition reverses obesity. Diabetes. 2014 May 8
194.
go back to reference Ropelle ER, Flores MB, Cintra DE, Rocha GZ, Pauli JR, Morari J, et al. IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition. PLoS Biol. 2010;24:8(8). Ropelle ER, Flores MB, Cintra DE, Rocha GZ, Pauli JR, Morari J, et al. IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition. PLoS Biol. 2010;24:8(8).
195.
go back to reference Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122(1):153–62.PubMedPubMedCentral Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122(1):153–62.PubMedPubMedCentral
196.
go back to reference Cintra DE, Ropelle ER, Moraes JC, Pauli JR, Morari J, Souza CT, et al. Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLoS One. 2012;7(1):e30571.PubMedPubMedCentral Cintra DE, Ropelle ER, Moraes JC, Pauli JR, Morari J, Souza CT, et al. Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLoS One. 2012;7(1):e30571.PubMedPubMedCentral
197.
go back to reference Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A, et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab. 2009;296:E1003–12.PubMedPubMedCentral Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A, et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab. 2009;296:E1003–12.PubMedPubMedCentral
198.
go back to reference Benoit SC, Kemp CJ, Elias CF, Abplanalp W, Herman JP, Migrenne S, et al. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest. 2009;119(9):2577–89.PubMedPubMedCentral Benoit SC, Kemp CJ, Elias CF, Abplanalp W, Herman JP, Migrenne S, et al. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest. 2009;119(9):2577–89.PubMedPubMedCentral
199.
go back to reference Guyenet SJ, Nguyen HT, Hwang BH, Schwartz MW, Baskin DG, Thaler JP. High-fat diet feeding causes rapid, non-apoptotic cleavage of caspase-3 in astrocytes. Brain Res. 2013;1512:97–105.PubMedPubMedCentral Guyenet SJ, Nguyen HT, Hwang BH, Schwartz MW, Baskin DG, Thaler JP. High-fat diet feeding causes rapid, non-apoptotic cleavage of caspase-3 in astrocytes. Brain Res. 2013;1512:97–105.PubMedPubMedCentral
200.
go back to reference Gao Y, Ottaway N, Schriever SC, Legutko B, García-Cáceres C, de la Fuente E, et al. Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia. 2014;62(1):17–25.PubMedPubMedCentral Gao Y, Ottaway N, Schriever SC, Legutko B, García-Cáceres C, de la Fuente E, et al. Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia. 2014;62(1):17–25.PubMedPubMedCentral
201.
go back to reference Ouyang S, Hsuchou H, Kastin AJ, Wang Y, Yu C, Pan W. Diet-induced obesity suppresses expression of many proteins at the blood–brain barrier. J Cereb Blood Flow Metab. 2014;34(1):43–51.PubMed Ouyang S, Hsuchou H, Kastin AJ, Wang Y, Yu C, Pan W. Diet-induced obesity suppresses expression of many proteins at the blood–brain barrier. J Cereb Blood Flow Metab. 2014;34(1):43–51.PubMed
202.
go back to reference Takechi R, Galloway S, Pallebage-Gamarallage MM, Wellington CL, Johnsen RD, Dhaliwal SS, et al. Differential effects of dietary fatty acids on the cerebral distribution of plasma-derived apo B lipoproteins with amyloid-beta. Br J Nutr. 2010;103(5):652–62.PubMed Takechi R, Galloway S, Pallebage-Gamarallage MM, Wellington CL, Johnsen RD, Dhaliwal SS, et al. Differential effects of dietary fatty acids on the cerebral distribution of plasma-derived apo B lipoproteins with amyloid-beta. Br J Nutr. 2010;103(5):652–62.PubMed
203.
go back to reference Hsuchou H, Kastin AJ, Pan W. Blood-borne metabolic factors in obesity exacerbate injury-induced gliosis. J Mol Neurosci. 2012;47(2):267–77.PubMedPubMedCentral Hsuchou H, Kastin AJ, Pan W. Blood-borne metabolic factors in obesity exacerbate injury-induced gliosis. J Mol Neurosci. 2012;47(2):267–77.PubMedPubMedCentral
Metadata
Title
Fat sensing and metabolic syndrome
Author
Jang H. Youn
Publication date
01-12-2014
Publisher
Springer US
Published in
Reviews in Endocrine and Metabolic Disorders / Issue 4/2014
Print ISSN: 1389-9155
Electronic ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-014-9300-1

Other articles of this Issue 4/2014

Reviews in Endocrine and Metabolic Disorders 4/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.