Skip to main content
Top
Published in: Journal of Neuro-Oncology 2/2020

01-09-2020 | Glioblastoma | Laboratory Investigation

Combined fluorescence-guided surgery and photodynamic therapy for glioblastoma multiforme using cyanine and chlorin nanocluster

Authors: Clare W. Teng, Ahmad Amirshaghaghi, Steve S. Cho, Shuting S. Cai, Emma De Ravin, Yash Singh, Joann Miller, Saad Sheikh, Edward Delikatny, Zhiliang Cheng, Theresa M. Busch, Jay F. Dorsey, Sunil Singhal, Andrew Tsourkas, John Y. K. Lee

Published in: Journal of Neuro-Oncology | Issue 2/2020

Login to get access

Abstract

Introduction

Glioblastoma multiforme (GBM) is the most common primary intracranial malignancy; survival can be improved by maximizing the extent-of-resection.

Methods

A near-infrared fluorophore (Indocyanine-Green, ICG) was combined with a photosensitizer (Chlorin-e6, Ce6) on the surface of superparamagnetic-iron-oxide-nanoparticles (SPIONs), all FDA-approved for clinical use, yielding a nanocluster (ICS) using a microemulsion. The physical–chemical properties of the ICS were systematically evaluated. Efficacy of photodynamic therapy (PDT) was evaluated in vitro with GL261 cells and in vivo in a subtotal resection trial using a syngeneic flank tumor model. NIR imaging properties of ICS were evaluated in both a flank and an intracranial GBM model.

Results

ICS demonstrated high ICG and Ce6 encapsulation efficiency, high payload capacity, and chemical stability in physiologic conditions. In vitro cell studies demonstrated significant PDT-induced cytotoxicity using ICS. Preclinical animal studies demonstrated that the nanoclusters can be detected through NIR imaging in both flank and intracranial GBM tumors (ex: 745 nm, em: 800 nm; mean signal-to-background 8.5 ± 0.6). In the flank residual tumor PDT trial, subjects treated with PDT demonstrated significantly enhanced local control of recurrent neoplasm starting on postoperative day 8 (23.1 mm3 vs 150.5 mm3, p = 0.045), and the treatment effect amplified to final mean volumes of 220.4 mm3 vs 806.1 mm3 on day 23 (p = 0.0055).

Conclusion

A multimodal theragnostic agent comprised solely of FDA-approved components was developed to couple optical imaging and PDT. The findings demonstrated evidence for the potential theragnostic benefit of ICS in surgical oncology that is conducive to clinical integration.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tamimi AF, Juweid M (2017) Epidemiology and outcome of glioblastoma. In: Glioblastoma; Exon Publication, Brisbane. p 143 Tamimi AF, Juweid M (2017) Epidemiology and outcome of glioblastoma. In: Glioblastoma; Exon Publication, Brisbane. p 143
2.
go back to reference Johnson DR, O’Neill BP (2012) Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol 107:359PubMed Johnson DR, O’Neill BP (2012) Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol 107:359PubMed
3.
go back to reference Wallner KE, Galicich JH, Krol G et al (1989) Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 16:1405PubMed Wallner KE, Galicich JH, Krol G et al (1989) Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 16:1405PubMed
4.
go back to reference Sanai N, Polley M-Y, McDermott MW et al (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8PubMed Sanai N, Polley M-Y, McDermott MW et al (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8PubMed
5.
go back to reference Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198PubMed Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198PubMed
6.
go back to reference Brown TJ, Brennan MC, Li M et al (2016) Association of the extent of resection with survival in glioblastoma. JAMA Oncol 2:1460PubMedPubMedCentral Brown TJ, Brennan MC, Li M et al (2016) Association of the extent of resection with survival in glioblastoma. JAMA Oncol 2:1460PubMedPubMedCentral
7.
go back to reference Orringer D, Lau D, Khatri S et al (2012) Extent of resection in patients with glioblastoma: limiting factors, perception of resectability, and effect on survival. J Neurosurg 117:851PubMed Orringer D, Lau D, Khatri S et al (2012) Extent of resection in patients with glioblastoma: limiting factors, perception of resectability, and effect on survival. J Neurosurg 117:851PubMed
8.
go back to reference Stummer W, Pichlmeier U, Meinel T et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma : a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401PubMed Stummer W, Pichlmeier U, Meinel T et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma : a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401PubMed
9.
go back to reference Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat.Biomed. Eng 1:1–22 Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat.Biomed. Eng 1:1–22
10.
go back to reference Schols RM, Connell NJ, Stassen LPS (2015) Near-infrared fluorescence imaging for real-time intraoperative anatomical guidance in minimally invasive surgery: a systematic review of the literature. World J Surg 39:1069–1079PubMed Schols RM, Connell NJ, Stassen LPS (2015) Near-infrared fluorescence imaging for real-time intraoperative anatomical guidance in minimally invasive surgery: a systematic review of the literature. World J Surg 39:1069–1079PubMed
11.
go back to reference Lee JYK, Thawani JP, Pierce J et al (2016) Intraoperative near-infrared optical imaging can localize gadolinium-enhancing gliomas during surgery. Neurosurgery 79:856–871PubMedPubMedCentral Lee JYK, Thawani JP, Pierce J et al (2016) Intraoperative near-infrared optical imaging can localize gadolinium-enhancing gliomas during surgery. Neurosurgery 79:856–871PubMedPubMedCentral
12.
go back to reference Lee JYK, Pierce JT, Zeh R et al (2017) Intraoperative near-infrared optical contrast can localize brain metastases. World Neurosurg 106:120–130PubMed Lee JYK, Pierce JT, Zeh R et al (2017) Intraoperative near-infrared optical contrast can localize brain metastases. World Neurosurg 106:120–130PubMed
13.
go back to reference Lee JYK, Pierce JT, Thawani JP et al (2017) Near-infrared fluorescent image-guided surgery for intracranial meningioma. Neurosurgery 128:380–390 Lee JYK, Pierce JT, Thawani JP et al (2017) Near-infrared fluorescent image-guided surgery for intracranial meningioma. Neurosurgery 128:380–390
14.
go back to reference Carr JA, Franke D, Caram JR et al (2018) Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci USA 115:4465PubMed Carr JA, Franke D, Caram JR et al (2018) Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci USA 115:4465PubMed
15.
go back to reference Maruyama T, Muragaki Y, Nitta M et al (2016) Photodynamic therapy for malignant brain tumors. Japanese J Neurosurg 25:895 Maruyama T, Muragaki Y, Nitta M et al (2016) Photodynamic therapy for malignant brain tumors. Japanese J Neurosurg 25:895
16.
go back to reference Eljamel S (2010) Photodynamic applications in brain tumors: a comprehensive review of the literature. Photodiagnosis Photodyn Ther 7:76PubMed Eljamel S (2010) Photodynamic applications in brain tumors: a comprehensive review of the literature. Photodiagnosis Photodyn Ther 7:76PubMed
17.
go back to reference Eljamel MS, Goodman C, Moseley H (2008) ALA and Photofrin® Fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre Phase III randomised controlled trial. Lasers Med Sci 23:361PubMed Eljamel MS, Goodman C, Moseley H (2008) ALA and Photofrin® Fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre Phase III randomised controlled trial. Lasers Med Sci 23:361PubMed
18.
go back to reference Li Y, Yu Y, Kang L, Lu Y (2014) Effects of chlorin e6-mediated photodynamic therapy on human colon cancer SW480 cells. Int J Clin Exp Med 7:4867PubMedPubMedCentral Li Y, Yu Y, Kang L, Lu Y (2014) Effects of chlorin e6-mediated photodynamic therapy on human colon cancer SW480 cells. Int J Clin Exp Med 7:4867PubMedPubMedCentral
19.
go back to reference Nann T (2011) Nanoparticles in photodynamic therapy. Nano Biomed Eng 3:137 Nann T (2011) Nanoparticles in photodynamic therapy. Nano Biomed Eng 3:137
20.
go back to reference Paul S, Heng PWS, Chan LW (2013) Optimization in solvent selection for chlorin e6 in photodynamic therapy. J Fluoresc 23:283PubMed Paul S, Heng PWS, Chan LW (2013) Optimization in solvent selection for chlorin e6 in photodynamic therapy. J Fluoresc 23:283PubMed
21.
go back to reference Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903PubMed Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903PubMed
22.
go back to reference Lee JH, Lee K, Moon SH et al (2009) All-in-One target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed Engl 48:4174–4179PubMed Lee JH, Lee K, Moon SH et al (2009) All-in-One target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed Engl 48:4174–4179PubMed
23.
go back to reference Thawani JP, Amirshaghaghi A, Yan L et al (2017) Photoacoustic-guided surgery with indocyanine green-coated superparamagnetic iron oxide nanoparticle clusters. Small 13:1–9 Thawani JP, Amirshaghaghi A, Yan L et al (2017) Photoacoustic-guided surgery with indocyanine green-coated superparamagnetic iron oxide nanoparticle clusters. Small 13:1–9
24.
go back to reference Kircher MF, De La Zerda A, Jokerst JV et al (2012) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18:829–834PubMedPubMedCentral Kircher MF, De La Zerda A, Jokerst JV et al (2012) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18:829–834PubMedPubMedCentral
25.
go back to reference Li J, Zhao J, Tan T et al (2020) Nanoparticle drug delivery system for glioma and its efficacy improvement strategies: a comprehensive review. Int J Nanomed 15:2563–2582 Li J, Zhao J, Tan T et al (2020) Nanoparticle drug delivery system for glioma and its efficacy improvement strategies: a comprehensive review. Int J Nanomed 15:2563–2582
26.
go back to reference Guo J, Gao X, Su L et al (2011) Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32:8010–8020PubMed Guo J, Gao X, Su L et al (2011) Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32:8010–8020PubMed
27.
go back to reference Jordan A, Scholz R, Maier-Hauff K et al (2006) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 78:7–14PubMed Jordan A, Scholz R, Maier-Hauff K et al (2006) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 78:7–14PubMed
28.
go back to reference Michael JS, Lee B-S, Zhang M, Yu JS (2018) Nanotechnology for treatment of glioblastoma multiforme. J Transl Intern Med 6:128–133 Michael JS, Lee B-S, Zhang M, Yu JS (2018) Nanotechnology for treatment of glioblastoma multiforme. J Transl Intern Med 6:128–133
30.
go back to reference Chen H, Zhen Z, Todd T et al (2013) Nanoparticles for improving cancer diagnosis. Mater Sci Eng R Reports 74:35–69 Chen H, Zhen Z, Todd T et al (2013) Nanoparticles for improving cancer diagnosis. Mater Sci Eng R Reports 74:35–69
31.
go back to reference Chenthamara D, Subramaniam S, Ramakrishnan SG et al (2019) Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 23:20PubMedPubMedCentral Chenthamara D, Subramaniam S, Ramakrishnan SG et al (2019) Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 23:20PubMedPubMedCentral
32.
go back to reference Huynh E, Zheng G (2013) Engineering multifunctional nanoparticles: all-in-one versus one-for-all. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5:250–265PubMed Huynh E, Zheng G (2013) Engineering multifunctional nanoparticles: all-in-one versus one-for-all. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5:250–265PubMed
33.
go back to reference Higbee-Dempsey E, Amirshaghaghi A, Case MJ et al (2019) Indocyanine green–coated gold nanoclusters for photoacoustic imaging and photothermal therapy. Adv Ther 2:1900088 Higbee-Dempsey E, Amirshaghaghi A, Case MJ et al (2019) Indocyanine green–coated gold nanoclusters for photoacoustic imaging and photothermal therapy. Adv Ther 2:1900088
34.
go back to reference Amirshaghaghi A, Yan L, Miller J et al (2019) Chlorin e6-coated superparamagnetic iron oxide nanoparticle (SPION) nanoclusters as a theranostic agent for dual-mode imaging and photodynamic therapy. Sci Rep 9:1–9 Amirshaghaghi A, Yan L, Miller J et al (2019) Chlorin e6-coated superparamagnetic iron oxide nanoparticle (SPION) nanoclusters as a theranostic agent for dual-mode imaging and photodynamic therapy. Sci Rep 9:1–9
35.
go back to reference Yan L, Amirshaghaghi A, Huang D et al (2018) Protoporphyrin IX (PpIX)-coated superparamagnetic iron oxide nanoparticle (SPION) nanoclusters for magnetic resonance imaging and photodynamic therapy. Adv Funct Mater 28:1707030PubMedPubMedCentral Yan L, Amirshaghaghi A, Huang D et al (2018) Protoporphyrin IX (PpIX)-coated superparamagnetic iron oxide nanoparticle (SPION) nanoclusters for magnetic resonance imaging and photodynamic therapy. Adv Funct Mater 28:1707030PubMedPubMedCentral
36.
go back to reference Munnier E, Cohen-Jonathan S, Linassier C et al (2008) Novel method of doxorubicin–SPION reversible association for magnetic drug targeting. Int J Pharm 363:170–176PubMed Munnier E, Cohen-Jonathan S, Linassier C et al (2008) Novel method of doxorubicin–SPION reversible association for magnetic drug targeting. Int J Pharm 363:170–176PubMed
37.
go back to reference Husain SR, Behari N, Kreitman RJ et al (1998) Complete regression of established human glioblastoma tumor xenograft by interleukin-4 toxin therapy. Cancer Res 58:3649–3653PubMed Husain SR, Behari N, Kreitman RJ et al (1998) Complete regression of established human glioblastoma tumor xenograft by interleukin-4 toxin therapy. Cancer Res 58:3649–3653PubMed
38.
go back to reference Zeh R, Sheikh S, Xia L et al (2017) The second window ICG technique demonstrates a broad plateau period for near infrared fluorescence tumor contrast in glioblastoma. PLoS ONE 12:e0182034PubMedPubMedCentral Zeh R, Sheikh S, Xia L et al (2017) The second window ICG technique demonstrates a broad plateau period for near infrared fluorescence tumor contrast in glioblastoma. PLoS ONE 12:e0182034PubMedPubMedCentral
39.
go back to reference Baumann BC, Dorsey JF, Benci JL et al (2012) Stereotactic intracranial implantation and in vivo bioluminescent imaging of tumor xenografts in a mouse model system of glioblastoma multiforme. J Vis Exp 67:e4089 Baumann BC, Dorsey JF, Benci JL et al (2012) Stereotactic intracranial implantation and in vivo bioluminescent imaging of tumor xenografts in a mouse model system of glioblastoma multiforme. J Vis Exp 67:e4089
40.
go back to reference Yuan A, Tang X, Qiu X et al (2015) Activatable photodynamic destruction of cancer cells by NIR dye/photosensitizer loaded liposomes. Chem Commun 51:3340–3342 Yuan A, Tang X, Qiu X et al (2015) Activatable photodynamic destruction of cancer cells by NIR dye/photosensitizer loaded liposomes. Chem Commun 51:3340–3342
41.
go back to reference Herve P, Nome F, Fendler JH (1984) Magnetic effects on chemical reactions in the absence of magnets. Effects of surfactant vesicle entrapped magnetite particles on benzophenone photochemistry. J Am Chem Soc 106:8291. Herve P, Nome F, Fendler JH (1984) Magnetic effects on chemical reactions in the absence of magnets. Effects of surfactant vesicle entrapped magnetite particles on benzophenone photochemistry. J Am Chem Soc 106:8291.
42.
go back to reference Saravanakumar G, Kim J, Kim WJ (2016) Reactive-oxygen-species-responsive drug delivery systems: promises and challenges. Adv Sci 4:1600124 Saravanakumar G, Kim J, Kim WJ (2016) Reactive-oxygen-species-responsive drug delivery systems: promises and challenges. Adv Sci 4:1600124
43.
go back to reference Enochs WS, Harsh G, Hochberg F, Weissleder R (1999) Improved delineation of human brain tumors on MR images using a long- circulating, superparamagnetic iron oxide agent. J Magn Reson Imaging 9:228PubMed Enochs WS, Harsh G, Hochberg F, Weissleder R (1999) Improved delineation of human brain tumors on MR images using a long- circulating, superparamagnetic iron oxide agent. J Magn Reson Imaging 9:228PubMed
44.
go back to reference Madajewski B, Judy BF, Mouchli A et al (2012) Intraoperative near-infrared imaging of surgical wounds after tumor resections can detect residual disease. Clin Cancer Res 18:5741–5752PubMedPubMedCentral Madajewski B, Judy BF, Mouchli A et al (2012) Intraoperative near-infrared imaging of surgical wounds after tumor resections can detect residual disease. Clin Cancer Res 18:5741–5752PubMedPubMedCentral
45.
go back to reference Raucher D, Dragojevic S, Ryu J (2018) Macromolecular drug carriers for targeted glioblastoma therapy: preclinical studies, challenges, and future perspectives. Front Oncol 8:624PubMedPubMedCentral Raucher D, Dragojevic S, Ryu J (2018) Macromolecular drug carriers for targeted glioblastoma therapy: preclinical studies, challenges, and future perspectives. Front Oncol 8:624PubMedPubMedCentral
46.
go back to reference Béduneau A, Saulnier P, Benoit J-P (2007) Active targeting of brain tumors using nanocarriers. Biomaterials 28:4947–4967PubMed Béduneau A, Saulnier P, Benoit J-P (2007) Active targeting of brain tumors using nanocarriers. Biomaterials 28:4947–4967PubMed
47.
go back to reference Xin H, Jiang X, Gu J et al (2011) Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials 32:4293–4305PubMed Xin H, Jiang X, Gu J et al (2011) Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials 32:4293–4305PubMed
48.
go back to reference Jackson H, Muhammad O, Daneshvar H, et al (2007) Quantum dots are phagocytized by macrophages and colocalize with experimental gliomas. Neurosurgery 60:524–530PubMed Jackson H, Muhammad O, Daneshvar H, et al (2007) Quantum dots are phagocytized by macrophages and colocalize with experimental gliomas. Neurosurgery 60:524–530PubMed
49.
go back to reference Rosenblum D, Joshi N, Tao W et al (2018) Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 9:1–12 Rosenblum D, Joshi N, Tao W et al (2018) Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 9:1–12
50.
go back to reference Amirshaghaghi A, Altun B, Nwe K et al (2018) Site-specific labeling of cyanine and porphyrin dye-stabilized nanoemulsions with affibodies for cellular targeting. J Am Chem Soc 140:13550–13553PubMedPubMedCentral Amirshaghaghi A, Altun B, Nwe K et al (2018) Site-specific labeling of cyanine and porphyrin dye-stabilized nanoemulsions with affibodies for cellular targeting. J Am Chem Soc 140:13550–13553PubMedPubMedCentral
Metadata
Title
Combined fluorescence-guided surgery and photodynamic therapy for glioblastoma multiforme using cyanine and chlorin nanocluster
Authors
Clare W. Teng
Ahmad Amirshaghaghi
Steve S. Cho
Shuting S. Cai
Emma De Ravin
Yash Singh
Joann Miller
Saad Sheikh
Edward Delikatny
Zhiliang Cheng
Theresa M. Busch
Jay F. Dorsey
Sunil Singhal
Andrew Tsourkas
John Y. K. Lee
Publication date
01-09-2020
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 2/2020
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-020-03618-1

Other articles of this Issue 2/2020

Journal of Neuro-Oncology 2/2020 Go to the issue