Skip to main content
Top
Published in: Reviews in Endocrine and Metabolic Disorders 2/2007

01-06-2007

Polycystic ovary syndrome and its developmental origins

Authors: Daniel A. Dumesic, David H. Abbott, Vasantha Padmanabhan

Published in: Reviews in Endocrine and Metabolic Disorders | Issue 2/2007

Login to get access

Abstract

The prenatal testosterone (T)-treated adult female rhesus monkey is one animal model of polycystic ovary syndrome (PCOS) in women, with early prenatal T excess programming a permanent PCOS-like phenotype characterized by luteinizing hormone (LH) hypersecretion from reduced hypothalamic sensitivity to steroid negative feedback and relative insulin excess from increased abdominal adiposity. These combined reproductive and metabolic abnormalities are associated with ovarian hyperandrogenism and follicular arrest in adulthood, as well as premature follicle differentiation and impaired embryo development during gonadotropin therapy for in vitro fertilization (IVF). A second animal model for PCOS, the prenatal T-treated sheep also is characterized by LH hypersecretion from reduced hypothalamic sensitivity to steroid negative feedback, persistent follicles and insulin resistance, but also is associated with intrauterine growth retardation and compensatory growth after birth. The ability of prenatal T excess in both species to alter the developmental trajectory of multiple organ systems in utero provides evidence that the hormonal environment of intrauterine life programs target tissue differentiation, raising the possibility that T excess in human fetal development promotes PCOS in adulthood. Such a hypothesis must include data from clinical studies of PCOS women to clarify the homology between these PCOS-like animal models and PCOS per se in reproductive and metabolic function. Future studies should develop new clinical strategies that improve pregnancy outcome and minimize pregnancy loss in women with disorders of insulin action, including PCOS, obesity and diabetes mellitus as well as minimize transgenerational susceptibility to adult PCOS and its metabolic derangements in male close relatives.
Literature
1.
go back to reference Azziz R, Marin C, Hoq L, Badamgarav E, Song P. Health care-related economic burden of the polycystic ovary syndrome during the reproductive life span. J Clin Endocrinol Metab 2005;90:4650–8.PubMed Azziz R, Marin C, Hoq L, Badamgarav E, Song P. Health care-related economic burden of the polycystic ovary syndrome during the reproductive life span. J Clin Endocrinol Metab 2005;90:4650–8.PubMed
2.
go back to reference The Rotterdam ESHRE/ASRM-sponsored PCOS consensus workshop group: revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 2004;19:41–7. The Rotterdam ESHRE/ASRM-sponsored PCOS consensus workshop group: revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 2004;19:41–7.
3.
go back to reference Barnes RB, Rosenfield RL, Ehrmann DA, Cara JF, Cuttler L, Levitsky LL, et al. Ovarian hyperandrogynism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women. J Clin Endocrinol Metab 1994;79:1328–33.PubMed Barnes RB, Rosenfield RL, Ehrmann DA, Cara JF, Cuttler L, Levitsky LL, et al. Ovarian hyperandrogynism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women. J Clin Endocrinol Metab 1994;79:1328–33.PubMed
4.
go back to reference Merke DP, Cutler GB Jr. New ideas for medical treatment of congenital adrenal hyperplasia. Endocrinol Metab Clin North Am 2001;30:121–35.PubMed Merke DP, Cutler GB Jr. New ideas for medical treatment of congenital adrenal hyperplasia. Endocrinol Metab Clin North Am 2001;30:121–35.PubMed
5.
go back to reference Phocas I, Chryssikopoulos A, Sarandakou A, Rizos D, Trakakis E. A contribution to the classification of cases of non-classic 21-hydroxylase-deficient congenital adrenal hyperplasia. Gynecol Endocrinol 1995;9:229–38.PubMed Phocas I, Chryssikopoulos A, Sarandakou A, Rizos D, Trakakis E. A contribution to the classification of cases of non-classic 21-hydroxylase-deficient congenital adrenal hyperplasia. Gynecol Endocrinol 1995;9:229–38.PubMed
6.
go back to reference Stikkelbroeck NM, Hermus AR, Braat DD, Otten BJ. Fertility in women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Obstet Gynecol Surv 2003;58:275–84.PubMed Stikkelbroeck NM, Hermus AR, Braat DD, Otten BJ. Fertility in women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Obstet Gynecol Surv 2003;58:275–84.PubMed
7.
go back to reference Clarke IJ, Scaramuzzi RJ, Short RV. Ovulation in prenatally androgenized ewes. J Endocrinol 1977;73:385–9.PubMed Clarke IJ, Scaramuzzi RJ, Short RV. Ovulation in prenatally androgenized ewes. J Endocrinol 1977;73:385–9.PubMed
8.
go back to reference Birch RA, Padmanabhan V, Foster DL, Unsworth WP, Robinson JE. Prenatal programming of reproductive neuroendocrine function: fetal androgen exposure produces progressive disruption of reproductive cycles in sheep. Endocrinology 2003;144:1426–34.PubMed Birch RA, Padmanabhan V, Foster DL, Unsworth WP, Robinson JE. Prenatal programming of reproductive neuroendocrine function: fetal androgen exposure produces progressive disruption of reproductive cycles in sheep. Endocrinology 2003;144:1426–34.PubMed
9.
go back to reference Abbott DH, Foong SC, Barnett DK, Dumesic DA. Nonhuman primates contribute unique understanding to anovulatory infertility in women. ILAR 2004;45:116–31. Abbott DH, Foong SC, Barnett DK, Dumesic DA. Nonhuman primates contribute unique understanding to anovulatory infertility in women. ILAR 2004;45:116–31.
10.
go back to reference Recabarren SE, Padmanabhan V, Codner E, Lobos A, Durán C, Vidal M, et al. Postnatal developmental consequences of altered insulin sensitivity in female sheep treated prenatally with testosterone. Am J Physiol 2005;289:E801–6. Recabarren SE, Padmanabhan V, Codner E, Lobos A, Durán C, Vidal M, et al. Postnatal developmental consequences of altered insulin sensitivity in female sheep treated prenatally with testosterone. Am J Physiol 2005;289:E801–6.
11.
go back to reference Abbott DH, Barnett DK, Bruns CM, Dumesic DA. Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome? Hum Reprod Update 2005;11:357–74.PubMed Abbott DH, Barnett DK, Bruns CM, Dumesic DA. Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome? Hum Reprod Update 2005;11:357–74.PubMed
12.
go back to reference Fabre-Nys C, Venier G. Sexual differentiation of sexual behavior and preovulatory LH surge in ewes. Psychoneuroendocr 1991;16:383–96. Fabre-Nys C, Venier G. Sexual differentiation of sexual behavior and preovulatory LH surge in ewes. Psychoneuroendocr 1991;16:383–96.
13.
go back to reference Sharma TP, Herkimer C, West C, Ye W, Birch R, Robinson JE, et al. Fetal programming: prenatal androgen disrupts positive feedback actions of estradiol but does not affect timing of puberty in female sheep. Biol Reprod 2002;66:924–33.PubMed Sharma TP, Herkimer C, West C, Ye W, Birch R, Robinson JE, et al. Fetal programming: prenatal androgen disrupts positive feedback actions of estradiol but does not affect timing of puberty in female sheep. Biol Reprod 2002;66:924–33.PubMed
14.
go back to reference Sarma HN, Manikkam M, Herkimer C, Dell’Orco J, Welch KB, Foster DL, et al. Fetal programming: excess prenatal testosterone reduces postnatal luteinizing hormone, but not follicle-stimulating hormone responsiveness, to estradiol negative feedback in the female. Endocrinology 2005;146:4281–91.PubMed Sarma HN, Manikkam M, Herkimer C, Dell’Orco J, Welch KB, Foster DL, et al. Fetal programming: excess prenatal testosterone reduces postnatal luteinizing hormone, but not follicle-stimulating hormone responsiveness, to estradiol negative feedback in the female. Endocrinology 2005;146:4281–91.PubMed
15.
go back to reference Dumesic DA, Abbott DH, Eisner JR, Goy RW. Prenatal exposure of female rhesus monkeys to testosterone propionate increases serum luteinizing hormone levels in adulthood. Fertil Steril 1997;67:155–63.PubMed Dumesic DA, Abbott DH, Eisner JR, Goy RW. Prenatal exposure of female rhesus monkeys to testosterone propionate increases serum luteinizing hormone levels in adulthood. Fertil Steril 1997;67:155–63.PubMed
16.
go back to reference Wood RI, Foster DL. Sexual differentiation of reproductive neuroendocrine function in sheep. Rev Reprod 1998;3:130–40.PubMed Wood RI, Foster DL. Sexual differentiation of reproductive neuroendocrine function in sheep. Rev Reprod 1998;3:130–40.PubMed
17.
go back to reference Robinson JE, Forsdike RA, Taylor JA. In utero exposure of female lambs to testosterone reduces the sensitivity of the gonadotropin-releasing hormone neuronal network to inhibition by progesterone. Endocrinology 1999;140:5797–805.PubMed Robinson JE, Forsdike RA, Taylor JA. In utero exposure of female lambs to testosterone reduces the sensitivity of the gonadotropin-releasing hormone neuronal network to inhibition by progesterone. Endocrinology 1999;140:5797–805.PubMed
18.
go back to reference Robinson JE, Birch RA, Foster DL, Padmanabhan V. Prenatal exposure of the ovine fetus to androgens sexually differentiates the steroid feedback mechanisms that control gonadotropin releasing hormone secretion and disrupts ovarian cycles. Arch Sex Behav 2002;31:35–41.PubMed Robinson JE, Birch RA, Foster DL, Padmanabhan V. Prenatal exposure of the ovine fetus to androgens sexually differentiates the steroid feedback mechanisms that control gonadotropin releasing hormone secretion and disrupts ovarian cycles. Arch Sex Behav 2002;31:35–41.PubMed
19.
go back to reference Unsworth WP, Taylor JA, Robinson JE. Prenatal programming of reproductive neuroendocrine function: the effect of prenatal androgens on the development of estrogen positive feedback and ovarian cycles in the ewe. Biol Reprod 2005;72:619–27.PubMed Unsworth WP, Taylor JA, Robinson JE. Prenatal programming of reproductive neuroendocrine function: the effect of prenatal androgens on the development of estrogen positive feedback and ovarian cycles in the ewe. Biol Reprod 2005;72:619–27.PubMed
20.
go back to reference Dumesic DA, Schramm RD, Peterson E, Paprocki AM, Zhou R, Abbott DH. Impaired developmental competence of oocytes in adult prenatally androgenized female rhesus monkeys undergoing gonadotropin stimulation for in vitro fertilization. J Clin Endocrinol Metab 2002;87:1111–9.PubMed Dumesic DA, Schramm RD, Peterson E, Paprocki AM, Zhou R, Abbott DH. Impaired developmental competence of oocytes in adult prenatally androgenized female rhesus monkeys undergoing gonadotropin stimulation for in vitro fertilization. J Clin Endocrinol Metab 2002;87:1111–9.PubMed
21.
go back to reference Steiner RA, Clifton DK, Spies HG, Resko JA. Sexual differentiation and feedback control of luteinizing hormone secretion in the rhesus monkey. Biol Reprod 1976;15:206–12.PubMed Steiner RA, Clifton DK, Spies HG, Resko JA. Sexual differentiation and feedback control of luteinizing hormone secretion in the rhesus monkey. Biol Reprod 1976;15:206–12.PubMed
22.
go back to reference Eisner JR, Barnett MA, Dumesic DA, Abbott DH. Ovarian hyperandrogenism in adult female rhesus monkeys exposed to prenatal androgen excess. Fertil Steril 2002;77:167–72.PubMed Eisner JR, Barnett MA, Dumesic DA, Abbott DH. Ovarian hyperandrogenism in adult female rhesus monkeys exposed to prenatal androgen excess. Fertil Steril 2002;77:167–72.PubMed
23.
go back to reference Zhou R, Bird IM, Dumesic DA, Abbott DH. Adrenal hyperandrogenism is induced by fetal androgen excess in a rhesus monkey model of polycystic ovary syndrome. J Clin Endocrinol Metab 2005;90:6630–7.PubMed Zhou R, Bird IM, Dumesic DA, Abbott DH. Adrenal hyperandrogenism is induced by fetal androgen excess in a rhesus monkey model of polycystic ovary syndrome. J Clin Endocrinol Metab 2005;90:6630–7.PubMed
24.
go back to reference Padmanabhan V, Manikkam M, Recabarren S, Foster D. Prenatal testosterone excess programs reproductive and metabolic dysfunction in the female. Mol Cell Endocrinol 2006;246:165–74.PubMed Padmanabhan V, Manikkam M, Recabarren S, Foster D. Prenatal testosterone excess programs reproductive and metabolic dysfunction in the female. Mol Cell Endocrinol 2006;246:165–74.PubMed
25.
go back to reference Manikkam M, Steckler T, Padmanabhan V. Developmental programming: prenatal testosterone excess increases ovarian androgen receptors in fetal sheep. 40th Annual Meeting of the Society for the Study of Reproduction, San Antonio, Tx, July 22–25, 2007. Manikkam M, Steckler T, Padmanabhan V. Developmental programming: prenatal testosterone excess increases ovarian androgen receptors in fetal sheep. 40th Annual Meeting of the Society for the Study of Reproduction, San Antonio, Tx, July 22–25, 2007.
26.
go back to reference West C, Foster DL, Evans NP, Robinson J, Padmanabhan V. Intra-follicular activin availability is altered in prenatally-androgenized lambs. Mol Cell Endocrinol 2001;185:51–9.PubMed West C, Foster DL, Evans NP, Robinson J, Padmanabhan V. Intra-follicular activin availability is altered in prenatally-androgenized lambs. Mol Cell Endocrinol 2001;185:51–9.PubMed
27.
go back to reference Abbott DH, Colman RJ, Kemnitz JW, Eisner JR, Dumesic DA. Prenatal androgen excess programs for polycystic ovarian syndrome in female rhesus monkeys. In: Chang J, Heindel JJ, Dunaif A, editors. Polycystic ovary syndrome. New York, New York: Marcel Dekker, Inc; 2002A. p. 119–33. Abbott DH, Colman RJ, Kemnitz JW, Eisner JR, Dumesic DA. Prenatal androgen excess programs for polycystic ovarian syndrome in female rhesus monkeys. In: Chang J, Heindel JJ, Dunaif A, editors. Polycystic ovary syndrome. New York, New York: Marcel Dekker, Inc; 2002A. p. 119–33.
28.
go back to reference Nelson VL, Legro RS, Strauss JF III, McAllister JM. Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol Endocrinol 1999;13:946–57.PubMed Nelson VL, Legro RS, Strauss JF III, McAllister JM. Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol Endocrinol 1999;13:946–57.PubMed
29.
go back to reference Nelson VL, Qin K, Rosenfield RL, Wood JR, Penning TM, Legro RS, et al. The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab 2001;86:5925–33.PubMed Nelson VL, Qin K, Rosenfield RL, Wood JR, Penning TM, Legro RS, et al. The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab 2001;86:5925–33.PubMed
30.
go back to reference Carmina E, Chu MC, Longo RA, Rini GB, Lobo RA. Phenotypic variation in hyperandrogenic women influences the findings of abnormal metabolic and cardiovascular risk parameters. J Clin Endocrinol Metab 2005;90:2545–9.PubMed Carmina E, Chu MC, Longo RA, Rini GB, Lobo RA. Phenotypic variation in hyperandrogenic women influences the findings of abnormal metabolic and cardiovascular risk parameters. J Clin Endocrinol Metab 2005;90:2545–9.PubMed
31.
go back to reference Padmanabhan V, Veiga-Lopez A, Abbott DH, Dumesic DA. Developmental programming of ovarian disruption. In: Gonzalez-Bulnes A, editor. Novel concepts in ovarian endocrinology. Research Signpost, India, 2007 (in press). Padmanabhan V, Veiga-Lopez A, Abbott DH, Dumesic DA. Developmental programming of ovarian disruption. In: Gonzalez-Bulnes A, editor. Novel concepts in ovarian endocrinology. Research Signpost, India, 2007 (in press).
32.
go back to reference Abbott DH, Dumesic DA, Eisner JR, Colman RJ, Kemnitz JW. Insights into the development of polycystic ovary syndrome (PCOS) from studies of prenatally androgenized female rhesus monkeys. Trends Endocrinol Metab 1998;9:62–7. Abbott DH, Dumesic DA, Eisner JR, Colman RJ, Kemnitz JW. Insights into the development of polycystic ovary syndrome (PCOS) from studies of prenatally androgenized female rhesus monkeys. Trends Endocrinol Metab 1998;9:62–7.
33.
go back to reference Manikkam M, Steckler TL, Welch KB, Inskeep EK, Padmanabhan V. Fetal programming: prenatal testosterone treatment leads to follicular persistence/luteal defects. Partial restoration of ovarian function by cyclic progesterone treatment. Endocrinology 2006;147:1997–2007.PubMed Manikkam M, Steckler TL, Welch KB, Inskeep EK, Padmanabhan V. Fetal programming: prenatal testosterone treatment leads to follicular persistence/luteal defects. Partial restoration of ovarian function by cyclic progesterone treatment. Endocrinology 2006;147:1997–2007.PubMed
34.
go back to reference Sullivan SD, Moenter SM. Prenatal androgens alter GABAergic drive to gonadotropin-releasing hormone neurons: implications for a common fertility disorder. Proc Natl Acad Sci USA 2004;101:7129–34.PubMed Sullivan SD, Moenter SM. Prenatal androgens alter GABAergic drive to gonadotropin-releasing hormone neurons: implications for a common fertility disorder. Proc Natl Acad Sci USA 2004;101:7129–34.PubMed
35.
go back to reference Foecking EM, Szabo M, Schwartz NB, Levine JF. Neuroendocrine consequences of prenatal androgen exposure in the female rat: absence of luteinizing hormone surges, suppression of progesterone receptor gene expression, and acceleration of the gonadotropin-releasing hormone pulse generator. Biol Reprod 2005;72:1475–83.PubMed Foecking EM, Szabo M, Schwartz NB, Levine JF. Neuroendocrine consequences of prenatal androgen exposure in the female rat: absence of luteinizing hormone surges, suppression of progesterone receptor gene expression, and acceleration of the gonadotropin-releasing hormone pulse generator. Biol Reprod 2005;72:1475–83.PubMed
36.
go back to reference Abbott DH, Dumesic DA, Eisner JR, Kemnitz JW, Goy RW. The prenatally androgenized female rhesus monkey as a model for PCOS. In: Azziz R, Nestler JE, Dewailly D, editors. Androgen excess disorders in women. Philadelphia: Lippincott-Raven; 1997. p. 369–82. Abbott DH, Dumesic DA, Eisner JR, Kemnitz JW, Goy RW. The prenatally androgenized female rhesus monkey as a model for PCOS. In: Azziz R, Nestler JE, Dewailly D, editors. Androgen excess disorders in women. Philadelphia: Lippincott-Raven; 1997. p. 369–82.
37.
go back to reference Resko JA, Ellinwood WE. Sexual differentiation of the brain of primates. In: Serio M, Motta M, Zanisi M, Martini L, editors. Sexual differentiation: basic and clinical aspects. New York: Raven Press; 1984. p. 169–81. Resko JA, Ellinwood WE. Sexual differentiation of the brain of primates. In: Serio M, Motta M, Zanisi M, Martini L, editors. Sexual differentiation: basic and clinical aspects. New York: Raven Press; 1984. p. 169–81.
38.
go back to reference Resko JA, Buhl AE, Phoenix CH. Treatment of pregnant rhesus macaques with testosterone propionate: observations on its fate in the fetus. Biol Reprod 1987;37:1185–91.PubMed Resko JA, Buhl AE, Phoenix CH. Treatment of pregnant rhesus macaques with testosterone propionate: observations on its fate in the fetus. Biol Reprod 1987;37:1185–91.PubMed
39.
go back to reference Abbott DH, Bruns CM, Barnett DK, Dumesic DA. Fetal programming of polycystic ovary syndrome. In: Kovacs G, Norman R, editors. Polycystic ovary syndrome, 2nd ed. Cambridge: Cambridge University Press; 2007. p. 262–87. Abbott DH, Bruns CM, Barnett DK, Dumesic DA. Fetal programming of polycystic ovary syndrome. In: Kovacs G, Norman R, editors. Polycystic ovary syndrome, 2nd ed. Cambridge: Cambridge University Press; 2007. p. 262–87.
40.
go back to reference Foster DL, Jackson LM, Padmanabhan V. Programming of GnRH feedback controls timing puberty and adult reproductive activity. Mol Cell Endocrinology 2006;254–255:109–19. Foster DL, Jackson LM, Padmanabhan V. Programming of GnRH feedback controls timing puberty and adult reproductive activity. Mol Cell Endocrinology 2006;254–255:109–19.
41.
go back to reference Hughesdon PE. Morphology and morphogenesis of the Stein–Leventhal ovary and of so-called “hyperthecosis”. Obstet Gynecol Survey 1982;37:59–77. Hughesdon PE. Morphology and morphogenesis of the Stein–Leventhal ovary and of so-called “hyperthecosis”. Obstet Gynecol Survey 1982;37:59–77.
42.
go back to reference Maciel GA, Baracat EC, Benda JA, Markham SM, Hensinger K, Chang RJ, et al. Stockpiling of transitional and classic primary follicles in ovaries of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004;89:5321–7.PubMed Maciel GA, Baracat EC, Benda JA, Markham SM, Hensinger K, Chang RJ, et al. Stockpiling of transitional and classic primary follicles in ovaries of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004;89:5321–7.PubMed
43.
go back to reference Webber LJ, Stubbs S, Stark J, Trew GH, Margara R, Hardy K, et al. Formation and early development of follicles in the polycystic ovary. Lancet 2003;362:1017–21.PubMed Webber LJ, Stubbs S, Stark J, Trew GH, Margara R, Hardy K, et al. Formation and early development of follicles in the polycystic ovary. Lancet 2003;362:1017–21.PubMed
44.
go back to reference Vendola KA, Zhou J, Adesanya OO, Weil SJ, Bondy CA. Androgens stimulate early stages of follicle growth in the primate ovarian. J Clin Invest 1998;101:2622–9.PubMed Vendola KA, Zhou J, Adesanya OO, Weil SJ, Bondy CA. Androgens stimulate early stages of follicle growth in the primate ovarian. J Clin Invest 1998;101:2622–9.PubMed
45.
go back to reference Weil SJ, Vendola K, Zhou J, Adesanya OO, Wang J, Okafor J, et al. Androgen receptor gene expression in the primate ovary: cellular localization, regulation, and functional correlations. J Clin Endocrinol Metab 1998;83:2479–85.PubMed Weil SJ, Vendola K, Zhou J, Adesanya OO, Wang J, Okafor J, et al. Androgen receptor gene expression in the primate ovary: cellular localization, regulation, and functional correlations. J Clin Endocrinol Metab 1998;83:2479–85.PubMed
46.
go back to reference Weil S, Vendola K, Zhou J, Bondy CA. Androgen and follicle-stimulating hormone interactions in primate ovarian follicle development. J Clin Endocrinol Metab 1999;84:2951–6.PubMed Weil S, Vendola K, Zhou J, Bondy CA. Androgen and follicle-stimulating hormone interactions in primate ovarian follicle development. J Clin Endocrinol Metab 1999;84:2951–6.PubMed
47.
go back to reference Vendola K, Zhou J, Wang J, Bondy CA. Androgens promote insulin-like growth factor-I and insulin-like growth factor-I receptor gene expression in the primate ovary. Hum Reprod 1999A;14:2328–32.PubMed Vendola K, Zhou J, Wang J, Bondy CA. Androgens promote insulin-like growth factor-I and insulin-like growth factor-I receptor gene expression in the primate ovary. Hum Reprod 1999A;14:2328–32.PubMed
48.
go back to reference Vendola K, Zhou J, Wang J, Famuyiwa OA, Bievre M, Bondy CA. Androgens promote oocyte insulin-like growth factor I expression and initiation of follicle development in the primate ovary. Biol Reprod 1999B;61:353–7.PubMed Vendola K, Zhou J, Wang J, Famuyiwa OA, Bievre M, Bondy CA. Androgens promote oocyte insulin-like growth factor I expression and initiation of follicle development in the primate ovary. Biol Reprod 1999B;61:353–7.PubMed
49.
go back to reference Steckler T, Wang J, Bartol FF, Roy SK, Padmanabhan V. Fetal programming: prenatal testosterone treatment causes intrauterine growth retardation, reduces ovarian reserve and increases ovarian follicular recruitment. Endocrinology 2005;146:3185–93.PubMed Steckler T, Wang J, Bartol FF, Roy SK, Padmanabhan V. Fetal programming: prenatal testosterone treatment causes intrauterine growth retardation, reduces ovarian reserve and increases ovarian follicular recruitment. Endocrinology 2005;146:3185–93.PubMed
50.
go back to reference Gougeon A. Regulation of ovarian follicular development in primates: facts and hypothesis. Endo Rev 1996;17:121–55. Gougeon A. Regulation of ovarian follicular development in primates: facts and hypothesis. Endo Rev 1996;17:121–55.
51.
go back to reference Jakimiuk AJ, Weitsman SR, Brzechffa PR, Magoffin DA. Aromatase mRNA expression in individual follicles from polycystic ovaries. Mol Hum Reprod 1998;4:1–8.PubMed Jakimiuk AJ, Weitsman SR, Brzechffa PR, Magoffin DA. Aromatase mRNA expression in individual follicles from polycystic ovaries. Mol Hum Reprod 1998;4:1–8.PubMed
52.
go back to reference Padmanabhan V, Christman GM, Randolph JF, Kelch RP, Marshall JC, Beitins IZ. Dynamics of bioactive FSH secretion in women with polycystic ovarian syndrome (PCOS): effects of estradiol and progesterone. Fertility and Sterility 2001;75:881–8.PubMed Padmanabhan V, Christman GM, Randolph JF, Kelch RP, Marshall JC, Beitins IZ. Dynamics of bioactive FSH secretion in women with polycystic ovarian syndrome (PCOS): effects of estradiol and progesterone. Fertility and Sterility 2001;75:881–8.PubMed
53.
go back to reference Erickson GF, Magoffin DA, Garzo VG, Cheung AP, Chang RJ. Granulosa cells of polycystic ovaries: are they normal or abnormal? Hum Reprod 1992;7:293–99.PubMed Erickson GF, Magoffin DA, Garzo VG, Cheung AP, Chang RJ. Granulosa cells of polycystic ovaries: are they normal or abnormal? Hum Reprod 1992;7:293–99.PubMed
54.
go back to reference Mason HD, Willis DS, Beard RW, Winston RM, Margara R, Franks S. Estradiol production by granulosa cells of normal and polycystic ovaries: relationship to menstrual cycle history and concentrations of gonadotropins and sex steroids in follicular fluid. J Clin Endocrinol Metab 1994;79:1355–60.PubMed Mason HD, Willis DS, Beard RW, Winston RM, Margara R, Franks S. Estradiol production by granulosa cells of normal and polycystic ovaries: relationship to menstrual cycle history and concentrations of gonadotropins and sex steroids in follicular fluid. J Clin Endocrinol Metab 1994;79:1355–60.PubMed
55.
go back to reference Jonard S, Robert Y, Cortet-Rudelli C, Pigny P, Decanter C, Dewailly D. Ultrasound examination of polycystic ovaries: is it worth counting the follicles? Hum Reprod 2003;18:598–603.PubMed Jonard S, Robert Y, Cortet-Rudelli C, Pigny P, Decanter C, Dewailly D. Ultrasound examination of polycystic ovaries: is it worth counting the follicles? Hum Reprod 2003;18:598–603.PubMed
56.
go back to reference Jakimiuk AJ, Weitsman SR, Magoffin DA. 5α-Reductase activity in women with polycystic ovary syndrome. J Clin Endocrinol Metab 1999;84:2414–8.PubMed Jakimiuk AJ, Weitsman SR, Magoffin DA. 5α-Reductase activity in women with polycystic ovary syndrome. J Clin Endocrinol Metab 1999;84:2414–8.PubMed
57.
go back to reference Agarwal SK, Judd HL, Magoffin DA. A mechanism for the suppression of estrogen production in polycystic ovary syndrome. J Clin Endocrinol Metab 1996;81:3686–91.PubMed Agarwal SK, Judd HL, Magoffin DA. A mechanism for the suppression of estrogen production in polycystic ovary syndrome. J Clin Endocrinol Metab 1996;81:3686–91.PubMed
58.
go back to reference Dumesic DA, Schramm RD, Bird IM, Peterson E, Paprocki AM, Zhou R, et al. Reduced intrafollicular androstenedione and estradiol levels in early-treated prenatally androgenized female rhesus monkeys receiving FSH therapy for in vitro fertilization. Biol Reprod 2003;69:1213–121. Dumesic DA, Schramm RD, Bird IM, Peterson E, Paprocki AM, Zhou R, et al. Reduced intrafollicular androstenedione and estradiol levels in early-treated prenatally androgenized female rhesus monkeys receiving FSH therapy for in vitro fertilization. Biol Reprod 2003;69:1213–121.
59.
go back to reference Zeleznik AJ, Little-Ihrig L, Ramasawamy S. Administration of dihydrotestosterone to rhesus monkeys inhibits gonadotropin-stimulated ovarian steroidogenesis. J Clin Endocrinol Metab 2004;89:860–6.PubMed Zeleznik AJ, Little-Ihrig L, Ramasawamy S. Administration of dihydrotestosterone to rhesus monkeys inhibits gonadotropin-stimulated ovarian steroidogenesis. J Clin Endocrinol Metab 2004;89:860–6.PubMed
60.
go back to reference Pradeep PK, Li X, Peegel H, Menon KMJ. Dihydrotestosterone inhibits granulosa cell proliferation by decreasing the cyclin D2 mRNA expression and cell cycle arrest at G1 phase. Endocrinology 2002:143:2930–5.PubMed Pradeep PK, Li X, Peegel H, Menon KMJ. Dihydrotestosterone inhibits granulosa cell proliferation by decreasing the cyclin D2 mRNA expression and cell cycle arrest at G1 phase. Endocrinology 2002:143:2930–5.PubMed
61.
go back to reference Franks S, Gilling-Smith C, Watson H, Willis D. Insulin action in the normal and polycystic ovary. Endocrinol Metab Clin North Am 1999;28:361–78.PubMed Franks S, Gilling-Smith C, Watson H, Willis D. Insulin action in the normal and polycystic ovary. Endocrinol Metab Clin North Am 1999;28:361–78.PubMed
62.
go back to reference Legro RS, Bentley-Lewis R, Driscoll D, Wang SC, Dunaif A. Insulin resistance in the sisters of women with polycystic ovary syndrome: association with hyperandrogenemia rather than menstrual irregularity. J Clin Endocrinol Metab 2002;87:2128–33.PubMed Legro RS, Bentley-Lewis R, Driscoll D, Wang SC, Dunaif A. Insulin resistance in the sisters of women with polycystic ovary syndrome: association with hyperandrogenemia rather than menstrual irregularity. J Clin Endocrinol Metab 2002;87:2128–33.PubMed
63.
go back to reference Clark AM, Thornley B, Tomlinson L, Galletley C, Norman RJ. Weight loss in obese infertile women results in improvement in reproductive outcome for all forms of fertility treatment. Hum Reprod 1998;13:1502–5.PubMed Clark AM, Thornley B, Tomlinson L, Galletley C, Norman RJ. Weight loss in obese infertile women results in improvement in reproductive outcome for all forms of fertility treatment. Hum Reprod 1998;13:1502–5.PubMed
64.
go back to reference Willis D, Franks S. Insulin action in human granulosa cells from normal and polycystic ovaries is mediated by the insulin receptor and not the type-1 insulin-like growth factor receptor. J Clin Endocrinol Metab 1995;80:3788–90.PubMed Willis D, Franks S. Insulin action in human granulosa cells from normal and polycystic ovaries is mediated by the insulin receptor and not the type-1 insulin-like growth factor receptor. J Clin Endocrinol Metab 1995;80:3788–90.PubMed
65.
go back to reference Willis D, Mason H, Gilling-Smith C, Franks, S. Modulation by insulin of follicle-stimulating hormone and luteinizing hormone actions in human granulosa cells of normal and polycystic ovaries. J Clin Endocrinol Metab 1996;81:302–9.PubMed Willis D, Mason H, Gilling-Smith C, Franks, S. Modulation by insulin of follicle-stimulating hormone and luteinizing hormone actions in human granulosa cells of normal and polycystic ovaries. J Clin Endocrinol Metab 1996;81:302–9.PubMed
66.
go back to reference Willis D, Watson H, Mason H, Galea R, Brincat M, Franks S. Premature response to LH of granulosa cells from anovulatory women with polycystic ovaries: relevance to mechanism of anovulation. J Clin Endocrinol Metab 1998;83:3984–91.PubMed Willis D, Watson H, Mason H, Galea R, Brincat M, Franks S. Premature response to LH of granulosa cells from anovulatory women with polycystic ovaries: relevance to mechanism of anovulation. J Clin Endocrinol Metab 1998;83:3984–91.PubMed
67.
go back to reference Jakimiuk AJ, Weitsman SR, Navab A, Magoffin DA. Luteinizing hormone receptor, steroidogenesis acute regulatory protein, and steroidogenic enzyme messenger ribonucleic acids are overproduced in thecal and granulosa cells from polycystic ovaries. J Clin Metab Endocrinol 2001;86:1318–23. Jakimiuk AJ, Weitsman SR, Navab A, Magoffin DA. Luteinizing hormone receptor, steroidogenesis acute regulatory protein, and steroidogenic enzyme messenger ribonucleic acids are overproduced in thecal and granulosa cells from polycystic ovaries. J Clin Metab Endocrinol 2001;86:1318–23.
68.
go back to reference Franks S, Mason H, Willis D. Follicular dynamics in the polycystic ovary syndrome. Mol Cell Endocrinol 2000;163:49–52.PubMed Franks S, Mason H, Willis D. Follicular dynamics in the polycystic ovary syndrome. Mol Cell Endocrinol 2000;163:49–52.PubMed
69.
go back to reference Dumesic DA, Schramm RD, Peterson E, Paprocki AM, Zhou R, Abbott DH. Impaired developmental competence of oocytes in adult prenatally androgenized female rhesus monkeys undergoing gonadotropin stimulation for in vitro fertilization. J Clin Endocrinol Metab 2002;87:1111–9.PubMed Dumesic DA, Schramm RD, Peterson E, Paprocki AM, Zhou R, Abbott DH. Impaired developmental competence of oocytes in adult prenatally androgenized female rhesus monkeys undergoing gonadotropin stimulation for in vitro fertilization. J Clin Endocrinol Metab 2002;87:1111–9.PubMed
70.
go back to reference Dunaif A, Scott D, Finegood D, Quintana B, Whitcomb R. The insulin-sensitizing agent troglitazone improves metabolic and reproductive abnormalities in the polycystic ovary syndrome. J Clin Endocrinol Metab 1996;81:3299–306.PubMed Dunaif A, Scott D, Finegood D, Quintana B, Whitcomb R. The insulin-sensitizing agent troglitazone improves metabolic and reproductive abnormalities in the polycystic ovary syndrome. J Clin Endocrinol Metab 1996;81:3299–306.PubMed
71.
go back to reference Norman RJ, Kidson WJ, Cuneo RC, Zacharin MR. Metformin and intervention in polycystic ovary syndrome. MJA 2001;174:580–3.PubMed Norman RJ, Kidson WJ, Cuneo RC, Zacharin MR. Metformin and intervention in polycystic ovary syndrome. MJA 2001;174:580–3.PubMed
72.
go back to reference Lord JM, Flight IHK, Norman RJ. Metformin in polycystic ovary syndrome: systematic review and meta-analysis. BMJ 2003;327:1–6. Lord JM, Flight IHK, Norman RJ. Metformin in polycystic ovary syndrome: systematic review and meta-analysis. BMJ 2003;327:1–6.
73.
go back to reference Zhou R, Bruns CM, Bird IM, Kemnitz JW, Goodfriend TL, Dumesic DA, et al. Pioglitazone improves insulin action and normalizes menstrual cycles in a nonhuman primate model of polycystic ovary syndrome. Reprod Toxicol 2007;23:438–48.PubMed Zhou R, Bruns CM, Bird IM, Kemnitz JW, Goodfriend TL, Dumesic DA, et al. Pioglitazone improves insulin action and normalizes menstrual cycles in a nonhuman primate model of polycystic ovary syndrome. Reprod Toxicol 2007;23:438–48.PubMed
74.
go back to reference Sadatsuki M, Tsutsumi O, Yamada R, Muramatsu M, Taketani Y. Local regulatory effects of activin A and follistatin on meiotic maturation of rat oocytes. Biochem Biophys Res Commun 1993;196:388–95.PubMed Sadatsuki M, Tsutsumi O, Yamada R, Muramatsu M, Taketani Y. Local regulatory effects of activin A and follistatin on meiotic maturation of rat oocytes. Biochem Biophys Res Commun 1993;196:388–95.PubMed
75.
go back to reference Knight PG, Glister C. Potential local regulatory functions of inhibins, activins and follistatin in the ovary. Reproduction 2001;121:503–12.PubMed Knight PG, Glister C. Potential local regulatory functions of inhibins, activins and follistatin in the ovary. Reproduction 2001;121:503–12.PubMed
76.
go back to reference Schneyer AL, Fujiwara T, Fox J, Welt CK, Adams J, Messerlian GM, et al. Dynamic changes in the intrafollicular inhibin/activin/follistatin axis during human follicular development: relationship to circulating hormone levels. J Clin Endocrinol Metab 2000;85:3319–30.PubMed Schneyer AL, Fujiwara T, Fox J, Welt CK, Adams J, Messerlian GM, et al. Dynamic changes in the intrafollicular inhibin/activin/follistatin axis during human follicular development: relationship to circulating hormone levels. J Clin Endocrinol Metab 2000;85:3319–30.PubMed
77.
go back to reference Lambert-Messerlian G, Taylor A, Leykin L, Isaacson K, Toth T, Chang Y, et al. Characterization of intrafollicular steroid hormones, inhibin, and follistatin in women with and without polycystic ovarian syndrome following gonadotropin stimulation. Biol Reprod 1997;57:1211–6.PubMed Lambert-Messerlian G, Taylor A, Leykin L, Isaacson K, Toth T, Chang Y, et al. Characterization of intrafollicular steroid hormones, inhibin, and follistatin in women with and without polycystic ovarian syndrome following gonadotropin stimulation. Biol Reprod 1997;57:1211–6.PubMed
78.
go back to reference Magoffin DA, Jakimiuk AJ. Inhibin A, inhibin B and activin concentrations in follicular fluid from women with polycystic ovary syndrome. Hum Reprod 1998;13:2693–8.PubMed Magoffin DA, Jakimiuk AJ. Inhibin A, inhibin B and activin concentrations in follicular fluid from women with polycystic ovary syndrome. Hum Reprod 1998;13:2693–8.PubMed
79.
go back to reference Welt CK, Taylor AE, Fox J, Messerlian GM, Adams JM, Schneyer AL. Follicular arrest in polycystic ovary syndrome is associated with deficient inhibin A and B biosynthesis. J Clin Endocrinol Metab 2005;90:5582–7.PubMed Welt CK, Taylor AE, Fox J, Messerlian GM, Adams JM, Schneyer AL. Follicular arrest in polycystic ovary syndrome is associated with deficient inhibin A and B biosynthesis. J Clin Endocrinol Metab 2005;90:5582–7.PubMed
80.
go back to reference Norman RJ, Milner CR, Groome NP, Robertson DM. Circulating follistatin concentrations are higher and activin levels are lower in polycystic ovarian syndrome. Hum Reprod 2001;16:668–72.PubMed Norman RJ, Milner CR, Groome NP, Robertson DM. Circulating follistatin concentrations are higher and activin levels are lower in polycystic ovarian syndrome. Hum Reprod 2001;16:668–72.PubMed
81.
go back to reference Eldar-Geva T, Spitz IM, Groome NP, Margalioth EJ, Homberg R. Follistatin and activin A serum concentrations in obese and non-obese patients with polycystic ovary syndrome. Hum Reprod 2001;16:2552–6.PubMed Eldar-Geva T, Spitz IM, Groome NP, Margalioth EJ, Homberg R. Follistatin and activin A serum concentrations in obese and non-obese patients with polycystic ovary syndrome. Hum Reprod 2001;16:2552–6.PubMed
82.
go back to reference Kipp JL, Kilen SM, Bristol-Gould S, Woodruff TK, Mayo KE. Neonatal exposure to estrogens suppresses activin expression and signaling in the mouse ovary. Endocrinology 2007;148:1968–76.PubMed Kipp JL, Kilen SM, Bristol-Gould S, Woodruff TK, Mayo KE. Neonatal exposure to estrogens suppresses activin expression and signaling in the mouse ovary. Endocrinology 2007;148:1968–76.PubMed
83.
go back to reference Lobo RA. The syndrome of hyperandrogenic chronic anovulation. In: Mishell DR Jr, Davajan V, Lobo RA, editors. Infertility, contraception and reproductive endocrinology, 3rd ed. Cambridge: Blackwell Scientific Publications; 1991. p. 447–87. Lobo RA. The syndrome of hyperandrogenic chronic anovulation. In: Mishell DR Jr, Davajan V, Lobo RA, editors. Infertility, contraception and reproductive endocrinology, 3rd ed. Cambridge: Blackwell Scientific Publications; 1991. p. 447–87.
84.
go back to reference Waldstreicher J, Santoro NF, Hall JE, Filicori M, Crowley WF Jr. Hyperfunction of the hypothalamic–pituitary axis in women with polycystic ovarian disease: indirect evidence for partial gonadotroph desensitization. J Clin Endocrinol Metab 1988;66:165–72.PubMed Waldstreicher J, Santoro NF, Hall JE, Filicori M, Crowley WF Jr. Hyperfunction of the hypothalamic–pituitary axis in women with polycystic ovarian disease: indirect evidence for partial gonadotroph desensitization. J Clin Endocrinol Metab 1988;66:165–72.PubMed
85.
go back to reference Rosenfield RL, Barnes RB, Cara JF, Lucky AW. Dysregulation of cytochrome P450c17a as the cause of polycystic ovarian syndrome. Fertil Steril 1990;53:785–91.PubMed Rosenfield RL, Barnes RB, Cara JF, Lucky AW. Dysregulation of cytochrome P450c17a as the cause of polycystic ovarian syndrome. Fertil Steril 1990;53:785–91.PubMed
86.
go back to reference Marshall J, Eagleson C, McCartney C. Neuroendocrine aspects of polycystic ovary syndrome. Endocrinol Metab Clin North Am 1999;28:295–324.PubMed Marshall J, Eagleson C, McCartney C. Neuroendocrine aspects of polycystic ovary syndrome. Endocrinol Metab Clin North Am 1999;28:295–324.PubMed
87.
go back to reference Chhabra S, McCartney CR, Yoo RY, Eagleson CA, Chang RJ, Marshall JC. Progesterone inhibition of the hypothalamic gonadotropin-releasing hormone pulse generator: evidence for varied effects in hyperandrogenic adolescent girls. J Clin Endocrinol Metab 2005;90:2810–5.PubMed Chhabra S, McCartney CR, Yoo RY, Eagleson CA, Chang RJ, Marshall JC. Progesterone inhibition of the hypothalamic gonadotropin-releasing hormone pulse generator: evidence for varied effects in hyperandrogenic adolescent girls. J Clin Endocrinol Metab 2005;90:2810–5.PubMed
88.
go back to reference Eagleson CA, Gingrich MB, Pastor CL, Arora TK, Burt CM, Evans WS, et al. Polycystic ovarian syndrome: evidence that flutamide restores sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab 2000;85:4047–52.PubMed Eagleson CA, Gingrich MB, Pastor CL, Arora TK, Burt CM, Evans WS, et al. Polycystic ovarian syndrome: evidence that flutamide restores sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab 2000;85:4047–52.PubMed
89.
go back to reference Wood RI, Mehta V, Herbosa CG, Foster DL. Prenatal testosterone differentially masculinizes tonic and surge modes of luteinizing hormone secretion in the developing sheep. Neuroendocrinology 1995;62:238–47.PubMed Wood RI, Mehta V, Herbosa CG, Foster DL. Prenatal testosterone differentially masculinizes tonic and surge modes of luteinizing hormone secretion in the developing sheep. Neuroendocrinology 1995;62:238–47.PubMed
90.
go back to reference Foster DL, Padmanabhan V, Wood RI, Robinson JE. Sexual differentiation of the neuroendocrine control of gonadotrophin secretion: concepts derived from sheep models. Reprod Suppl 2002;59:83–99.PubMed Foster DL, Padmanabhan V, Wood RI, Robinson JE. Sexual differentiation of the neuroendocrine control of gonadotrophin secretion: concepts derived from sheep models. Reprod Suppl 2002;59:83–99.PubMed
91.
go back to reference Buhl AE, Norman RL, Resko JA. Sex differences in estrogen-induced gonadotropin release in hamsters. Biol Reprod 1978;18:592–7.PubMed Buhl AE, Norman RL, Resko JA. Sex differences in estrogen-induced gonadotropin release in hamsters. Biol Reprod 1978;18:592–7.PubMed
92.
go back to reference Levine JE, Terasawa E, Hoffman SM, Dobbert MJW, Foecking EM, Abbott DH. Luteinizing hormone (LH) hypersecretion and diminished LH responses to RU486 in a nonhuman primate model for polycystic ovary syndrome (PCOS). Abstract P1–85. 87th Annual Meeting of the Endocrine Society, San Diego, CA, June 4–7, 2005. Levine JE, Terasawa E, Hoffman SM, Dobbert MJW, Foecking EM, Abbott DH. Luteinizing hormone (LH) hypersecretion and diminished LH responses to RU486 in a nonhuman primate model for polycystic ovary syndrome (PCOS). Abstract P1–85. 87th Annual Meeting of the Endocrine Society, San Diego, CA, June 4–7, 2005.
93.
go back to reference Flak J, Herkimer C, Han D, Padmanabhan V. Fetal programming: Prenatal testosterone treatment, by its androgenic action, programs adult hypergonadotropism partly by increasing pituitary sensitivity to GnRH. Abstract 143. Biol Rep Special Issue, 2005, p. 113. Flak J, Herkimer C, Han D, Padmanabhan V. Fetal programming: Prenatal testosterone treatment, by its androgenic action, programs adult hypergonadotropism partly by increasing pituitary sensitivity to GnRH. Abstract 143. Biol Rep Special Issue, 2005, p. 113.
94.
go back to reference Esinler I, Bayar U, Bozdag G, Yarali H. Outcome of intracytoplasmic sperm injection in patients with polycystic ovary syndrome or isolated polycystic ovaries. Fertil Steril 2005;84:932–7.PubMed Esinler I, Bayar U, Bozdag G, Yarali H. Outcome of intracytoplasmic sperm injection in patients with polycystic ovary syndrome or isolated polycystic ovaries. Fertil Steril 2005;84:932–7.PubMed
95.
go back to reference Heijnen EMEW, Eijkemans MJC, Hughes EG, Laven JSE, Macklon NS, Fauser BCJM. A meta-analysis of outcomes of conventional IVF in women with polycystic ovary syndrome. Human Reprod Update 2006;12:13–1. Heijnen EMEW, Eijkemans MJC, Hughes EG, Laven JSE, Macklon NS, Fauser BCJM. A meta-analysis of outcomes of conventional IVF in women with polycystic ovary syndrome. Human Reprod Update 2006;12:13–1.
96.
go back to reference Lu XE, Yang XF, Li MG, Zhou FZ, Zhu YM, Huang HF. Outcome of in vitro fertilization–embryo transfer in treatment of polycystic ovarian syndrome. Zhejiang Da Xue Xue Bao Yi Xue Ban 2006;35:319–22.PubMed Lu XE, Yang XF, Li MG, Zhou FZ, Zhu YM, Huang HF. Outcome of in vitro fertilization–embryo transfer in treatment of polycystic ovarian syndrome. Zhejiang Da Xue Xue Bao Yi Xue Ban 2006;35:319–22.PubMed
97.
go back to reference Ludwig M, Finas DF, Al-Hasani S, Diedrich K, Ortmann O. Oocyte quality and treatment outcome in intracytoplasmic sperm injection cycles of polycystic ovarian syndrome patients. Hum Reprod 1999;14:354–8.PubMed Ludwig M, Finas DF, Al-Hasani S, Diedrich K, Ortmann O. Oocyte quality and treatment outcome in intracytoplasmic sperm injection cycles of polycystic ovarian syndrome patients. Hum Reprod 1999;14:354–8.PubMed
98.
go back to reference Hwang JL, Seow KM, Lin YH, Hsieh BC, Huang LW, Chen HJ, et al. IVF versus ICSI in sibling oocytes from patients with polycystic ovarian syndrome: a randomized controlled trial. Hum Reprod 2005;20:1261–5.PubMed Hwang JL, Seow KM, Lin YH, Hsieh BC, Huang LW, Chen HJ, et al. IVF versus ICSI in sibling oocytes from patients with polycystic ovarian syndrome: a randomized controlled trial. Hum Reprod 2005;20:1261–5.PubMed
99.
go back to reference Sengoku K, Tamate K, Takuma N, Yoshida T, Goishi K, Ishikawa M. The chromosomal normality of unfertilized oocytes from patients with polycystic ovarian syndrome. Hum Reprod 1997;12:474–7.PubMed Sengoku K, Tamate K, Takuma N, Yoshida T, Goishi K, Ishikawa M. The chromosomal normality of unfertilized oocytes from patients with polycystic ovarian syndrome. Hum Reprod 1997;12:474–7.PubMed
100.
go back to reference Kodama H, Fukuda J, Karube H, Matsui T, Shimizu Y, Tanaka T. High incidence of embryo transfer cancellations in patients with polycystic ovary syndrome. Hum Reprod 1995;10:1962–7.PubMed Kodama H, Fukuda J, Karube H, Matsui T, Shimizu Y, Tanaka T. High incidence of embryo transfer cancellations in patients with polycystic ovary syndrome. Hum Reprod 1995;10:1962–7.PubMed
101.
go back to reference Cano F, Garcia-Velasco JA, Millet A, Remohi J, Simon C, Pellicer A. Oocyte quality in polycystic ovaries revisited: identification of a particular subgroup of women. J Assist Reprod Genet 1997;14:254–60.PubMed Cano F, Garcia-Velasco JA, Millet A, Remohi J, Simon C, Pellicer A. Oocyte quality in polycystic ovaries revisited: identification of a particular subgroup of women. J Assist Reprod Genet 1997;14:254–60.PubMed
102.
go back to reference Foong SC, Abbott DH, Zschunke MA, Lesnick TG, Phy JL, Dumesic DA. Follicle luteinization in hyperandrogenic follicles of polycystic ovary syndrome (PCOS) patients undergoing gonadotropin therapy for in vitro fertilization. J Clin Endocrinol Metab 2006;91:2327–33.PubMed Foong SC, Abbott DH, Zschunke MA, Lesnick TG, Phy JL, Dumesic DA. Follicle luteinization in hyperandrogenic follicles of polycystic ovary syndrome (PCOS) patients undergoing gonadotropin therapy for in vitro fertilization. J Clin Endocrinol Metab 2006;91:2327–33.PubMed
103.
go back to reference Wood JR, Dumesic DA, Abbott DH, Strauss JF. Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis. J Clin Endocrinol Metab 2007;92:705–13.PubMed Wood JR, Dumesic DA, Abbott DH, Strauss JF. Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis. J Clin Endocrinol Metab 2007;92:705–13.PubMed
104.
go back to reference Tesarik J, Mendoza C. Nongenomic effects of 17β-estradiol on maturing human oocytes: relationship to oocyte developmental potential. J Clin Endocrinol Metab 1995;80:1438–43.PubMed Tesarik J, Mendoza C. Nongenomic effects of 17β-estradiol on maturing human oocytes: relationship to oocyte developmental potential. J Clin Endocrinol Metab 1995;80:1438–43.PubMed
105.
go back to reference Zheng P, Wei S, Bavister BD, Yang J, Ding C, Ji W. 17β-estradiol and progesterone improve in-vitro cytoplasmic maturation of oocytes from unstimulated prepubertal and adult rhesus monkeys. Hum Reprod 2003;18:2137–44.PubMed Zheng P, Wei S, Bavister BD, Yang J, Ding C, Ji W. 17β-estradiol and progesterone improve in-vitro cytoplasmic maturation of oocytes from unstimulated prepubertal and adult rhesus monkeys. Hum Reprod 2003;18:2137–44.PubMed
106.
go back to reference Kreiner D, Liu HC, Itskovitz J, Veeck L, Rosenwaks Z. Follicular fluid estradiol and progesterone are markers of preovulatory oocyte quality. Fertil Steril 1987;48:991–4.PubMed Kreiner D, Liu HC, Itskovitz J, Veeck L, Rosenwaks Z. Follicular fluid estradiol and progesterone are markers of preovulatory oocyte quality. Fertil Steril 1987;48:991–4.PubMed
107.
go back to reference Eppig JJ, O’Brien MJ, Pendola FL, Watanabe S. Factors affecting the developmental competence of mouse oocytes grown in vitro: follicle stimulating hormone and insulin. Biol Reprod 1998;59:1445–53.PubMed Eppig JJ, O’Brien MJ, Pendola FL, Watanabe S. Factors affecting the developmental competence of mouse oocytes grown in vitro: follicle stimulating hormone and insulin. Biol Reprod 1998;59:1445–53.PubMed
108.
go back to reference Foong SC, Abbott DH, Lesnick TG, Session DR, Walker DL, Dumesic DA. Diminished intrafollicular estradiol (E2) levels in women with reduced ovarian responsiveness to recombinant human follicle stimulating hormone (FSH) therapy for in vitro fertilization (IVF). Fertil Steril 2005;83:1377–83.PubMed Foong SC, Abbott DH, Lesnick TG, Session DR, Walker DL, Dumesic DA. Diminished intrafollicular estradiol (E2) levels in women with reduced ovarian responsiveness to recombinant human follicle stimulating hormone (FSH) therapy for in vitro fertilization (IVF). Fertil Steril 2005;83:1377–83.PubMed
109.
go back to reference Hillier SG, Whitelaw PF, Smyth CD. Follicular oestrogen synthesis: the ‘two-cell, two-gonadotropin’ model revisited. Mol Cell Endocrinol 1994;100:51–4.PubMed Hillier SG, Whitelaw PF, Smyth CD. Follicular oestrogen synthesis: the ‘two-cell, two-gonadotropin’ model revisited. Mol Cell Endocrinol 1994;100:51–4.PubMed
110.
go back to reference Tesarik J, Mendoza C. Direct non-genomic effects of follicular steroids on maturing human oocytes: oestrogen versus androgen antagonism. Hum Reprod Update 1997;3:95–100.PubMed Tesarik J, Mendoza C. Direct non-genomic effects of follicular steroids on maturing human oocytes: oestrogen versus androgen antagonism. Hum Reprod Update 1997;3:95–100.PubMed
111.
go back to reference Yding Andersen C. Characteristics of human follicular fluid associated with successful conception after in vitro fertilization. J Clin Endocrinol Metab 1993;77:1227–34. Yding Andersen C. Characteristics of human follicular fluid associated with successful conception after in vitro fertilization. J Clin Endocrinol Metab 1993;77:1227–34.
112.
go back to reference Steckler TL, Robertts EK, Doop DD, Lee TM, Padmanabhan V. Developmental programming in sheep: administration of testosterone during 60–90 days of pregnancy reduces breeding success and pregnancy outcome. Theriogenology 2007;67:459–67.PubMed Steckler TL, Robertts EK, Doop DD, Lee TM, Padmanabhan V. Developmental programming in sheep: administration of testosterone during 60–90 days of pregnancy reduces breeding success and pregnancy outcome. Theriogenology 2007;67:459–67.PubMed
113.
go back to reference Wild RA. Hyperandrogenism: implications for cardiovascular, endometrial, and breast disease. In: Adashi EY, Rock JA, Rosenwaks Z, editors. Reproductive endocrinology, surgery, and technology. Philadelphia: Lippincott-Raven Publishers; 1996. p. 1617–34. Wild RA. Hyperandrogenism: implications for cardiovascular, endometrial, and breast disease. In: Adashi EY, Rock JA, Rosenwaks Z, editors. Reproductive endocrinology, surgery, and technology. Philadelphia: Lippincott-Raven Publishers; 1996. p. 1617–34.
114.
go back to reference Dunaif A. Insulin resistance and the polycystic ovarian syndrome: mechanism and implications for pathogenesis. Endocr Rev 1997;18:774–800.PubMed Dunaif A. Insulin resistance and the polycystic ovarian syndrome: mechanism and implications for pathogenesis. Endocr Rev 1997;18:774–800.PubMed
115.
go back to reference Holte J, Bergh T, Berne C, Wide L, Lithell H. Restored insulin sensitivity but persistently increased early insulin secretion after weight loss in obese women with polycystic ovary syndrome. J Clin Endocrinol Metab 1995;80:2586–93.PubMed Holte J, Bergh T, Berne C, Wide L, Lithell H. Restored insulin sensitivity but persistently increased early insulin secretion after weight loss in obese women with polycystic ovary syndrome. J Clin Endocrinol Metab 1995;80:2586–93.PubMed
116.
go back to reference Waterworth DM, Bennett ST, Gharani N, McCarthy M, Hague S, Batty S, et al. Linkage and association of insulin gene VNTR regulatory polymorphism with polycystic ovary syndrome. Lancet 1997;349:986–90.PubMed Waterworth DM, Bennett ST, Gharani N, McCarthy M, Hague S, Batty S, et al. Linkage and association of insulin gene VNTR regulatory polymorphism with polycystic ovary syndrome. Lancet 1997;349:986–90.PubMed
117.
go back to reference Urbanek M, Legro RS, Driscoll D, Strauss JF, Dunaif A, Spielman RS. Searching for the polycystic ovary syndrome genes. J Pediatr Endocrinol 2000;13 Suppl.5:1311–3. Urbanek M, Legro RS, Driscoll D, Strauss JF, Dunaif A, Spielman RS. Searching for the polycystic ovary syndrome genes. J Pediatr Endocrinol 2000;13 Suppl.5:1311–3.
118.
go back to reference Tucci S, Futterweit W, Concepcion ES, Greenberg DA, Villanueva R, Davies TF, et al. Evidence for association of polycystic ovary syndrome in Caucasian women with a marker at the insulin receptor gene locus. J Clin Endocrinol Metab 2001;86:446–9.PubMed Tucci S, Futterweit W, Concepcion ES, Greenberg DA, Villanueva R, Davies TF, et al. Evidence for association of polycystic ovary syndrome in Caucasian women with a marker at the insulin receptor gene locus. J Clin Endocrinol Metab 2001;86:446–9.PubMed
119.
go back to reference Diamanti-Kandarakis E, Mitrakou A, Hennes MMI, Platanissiotis D, Kaklas N, Spina J, et al. Insulin sensitivity and antiandrogen therapy in women with polycystic ovary syndrome. Metabolism 1995;44:525–31.PubMed Diamanti-Kandarakis E, Mitrakou A, Hennes MMI, Platanissiotis D, Kaklas N, Spina J, et al. Insulin sensitivity and antiandrogen therapy in women with polycystic ovary syndrome. Metabolism 1995;44:525–31.PubMed
120.
go back to reference Holte J, Bergh T, Berne CH, Berglund L, Lithell H. Enhanced early insulin response to glucose in relation to insulin resistance in women with polycystic ovary syndrome and normal glucose tolerance. J Clin Endocrinol Metab 1994;78:1052–8.PubMed Holte J, Bergh T, Berne CH, Berglund L, Lithell H. Enhanced early insulin response to glucose in relation to insulin resistance in women with polycystic ovary syndrome and normal glucose tolerance. J Clin Endocrinol Metab 1994;78:1052–8.PubMed
121.
go back to reference Vrbikova J, Cibula D, Dvorakova K, Stanicka S, Sindelka G, Hill M, et al. Insulin sensitivity in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004;89:2942–5.PubMed Vrbikova J, Cibula D, Dvorakova K, Stanicka S, Sindelka G, Hill M, et al. Insulin sensitivity in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004;89:2942–5.PubMed
122.
go back to reference Coviello AD, Legro RS, Dunaif A. Adolescent girls with polycystic ovary syndrome have an increased risk of metabolic syndrome associated with increasing androgen levels independent of obesity and insulin resistance. J Clin Endocrinol Metab 2006;91:492–7.PubMed Coviello AD, Legro RS, Dunaif A. Adolescent girls with polycystic ovary syndrome have an increased risk of metabolic syndrome associated with increasing androgen levels independent of obesity and insulin resistance. J Clin Endocrinol Metab 2006;91:492–7.PubMed
123.
go back to reference Kemnitz JW, Goy RW, Flitsch TJ, Lohmiller JJ, Robinson JA. Obesity in male and female rhesus monkeys: fat distribution, glucoregulation, and serum androgen levels. J Clin Endocrinol Metab 1989;69:287–93.PubMed Kemnitz JW, Goy RW, Flitsch TJ, Lohmiller JJ, Robinson JA. Obesity in male and female rhesus monkeys: fat distribution, glucoregulation, and serum androgen levels. J Clin Endocrinol Metab 1989;69:287–93.PubMed
124.
go back to reference Eisner JR, Dumesic DA, Kemnitz JW, Abbott DH. Timing of prenatal androgen excess determines differential impairment in insulin secretion and action in adult female rhesus monkeys. J Clin Endocrinol Metab 2000;85:1206–10.PubMed Eisner JR, Dumesic DA, Kemnitz JW, Abbott DH. Timing of prenatal androgen excess determines differential impairment in insulin secretion and action in adult female rhesus monkeys. J Clin Endocrinol Metab 2000;85:1206–10.PubMed
125.
go back to reference Eisner JR, Dumesic DA, Kemnitz JW, Colman RJ, Abbott DH. Increased adiposity in female rhesus monkeys exposed to androgen excess during early gestation. Obes Res 2003;11:279–86.PubMed Eisner JR, Dumesic DA, Kemnitz JW, Colman RJ, Abbott DH. Increased adiposity in female rhesus monkeys exposed to androgen excess during early gestation. Obes Res 2003;11:279–86.PubMed
126.
go back to reference Bruns CM, Baum ST, Colman RJ, Dumesic DA, Eisner JR, Jensen MD, et al. Prenatal androgen excess negatively impacts body fat distribution in a nonhuman primate model of polycystic ovary syndrome (PCOS). Int J Obesity 2007 DOI 10.1038/sj.ijo.0803638. Bruns CM, Baum ST, Colman RJ, Dumesic DA, Eisner JR, Jensen MD, et al. Prenatal androgen excess negatively impacts body fat distribution in a nonhuman primate model of polycystic ovary syndrome (PCOS). Int J Obesity 2007 DOI 10.​1038/​sj.​ijo.​0803638.
127.
go back to reference Abbott DH, Eisner JR, Goodfriend T, Medley RD, Peterson EJ, Colman RJ, et al. Leptin and total free fatty acids are elevated in the circulation of prenatally androgenized female rhesus monkeys. Abstract P2–329. 84rd Annual Meeting of The Endocrine Society, San Francisco, CA, June 19–22, 2002B. Abbott DH, Eisner JR, Goodfriend T, Medley RD, Peterson EJ, Colman RJ, et al. Leptin and total free fatty acids are elevated in the circulation of prenatally androgenized female rhesus monkeys. Abstract P2–329. 84rd Annual Meeting of The Endocrine Society, San Francisco, CA, June 19–22, 2002B.
128.
go back to reference King AJ, Olivier NB, Mohankumar PS, Lee JS, Padmanabhan V, Fink GD. Hypertension caused by prenatal testosterone excess in female sheep. Am J Physiol Endocrinol Metab, 2007; 292(6):E1837–41. King AJ, Olivier NB, Mohankumar PS, Lee JS, Padmanabhan V, Fink GD. Hypertension caused by prenatal testosterone excess in female sheep. Am J Physiol Endocrinol Metab, 2007; 292(6):E1837–41.
129.
go back to reference Brettenthaler N, De Geyter C, Huber PR, Keller U. Effect of the insulin sensitizer pioglitazone on insulin resistance, hyperandrogenism, and ovulatory dysfunction in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004;89:3835–40.PubMed Brettenthaler N, De Geyter C, Huber PR, Keller U. Effect of the insulin sensitizer pioglitazone on insulin resistance, hyperandrogenism, and ovulatory dysfunction in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004;89:3835–40.PubMed
130.
go back to reference Baillargeon JP, Jakubowicz DJ, Iuorno MJ, Jakubowicz S, Nestler JE. Effects of metformin and rosiglitazone, alone and in combination, in nonobese women with polycystic ovary syndrome and normal indices of insulin sensitivity. Fertil Steril 2004;82:893–902.PubMed Baillargeon JP, Jakubowicz DJ, Iuorno MJ, Jakubowicz S, Nestler JE. Effects of metformin and rosiglitazone, alone and in combination, in nonobese women with polycystic ovary syndrome and normal indices of insulin sensitivity. Fertil Steril 2004;82:893–902.PubMed
131.
go back to reference Lee JS, Aizenberg E, Djoumbi D, Foster DL, Padmanabhan V. Fetal programming of the postnatal responsiveness of LH to estradiol negative feedback in sheep: time and duration of exposure and quality of prenatal steroid. Abstract 660. Biol Rep Special Issue, 2005, p. 227. Lee JS, Aizenberg E, Djoumbi D, Foster DL, Padmanabhan V. Fetal programming of the postnatal responsiveness of LH to estradiol negative feedback in sheep: time and duration of exposure and quality of prenatal steroid. Abstract 660. Biol Rep Special Issue, 2005, p. 227.
132.
go back to reference Barker DJP. Fetal programming of coronary heart disease. Trends Endocrinol Metab 2002;13:364–8.PubMed Barker DJP. Fetal programming of coronary heart disease. Trends Endocrinol Metab 2002;13:364–8.PubMed
133.
go back to reference Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 1962;14:353–62.PubMed Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 1962;14:353–62.PubMed
134.
go back to reference De Boo HA, Harding JE. The developmental origins of adult disease (Barker) hypothesis. Aust N Z J Obstet Gynaecol 2006;46:4–14.PubMed De Boo HA, Harding JE. The developmental origins of adult disease (Barker) hypothesis. Aust N Z J Obstet Gynaecol 2006;46:4–14.PubMed
135.
go back to reference Ibanez L, Potau N, Zampolli M, Prat N, Virdis R, Vicens-Calvet E, et al. Hyperinsulinemia in postpubertal girls with a history of premature pubarche and functional ovarian hyperandrogenism. J Clin Endocrinol Metab 1996;81 1237–43.PubMed Ibanez L, Potau N, Zampolli M, Prat N, Virdis R, Vicens-Calvet E, et al. Hyperinsulinemia in postpubertal girls with a history of premature pubarche and functional ovarian hyperandrogenism. J Clin Endocrinol Metab 1996;81 1237–43.PubMed
136.
go back to reference Sir-Petermann T, Hitchsfeld C, Maliqueo M, Codner E, Echiburu B, Gazitua R, et al. Birth weight in offspring of mothers with polycystic ovarian syndrome. Hum Reprod 2005;20:2122–6.PubMed Sir-Petermann T, Hitchsfeld C, Maliqueo M, Codner E, Echiburu B, Gazitua R, et al. Birth weight in offspring of mothers with polycystic ovarian syndrome. Hum Reprod 2005;20:2122–6.PubMed
137.
go back to reference Laitinen J, Taponen S, Martikainen H, Pouta A, Millwood I, Hartikainen AL, et al. Body size from birth to adulthood as a predictor of self-reported polycystic ovary syndrome symptoms. Int J Obes Relat Metab Disord 2003;27:710–5.PubMed Laitinen J, Taponen S, Martikainen H, Pouta A, Millwood I, Hartikainen AL, et al. Body size from birth to adulthood as a predictor of self-reported polycystic ovary syndrome symptoms. Int J Obes Relat Metab Disord 2003;27:710–5.PubMed
138.
go back to reference Sadrzadeh S, Klip WA, Broekmans FJ, Schats R, Willemsen WN, Burger CW, et al. Birth weight and age at menarche in patients with polycystic ovary syndrome or diminished ovarian reserve, in a retrospective cohort. Hum Reprod 2003;18:2225–30.PubMed Sadrzadeh S, Klip WA, Broekmans FJ, Schats R, Willemsen WN, Burger CW, et al. Birth weight and age at menarche in patients with polycystic ovary syndrome or diminished ovarian reserve, in a retrospective cohort. Hum Reprod 2003;18:2225–30.PubMed
139.
go back to reference McGivern RF. Low birthweight in rats induced by prenatal exposure to testosterone combined with alcohol, pair-feeding, or stress. Teratology 1989;40:335–8.PubMed McGivern RF. Low birthweight in rats induced by prenatal exposure to testosterone combined with alcohol, pair-feeding, or stress. Teratology 1989;40:335–8.PubMed
140.
go back to reference Manikkam M, Crespi EJ, Doop DD, Herkimer C, Lee JS, Yu S, et al. Fetal programming: prenatal testosterone excess leads to fetal growth retardation and postnatal catch-up growth in sheep. Endocrinology 2004;145:790–8.PubMed Manikkam M, Crespi EJ, Doop DD, Herkimer C, Lee JS, Yu S, et al. Fetal programming: prenatal testosterone excess leads to fetal growth retardation and postnatal catch-up growth in sheep. Endocrinology 2004;145:790–8.PubMed
141.
go back to reference Tanguy G, Thoumsin HJ, Zorn JR, Cedard L. DHEA-S-loading test in cases of intrauterine growth retardation: relationship between the pattern of the maternal plasma metabolites and the fetoplacental dysfunction. Gynecol Obstet Invest 1981;12:305–16.PubMed Tanguy G, Thoumsin HJ, Zorn JR, Cedard L. DHEA-S-loading test in cases of intrauterine growth retardation: relationship between the pattern of the maternal plasma metabolites and the fetoplacental dysfunction. Gynecol Obstet Invest 1981;12:305–16.PubMed
142.
go back to reference Thoumsin HJ, Alsat E, Cedard L. In vitro aromatization of androgens into estrogens in placental insufficiency. Gynecol Obstet Invest 1982;13:37–43.PubMed Thoumsin HJ, Alsat E, Cedard L. In vitro aromatization of androgens into estrogens in placental insufficiency. Gynecol Obstet Invest 1982;13:37–43.PubMed
143.
go back to reference Astapova O, Steckler TS, Lee TM, Jackson LM, Padmanabhan V. Fetal programming: Advanced placentome differentiation in testosterone-treated sheep is facilitated by androgenic actions of testosterone. Abstract 579. Biol Rep Special Issue, 2005, p. 209. Astapova O, Steckler TS, Lee TM, Jackson LM, Padmanabhan V. Fetal programming: Advanced placentome differentiation in testosterone-treated sheep is facilitated by androgenic actions of testosterone. Abstract 579. Biol Rep Special Issue, 2005, p. 209.
144.
go back to reference Crespi EJ, Steckler T, Mohankumar PS, Padmanabhan V. Prenatal testosterone excess and IGF bioavailability during intrauterine growth retardation and postnatal catch-up growth in sheep. J Physiology 2006;572:119–30. Crespi EJ, Steckler T, Mohankumar PS, Padmanabhan V. Prenatal testosterone excess and IGF bioavailability during intrauterine growth retardation and postnatal catch-up growth in sheep. J Physiology 2006;572:119–30.
145.
go back to reference Slob AK, den Hamer R, Woutersen PJ, van der Werff ten Bosch JJ. Prenatal testosterone propionate and postnatal ovarian activity in the rat. Acta Endocrinol (Copenh) 1983;103:420–7. Slob AK, den Hamer R, Woutersen PJ, van der Werff ten Bosch JJ. Prenatal testosterone propionate and postnatal ovarian activity in the rat. Acta Endocrinol (Copenh) 1983;103:420–7.
146.
go back to reference Herman RA, Jones B, Mann DR, Wallen K. Timing of prenatal exposure: anatomical and endocrine effects on junvenile male and female rhesus monkeys. Horm Behav 2000;38:52–66.PubMed Herman RA, Jones B, Mann DR, Wallen K. Timing of prenatal exposure: anatomical and endocrine effects on junvenile male and female rhesus monkeys. Horm Behav 2000;38:52–66.PubMed
147.
go back to reference Desai M, Hales CN. Role of fetal and infant growth in programming metabolism in later life. Biol Rev 1997;72:329–48.PubMed Desai M, Hales CN. Role of fetal and infant growth in programming metabolism in later life. Biol Rev 1997;72:329–48.PubMed
148.
go back to reference Wolf CJ, LeBlanc GA, Gray LE Jr. Interactive effects of vinclozolin and testosterone propionate on pregnancy and sexual differentiation of the male and female SD rat. Toxicol Sci 2004;78:135–43.PubMed Wolf CJ, LeBlanc GA, Gray LE Jr. Interactive effects of vinclozolin and testosterone propionate on pregnancy and sexual differentiation of the male and female SD rat. Toxicol Sci 2004;78:135–43.PubMed
149.
go back to reference Moran C, Azziz R. The role of the adrenal cortex in polycystic ovary syndrome. Obstet Gynecol Clin North Am 2001;28:63–75.PubMed Moran C, Azziz R. The role of the adrenal cortex in polycystic ovary syndrome. Obstet Gynecol Clin North Am 2001;28:63–75.PubMed
150.
go back to reference Carmina E, Koyama T, Chang L, Stanczyk FZ, Lobo RA. Does ethnicity influence the prevalence of adrenal hyperandrogenism and insulin resistance in polycystic ovary syndrome? Am J Obstet Gynecol 1992;167:1807–12.PubMed Carmina E, Koyama T, Chang L, Stanczyk FZ, Lobo RA. Does ethnicity influence the prevalence of adrenal hyperandrogenism and insulin resistance in polycystic ovary syndrome? Am J Obstet Gynecol 1992;167:1807–12.PubMed
151.
go back to reference Beck Peccoz P, Padmanabhan V, Baggiani AM, Cortelazzi D, Buscaglia M, Medri G, et al. Maturation of hypothalamic–pituitary–gonadal function in normal human fetuses: circulating levels of gonadotropins, their common alpha-subunit and free testosterone, and discrepancy between immunological and biological activities of circulating follicle-stimulating hormone. J Clin Endocrinol Metab 1991;73:525–32.PubMed Beck Peccoz P, Padmanabhan V, Baggiani AM, Cortelazzi D, Buscaglia M, Medri G, et al. Maturation of hypothalamic–pituitary–gonadal function in normal human fetuses: circulating levels of gonadotropins, their common alpha-subunit and free testosterone, and discrepancy between immunological and biological activities of circulating follicle-stimulating hormone. J Clin Endocrinol Metab 1991;73:525–32.PubMed
152.
go back to reference Yildiz BO, Yarali H, Oguz H, Bayraktar M. Glucose intolerance, insulin resistance, and hyperandrogenemia in first degree relatives of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2003;88:2031–6.PubMed Yildiz BO, Yarali H, Oguz H, Bayraktar M. Glucose intolerance, insulin resistance, and hyperandrogenemia in first degree relatives of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2003;88:2031–6.PubMed
153.
go back to reference Fox R. Prevalence of a positive family history of type 2 diabetes in women with polycystic ovarian disease. Gynecol Endocrinol 1999;13:390–3.PubMed Fox R. Prevalence of a positive family history of type 2 diabetes in women with polycystic ovarian disease. Gynecol Endocrinol 1999;13:390–3.PubMed
154.
go back to reference Sir-Petermann T, Angel B, Maliqueo M, Carvajal F, Santos JL, Perez-Bravo F. Prevalence of Type II diabetes mellitus and insulin resistance in parents of women with polycystic ovary syndrome. Diabetologia 2002;45:959–64.PubMed Sir-Petermann T, Angel B, Maliqueo M, Carvajal F, Santos JL, Perez-Bravo F. Prevalence of Type II diabetes mellitus and insulin resistance in parents of women with polycystic ovary syndrome. Diabetologia 2002;45:959–64.PubMed
155.
go back to reference Bruns CM, Baum ST, Colman RJ, Eisner JR, Kemnitz JW, Weindruch R, et al. Insulin resistance and impaired insulin secretion in prenatally androgenized male rhesus monkeys. J Clin Endocrinol Metab 2004;89:6218–23.PubMed Bruns CM, Baum ST, Colman RJ, Eisner JR, Kemnitz JW, Weindruch R, et al. Insulin resistance and impaired insulin secretion in prenatally androgenized male rhesus monkeys. J Clin Endocrinol Metab 2004;89:6218–23.PubMed
156.
go back to reference Shifren JL, Osathanondh R, Yeh J. Human fetal ovaries and uteri: developmental expression of genes encoding the insulin, insulin-like growth factor I, and insulin-like growth factor II receptors. Fertil Steril 1993;59:1036–40.PubMed Shifren JL, Osathanondh R, Yeh J. Human fetal ovaries and uteri: developmental expression of genes encoding the insulin, insulin-like growth factor I, and insulin-like growth factor II receptors. Fertil Steril 1993;59:1036–40.PubMed
157.
go back to reference Cole B, Hensinger K, Maciel GAR, Chang RJ, Erickson GF; Human fetal ovary development involves the spatiotemporal expression of P450c17 protein. J Clin Endocrinol Metab 2006;91:3654–61.PubMed Cole B, Hensinger K, Maciel GAR, Chang RJ, Erickson GF; Human fetal ovary development involves the spatiotemporal expression of P450c17 protein. J Clin Endocrinol Metab 2006;91:3654–61.PubMed
158.
go back to reference Driscoll SG, Benirschke K, Curtis GW. Neonatal deaths among infants of diabetic mothers. Postmortem findings in ninety-five infants. Am J Dis Child 1960;100:818–35.PubMed Driscoll SG, Benirschke K, Curtis GW. Neonatal deaths among infants of diabetic mothers. Postmortem findings in ninety-five infants. Am J Dis Child 1960;100:818–35.PubMed
159.
go back to reference Hultquist GT, Olding LB. Endocrine pathology of infants of diabetic mothers. A quantitative morphological analysis including a comparison with infants of iso-immunized and of non-diabetic mothers. Acta Endocrinol (Copenh) 1981;241 Suppl:1–202. Hultquist GT, Olding LB. Endocrine pathology of infants of diabetic mothers. A quantitative morphological analysis including a comparison with infants of iso-immunized and of non-diabetic mothers. Acta Endocrinol (Copenh) 1981;241 Suppl:1–202.
160.
go back to reference Barbieri RL, Saltzman DH, Torday JS, Randall RW, Frigoletto FD, Ryan KJ. Elevated concentrations of the β-subunit of human chorionic gonadotropin and testosterone in the amniotic fluid of gestations of diabetic mothers. Am J Obstet Gynecol 1986;154:1039–43.PubMed Barbieri RL, Saltzman DH, Torday JS, Randall RW, Frigoletto FD, Ryan KJ. Elevated concentrations of the β-subunit of human chorionic gonadotropin and testosterone in the amniotic fluid of gestations of diabetic mothers. Am J Obstet Gynecol 1986;154:1039–43.PubMed
161.
go back to reference Senekjian EK, Potkul RK, Frey K, Herbst AL. Infertility among daughters either exposed or not exposed to diethylstilbestrol. Am J Obstet Gynecol 1988;158:493–8.PubMed Senekjian EK, Potkul RK, Frey K, Herbst AL. Infertility among daughters either exposed or not exposed to diethylstilbestrol. Am J Obstet Gynecol 1988;158:493–8.PubMed
162.
go back to reference Newbold RR. Lessons learned from perinatal exposure to diethylstilbestrol. Toxicol Appl Pharmacol 2004;199:142–50.PubMed Newbold RR. Lessons learned from perinatal exposure to diethylstilbestrol. Toxicol Appl Pharmacol 2004;199:142–50.PubMed
163.
go back to reference Tchernitchin AN, Tchernitchin N. Imprinting of paths of heterodifferentiation by prenatal or neonatal exposure to hormone, pharmaceuticals, pollutants and other agents or conditions. Med Sci Res 1992;20:391–7. Tchernitchin AN, Tchernitchin N. Imprinting of paths of heterodifferentiation by prenatal or neonatal exposure to hormone, pharmaceuticals, pollutants and other agents or conditions. Med Sci Res 1992;20:391–7.
164.
go back to reference Tchernitchin AN, Tchernitchin NN, Mena MA, Unda C, Soto J. Imprinting: perinatal exposures cause the development of diseases during the adult age. Acta Biol Hung 1999;50:425–40.PubMed Tchernitchin AN, Tchernitchin NN, Mena MA, Unda C, Soto J. Imprinting: perinatal exposures cause the development of diseases during the adult age. Acta Biol Hung 1999;50:425–40.PubMed
165.
go back to reference Newbold RR, Bullock BC, McLachlan JA. Exposure to diethylstilbestrol during pregnancy permanently alters the ovary and oviduct. Biol Reprod 1983;28:735–44.PubMed Newbold RR, Bullock BC, McLachlan JA. Exposure to diethylstilbestrol during pregnancy permanently alters the ovary and oviduct. Biol Reprod 1983;28:735–44.PubMed
166.
go back to reference Steckler T, Manikkam M, Inskeep EK, Padmanabhan V. Developmental programming: follicular persistence in prenatal testosterone-treated sheep is not programmed by androgenic actions of testosterone. Endocrinology 2007;148:3532–40.PubMed Steckler T, Manikkam M, Inskeep EK, Padmanabhan V. Developmental programming: follicular persistence in prenatal testosterone-treated sheep is not programmed by androgenic actions of testosterone. Endocrinology 2007;148:3532–40.PubMed
167.
go back to reference Savabieasfahani M, Kannan K, Astapova O, Evans NP, Padmanabhan V. Developmental programming: differential effects of prenatal exposure to bisphenol-a or methoxychlor on reproductive function. Endocrinology 2006;147:5956–66.PubMed Savabieasfahani M, Kannan K, Astapova O, Evans NP, Padmanabhan V. Developmental programming: differential effects of prenatal exposure to bisphenol-a or methoxychlor on reproductive function. Endocrinology 2006;147:5956–66.PubMed
168.
go back to reference Zachos NC, Billiar RB, Albrecht ED, Pepe GJ. Developmental regulation of baboon fetal ovarian maturation by estrogen. Biol Reprod 2002;67:1148–56.PubMed Zachos NC, Billiar RB, Albrecht ED, Pepe GJ. Developmental regulation of baboon fetal ovarian maturation by estrogen. Biol Reprod 2002;67:1148–56.PubMed
169.
go back to reference Zachos NC, Billiar RB, Albrecht ED, Pepe GJ. Regulation of oocyte microvilli development in the baboon fetal ovary by estrogen. Endocrinology 2004;145:959–66.PubMed Zachos NC, Billiar RB, Albrecht ED, Pepe GJ. Regulation of oocyte microvilli development in the baboon fetal ovary by estrogen. Endocrinology 2004;145:959–66.PubMed
170.
go back to reference Cecconi S, Ciccarelli C, Barberi M, Macchiarelli G, Canipari R. Granulosa cell–oocyte interactions. Eur J Obstet Gynecol Reprod Biol 2004;115 Suppl 1:S19–22.PubMed Cecconi S, Ciccarelli C, Barberi M, Macchiarelli G, Canipari R. Granulosa cell–oocyte interactions. Eur J Obstet Gynecol Reprod Biol 2004;115 Suppl 1:S19–22.PubMed
171.
go back to reference Hautanen A, Raikkonen K, Adlercreutz H. Associations between pituitary–adrenocortical function and abdominal obesity, hyperinsulinaemia and dyslipidaemia in normotensive males. J Intern Med 1997;241:451–61.PubMed Hautanen A, Raikkonen K, Adlercreutz H. Associations between pituitary–adrenocortical function and abdominal obesity, hyperinsulinaemia and dyslipidaemia in normotensive males. J Intern Med 1997;241:451–61.PubMed
172.
go back to reference Rees WD, Wilson FA, Maloney CA. Sulfur amino acid metabolism in pregnancy: the impact of methionine in the maternal diet. J Nutr 2006;136 Suppl 6:1701S–5S.PubMed Rees WD, Wilson FA, Maloney CA. Sulfur amino acid metabolism in pregnancy: the impact of methionine in the maternal diet. J Nutr 2006;136 Suppl 6:1701S–5S.PubMed
173.
go back to reference Kwong WY, Miller DJ, Wilkins AP, Dear MS, Wright JN, Osmond C, et al. Maternal low protein diet restricted to the preimplantation period induces a gender-specific change on hepatic gene expression in rat fetuses. Mol Reprod Dev 2007;74:48–56.PubMed Kwong WY, Miller DJ, Wilkins AP, Dear MS, Wright JN, Osmond C, et al. Maternal low protein diet restricted to the preimplantation period induces a gender-specific change on hepatic gene expression in rat fetuses. Mol Reprod Dev 2007;74:48–56.PubMed
174.
go back to reference Park BH, Kim YJ, Park JS, Lee HY, Ha EH, Min JW, et al. Folate and homocysteine levels during pregnancy affect DNA methylation in human placenta. J Prev Med Pub Health 2005;38:437–42.PubMed Park BH, Kim YJ, Park JS, Lee HY, Ha EH, Min JW, et al. Folate and homocysteine levels during pregnancy affect DNA methylation in human placenta. J Prev Med Pub Health 2005;38:437–42.PubMed
Metadata
Title
Polycystic ovary syndrome and its developmental origins
Authors
Daniel A. Dumesic
David H. Abbott
Vasantha Padmanabhan
Publication date
01-06-2007
Publisher
Springer US
Published in
Reviews in Endocrine and Metabolic Disorders / Issue 2/2007
Print ISSN: 1389-9155
Electronic ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-007-9046-0

Other articles of this Issue 2/2007

Reviews in Endocrine and Metabolic Disorders 2/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.