Skip to main content
Top
Published in: Journal of Neuro-Oncology 1/2009

01-10-2009 | Topic Review

Glioma recurrence versus radiation necrosis: accuracy of current imaging modalities

Authors: George A. Alexiou, Spyridon Tsiouris, Athanasios P. Kyritsis, Spyridon Voulgaris, Maria I. Argyropoulou, Andreas D. Fotopoulos

Published in: Journal of Neuro-Oncology | Issue 1/2009

Login to get access

Abstract

Treatment for brain gliomas is a combined approach of surgery, radiation therapy and chemotherapy. Nevertheless, high-grade gliomas usually recur despite treatment. Ionizing radiation therapy to the central nervous system may cause post-radiation damage. Differentiation between post-irradiation necrosis and recurrent glioma on the basis of clinical signs and symptomatology has not been possible. Computed tomography (CT) and magnetic resonance imaging (MRI) suffer from significant limitations when applied to differentiate recurrent brain tumor from radiation necrosis. We reviewed the contribution of recent MRI techniques, single-photon emission CT and positron emission tomography to discriminate necrosis for glioma recurrence. We concluded that despite the progress being made, further research is needed to establish reliable imaging modalities that distinguish between true tumour progression and treatment-related necrosis.
Literature
2.
go back to reference Fischer AW, Holfelder H (1930) Lokales amyloid im gehirn. Dtsch Z Chir 227:475–483CrossRef Fischer AW, Holfelder H (1930) Lokales amyloid im gehirn. Dtsch Z Chir 227:475–483CrossRef
3.
go back to reference Marks JE, Wong J (1985) The risk of cerebral radionecrosis in relation to dose, time and fractionation: a followup study. Prog Exp Tumor Res 29:210–218PubMedCrossRef Marks JE, Wong J (1985) The risk of cerebral radionecrosis in relation to dose, time and fractionation: a followup study. Prog Exp Tumor Res 29:210–218PubMedCrossRef
7.
go back to reference Brandes AA, Franceschi E, Tosoni A et al (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 1(26):2192–2197. doi:10.1200/JCO.2007.14.8163 CrossRef Brandes AA, Franceschi E, Tosoni A et al (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 1(26):2192–2197. doi:10.​1200/​JCO.​2007.​14.​8163 CrossRef
9.
go back to reference Burger PC (1986) Malignant astrocytic neoplasms: classification, pathologic anatomy, and response to treatment. Semin Oncol 13:16–26PubMed Burger PC (1986) Malignant astrocytic neoplasms: classification, pathologic anatomy, and response to treatment. Semin Oncol 13:16–26PubMed
11.
go back to reference Burger PC, Scheithauer BW (1994) Atlas of tumor pathology, 3rd series, fascicle 10: tumors of the central nervous system. Armed Forces Institute of Pathology, Washington, DC Burger PC, Scheithauer BW (1994) Atlas of tumor pathology, 3rd series, fascicle 10: tumors of the central nervous system. Armed Forces Institute of Pathology, Washington, DC
12.
go back to reference Carvalho PA, Schwartz RB, Alexander E III (1992) Detection of recurrent gliomas with quantitative thallium-201/technetium-99m HMPAO single-photon emission computerized tomography. J Neurosurg 77:565–570PubMedCrossRef Carvalho PA, Schwartz RB, Alexander E III (1992) Detection of recurrent gliomas with quantitative thallium-201/technetium-99m HMPAO single-photon emission computerized tomography. J Neurosurg 77:565–570PubMedCrossRef
13.
15.
go back to reference Kumar AJ, Leeds NE, Fuller GN (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and hemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384PubMedCrossRef Kumar AJ, Leeds NE, Fuller GN (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and hemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384PubMedCrossRef
16.
go back to reference Mullins ME, Barest GD, Schaefer PW, Hochberg FH, Gonzalez RG, Lev MH (2005) Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. AJNR Am J Neuroradiol 26:1967–1972PubMed Mullins ME, Barest GD, Schaefer PW, Hochberg FH, Gonzalez RG, Lev MH (2005) Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. AJNR Am J Neuroradiol 26:1967–1972PubMed
17.
go back to reference Stadnik TW, Chaskis C, Michotte A (2001) Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR Am J Neuroradiol 22:969–976PubMed Stadnik TW, Chaskis C, Michotte A (2001) Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR Am J Neuroradiol 22:969–976PubMed
18.
go back to reference Schaefer PW, Ozsunar Y, He J (2003) Assessing tissue viability with MR diffusion and perfusion imaging. AJNR Am J Neuroradiol 24:436–443PubMed Schaefer PW, Ozsunar Y, He J (2003) Assessing tissue viability with MR diffusion and perfusion imaging. AJNR Am J Neuroradiol 24:436–443PubMed
19.
go back to reference Marks JE, Baglan RJ, Prassad SC, Blank WF (1981) Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. Int J Radiat Oncol Biol Phys 7:243–252PubMedCrossRef Marks JE, Baglan RJ, Prassad SC, Blank WF (1981) Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. Int J Radiat Oncol Biol Phys 7:243–252PubMedCrossRef
20.
go back to reference Brunberg JA, Chenevert TL, McKeever PE (1995) In vivo MR determination of water diffusion coefficients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres. AJNR Am J Neuroradiol 16:361–371PubMed Brunberg JA, Chenevert TL, McKeever PE (1995) In vivo MR determination of water diffusion coefficients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres. AJNR Am J Neuroradiol 16:361–371PubMed
21.
go back to reference Lu S, Ahn D, Johnson G (2003) Peritumoral diffusion tensor imaging of high grade gliomas and metastatic brain tumors. AJNR Am J Neuroradiol 24:937–941PubMed Lu S, Ahn D, Johnson G (2003) Peritumoral diffusion tensor imaging of high grade gliomas and metastatic brain tumors. AJNR Am J Neuroradiol 24:937–941PubMed
23.
go back to reference Oppenheim C, Rodrigo S, Poupon C et al (2004) Diffusion tensor MR imaging of the brain: clinical applications. J Radiol 85:287–296 in FrenchPubMedCrossRef Oppenheim C, Rodrigo S, Poupon C et al (2004) Diffusion tensor MR imaging of the brain: clinical applications. J Radiol 85:287–296 in FrenchPubMedCrossRef
24.
go back to reference Le Bihan D, Douek P, Argyropoulou M et al (1993) Diffusion and perfusion magnetic resonance imaging in brain tumors. Top Magn Reson Imaging 5:25–31PubMedCrossRef Le Bihan D, Douek P, Argyropoulou M et al (1993) Diffusion and perfusion magnetic resonance imaging in brain tumors. Top Magn Reson Imaging 5:25–31PubMedCrossRef
25.
go back to reference Castillo M, Smith JK, Kwock L, Wilber K (2001) Apparent diffusion coefficients in the evaluation of high-grade cerebral gliomas. AJNR Am J Neuroradiol 22:60–64PubMed Castillo M, Smith JK, Kwock L, Wilber K (2001) Apparent diffusion coefficients in the evaluation of high-grade cerebral gliomas. AJNR Am J Neuroradiol 22:60–64PubMed
27.
go back to reference Kono K, Inoue Y, Nakayama K et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 22:1081–1088PubMed Kono K, Inoue Y, Nakayama K et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 22:1081–1088PubMed
29.
go back to reference Asao C, Korogi Y, Kitajima M et al (2005) Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol 26:1455–1460PubMed Asao C, Korogi Y, Kitajima M et al (2005) Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol 26:1455–1460PubMed
30.
go back to reference Hein PA, Eskey CJ, Dunn JF, Hug EB (2004) Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 25:201–209PubMed Hein PA, Eskey CJ, Dunn JF, Hug EB (2004) Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 25:201–209PubMed
32.
36.
go back to reference Sugahara T, Korogi Y, Tomiguchi S et al (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast- enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 21:901–909PubMed Sugahara T, Korogi Y, Tomiguchi S et al (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast- enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 21:901–909PubMed
38.
go back to reference Hollingworth LS, Medina RE, Lenkinski DK et al (2006) A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. AJNR Am J Neuroradiol 27:1404–1411PubMed Hollingworth LS, Medina RE, Lenkinski DK et al (2006) A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. AJNR Am J Neuroradiol 27:1404–1411PubMed
39.
go back to reference Ando K, Ishikura R, Nagami Y et al (2004) Usefulness of Cho/Cr ratio in protonMR spectroscopy for differentiating residual/recurrent glioma from non-neoplastic lesions. Nippon Igaku Hoshasen Gakkai Zasshi 64:121–126PubMed Ando K, Ishikura R, Nagami Y et al (2004) Usefulness of Cho/Cr ratio in protonMR spectroscopy for differentiating residual/recurrent glioma from non-neoplastic lesions. Nippon Igaku Hoshasen Gakkai Zasshi 64:121–126PubMed
40.
go back to reference Traber F, Block W, Flacke S et al (2002) 1H-MR Spectroscopy of brain tumors in the course of radiation therapy: use of fast spectroscopic imaging and singlevoxel spectroscopy for diagnosing recurrence. Rofo 174:33–42PubMedCrossRef Traber F, Block W, Flacke S et al (2002) 1H-MR Spectroscopy of brain tumors in the course of radiation therapy: use of fast spectroscopic imaging and singlevoxel spectroscopy for diagnosing recurrence. Rofo 174:33–42PubMedCrossRef
41.
go back to reference Lichy MP, Henze M, Plathow C et al (2004) Metabolic imaging to follow stereotactic radiation of gliomas—the role of1HMRspectroscopy in comparison toFDGPET and IMT-SPECT. Rofo 176:1114–1121PubMedCrossRef Lichy MP, Henze M, Plathow C et al (2004) Metabolic imaging to follow stereotactic radiation of gliomas—the role of1HMRspectroscopy in comparison toFDGPET and IMT-SPECT. Rofo 176:1114–1121PubMedCrossRef
43.
go back to reference Dowling C, Bollen AW, Noworolski SM et al (2001) Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 22:604–612PubMed Dowling C, Bollen AW, Noworolski SM et al (2001) Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 22:604–612PubMed
49.
go back to reference Kline JL, Noto RB, Glantz M (1996) Single-photon emission CT in the evaluation of recurrent brain tumor in patients treated with gamma knife radiosurgery or conventional radiation therapy. AJNR Am J Neuroradiol 17:1681–1686PubMed Kline JL, Noto RB, Glantz M (1996) Single-photon emission CT in the evaluation of recurrent brain tumor in patients treated with gamma knife radiosurgery or conventional radiation therapy. AJNR Am J Neuroradiol 17:1681–1686PubMed
50.
51.
go back to reference Henze M, Mohammed A, Schlemmer HP et al (2004) PET and SPECT for detection of tumor progression in irradiated low-grade astrocytoma: a receiver-operating-characteristic analysis. J Nucl Med 45:579–586PubMed Henze M, Mohammed A, Schlemmer HP et al (2004) PET and SPECT for detection of tumor progression in irradiated low-grade astrocytoma: a receiver-operating-characteristic analysis. J Nucl Med 45:579–586PubMed
53.
go back to reference Lamy-Lhullier C, Dubois F, Blond S et al (1999) Importance of cerebral tomoscintigraphy using technetium-labeled sestamibi in the differential diagnosis of current tumor vs radiation necrosis in subtentorial glial tumors in the adult. Neurochirurgie 45:110–117PubMed Lamy-Lhullier C, Dubois F, Blond S et al (1999) Importance of cerebral tomoscintigraphy using technetium-labeled sestamibi in the differential diagnosis of current tumor vs radiation necrosis in subtentorial glial tumors in the adult. Neurochirurgie 45:110–117PubMed
54.
go back to reference Barai S, Bandopadhayaya GP, Julka PK et al (2004) Evaluation of 99mTc-L-methionine brain SPECT for detection of recurrent brain tumor: a pilot study with radiological and pathological correlation. Acta Radiol 45:649–657. doi:10.1080/02841850410006740 PubMedCrossRef Barai S, Bandopadhayaya GP, Julka PK et al (2004) Evaluation of 99mTc-L-methionine brain SPECT for detection of recurrent brain tumor: a pilot study with radiological and pathological correlation. Acta Radiol 45:649–657. doi:10.​1080/​0284185041000674​0 PubMedCrossRef
55.
go back to reference Schwartz RB, Carvalho PA, Alexander E III et al (1991) Radiation necrosis vs high-grade recurrent glioma: differentiation by using dual-isotope SPECT with 201TI and 99mTc-HMPAO. AJNR Am J Neuroradiol 12:1187–1192PubMed Schwartz RB, Carvalho PA, Alexander E III et al (1991) Radiation necrosis vs high-grade recurrent glioma: differentiation by using dual-isotope SPECT with 201TI and 99mTc-HMPAO. AJNR Am J Neuroradiol 12:1187–1192PubMed
56.
go back to reference Slizofski WJ, Krishna L, Katsetos CD et al (1994) Thallium imaging for brain tumors with results measured by a semiquantitative index and correlated with histopathology. Cancer 74:3190–3197. doi:10.1002/1097-0142(19941215)74:12%3c3190::AID-CNCR2820741218%3e3.0.CO;2-#PubMedCrossRef Slizofski WJ, Krishna L, Katsetos CD et al (1994) Thallium imaging for brain tumors with results measured by a semiquantitative index and correlated with histopathology. Cancer 74:3190–3197. doi:10.1002/1097-0142(19941215)74:12%3c3190::AID-CNCR2820741218%3e3.0.CO;2-#PubMedCrossRef
57.
go back to reference Barai S, Bandopadhayaya G, Julka P et al (2004) Imaging of recurrent brain tumors with trivalent (99m)Tc-dimercaptosuccinic acid-initial results. Hell J Nucl Med 7:44–47PubMed Barai S, Bandopadhayaya G, Julka P et al (2004) Imaging of recurrent brain tumors with trivalent (99m)Tc-dimercaptosuccinic acid-initial results. Hell J Nucl Med 7:44–47PubMed
58.
60.
go back to reference Tsiouris S, Pirmettis I, Chatzipanagiotou T et al (2007) Pentavalent technetium-99m dimercaptosuccinic acid [99m Tc-(V)DMSA] brain scintitomography—a plausible non-invasive depicter of glioblastoma proliferation and therapy response. J Neurooncol 85:291–295. doi:10.1007/s11060-007-9410-7 PubMedCrossRef Tsiouris S, Pirmettis I, Chatzipanagiotou T et al (2007) Pentavalent technetium-99m dimercaptosuccinic acid [99m Tc-(V)DMSA] brain scintitomography—a plausible non-invasive depicter of glioblastoma proliferation and therapy response. J Neurooncol 85:291–295. doi:10.​1007/​s11060-007-9410-7 PubMedCrossRef
62.
go back to reference Barai S, Bandopadhayaya GP, Julka PK et al (2003) Evaluation of single photon emission computerised tomography (SPECT) using Tc99m-tetrofosmin as a diagnostic modality for recurrent posterior fossa tumours. J Postgrad Med 49:316–320PubMed Barai S, Bandopadhayaya GP, Julka PK et al (2003) Evaluation of single photon emission computerised tomography (SPECT) using Tc99m-tetrofosmin as a diagnostic modality for recurrent posterior fossa tumours. J Postgrad Med 49:316–320PubMed
63.
go back to reference Yoshii Y, Satou M, Yamamoto T et al (1993) The role of thallium-201 single photon emission tomography in the investigation and characterisation of brain tumours in man and their response to treatment. Eur J Nucl Med 20:39–45. doi:10.1007/BF02261244 PubMedCrossRef Yoshii Y, Satou M, Yamamoto T et al (1993) The role of thallium-201 single photon emission tomography in the investigation and characterisation of brain tumours in man and their response to treatment. Eur J Nucl Med 20:39–45. doi:10.​1007/​BF02261244 PubMedCrossRef
64.
go back to reference Macapinlac H, Scott A, Caluser C et al (1992) Comparison of T1-201 and Tc-99m-2-methoxy isobutyl isonitrile (MIBI) with MRI in the evaluation of recurl-ent brain tumors. J Nucl Med 33:867 Macapinlac H, Scott A, Caluser C et al (1992) Comparison of T1-201 and Tc-99m-2-methoxy isobutyl isonitrile (MIBI) with MRI in the evaluation of recurl-ent brain tumors. J Nucl Med 33:867
65.
go back to reference Kosuda S, Fujii H, Aoki S et al (1993) Reassessment of quantitative thallium-201 brain SPECT for miscellaneous brain tumors. Ann Nucl Med 7:257–263PubMedCrossRef Kosuda S, Fujii H, Aoki S et al (1993) Reassessment of quantitative thallium-201 brain SPECT for miscellaneous brain tumors. Ann Nucl Med 7:257–263PubMedCrossRef
66.
go back to reference Sasaki M, Ichiya Y, Kuwabara Y et al (1996) Hyperperfusion and hypermetabolism in brain radiation necrosis with epileptic activity. J Nucl Med 37:1174–1176PubMed Sasaki M, Ichiya Y, Kuwabara Y et al (1996) Hyperperfusion and hypermetabolism in brain radiation necrosis with epileptic activity. J Nucl Med 37:1174–1176PubMed
67.
go back to reference Yoshii Y, Moritake T, Suzuki K et al (1996) Cerebral radiation necrosis with accumulation of thallium 201 on single-photon emission CT. AJNR Am J Neuroradiol 17:1773–1776PubMed Yoshii Y, Moritake T, Suzuki K et al (1996) Cerebral radiation necrosis with accumulation of thallium 201 on single-photon emission CT. AJNR Am J Neuroradiol 17:1773–1776PubMed
68.
go back to reference Soler C, Beauchesne P, Maatougui K et al (1998) Technetium-99m sestamibi brain single-photon emission tomography for detection of recurrent gliomas after radiation therapy. Eur J Nucl Med 25:1649–1657. doi:10.1007/s002590050344 PubMedCrossRef Soler C, Beauchesne P, Maatougui K et al (1998) Technetium-99m sestamibi brain single-photon emission tomography for detection of recurrent gliomas after radiation therapy. Eur J Nucl Med 25:1649–1657. doi:10.​1007/​s002590050344 PubMedCrossRef
69.
go back to reference Mountz JM, Rosenfeld SS, Li Y (1993) Utility of T1-201 and Tc-99m-sestamibi SPECT for early determination of malignant tumor chemotherapy efficacy. J NucI Med 34:206R Mountz JM, Rosenfeld SS, Li Y (1993) Utility of T1-201 and Tc-99m-sestamibi SPECT for early determination of malignant tumor chemotherapy efficacy. J NucI Med 34:206R
70.
go back to reference Borodin OYU, Velichko OB, Garganeev AB, et al. (2000) Comparison of 99 mTc-MIBI SPECT and GD-enhanced MRI in detection of recurrent tumor in malignant. Eur J Nucl Med 27:154R Borodin OYU, Velichko OB, Garganeev AB, et al. (2000) Comparison of 99 mTc-MIBI SPECT and GD-enhanced MRI in detection of recurrent tumor in malignant. Eur J Nucl Med 27:154R
71.
go back to reference Palumbo B, Lupattelli M, Pelliccioli GP et al (2006) Association of 99mTc-MIBI brain SPECT and proton magnetic resonance spectroscopy (1H-MRS) to assess glioma recurrence after radiotherapy. Q J Nucl Med Mol Imaging 50:88–93PubMed Palumbo B, Lupattelli M, Pelliccioli GP et al (2006) Association of 99mTc-MIBI brain SPECT and proton magnetic resonance spectroscopy (1H-MRS) to assess glioma recurrence after radiotherapy. Q J Nucl Med Mol Imaging 50:88–93PubMed
74.
75.
go back to reference Barai S, Bandopadhayaya GP, Julka PK et al (2004) Imaging using Tc99m-tetrofosmin for the detection of the recurrence of brain tumour: a comparative study with Tc99m-glucoheptonate. J Postgrad Med 50:89–93PubMed Barai S, Bandopadhayaya GP, Julka PK et al (2004) Imaging using Tc99m-tetrofosmin for the detection of the recurrence of brain tumour: a comparative study with Tc99m-glucoheptonate. J Postgrad Med 50:89–93PubMed
76.
go back to reference Samnick S, Bader JB, Hellwig D et al (2002) Clinical value of iodine-123-alpha-methyl-l-tyrosine single-photon emission tomography in the differential diagnosis of recurrent brain tumor in patients pretreated for glioma at follow-up. J Clin Oncol 20:396–404. doi:10.1200/JCO.20.2.396 PubMedCrossRef Samnick S, Bader JB, Hellwig D et al (2002) Clinical value of iodine-123-alpha-methyl-l-tyrosine single-photon emission tomography in the differential diagnosis of recurrent brain tumor in patients pretreated for glioma at follow-up. J Clin Oncol 20:396–404. doi:10.​1200/​JCO.​20.​2.​396 PubMedCrossRef
77.
go back to reference Kuwert T, Woesler B, Morgenroth C et al (1998) Diagnosis of recurrent glioma with SPECT and iodine-123-alpha-methyl tyrosine. J Nucl Med 39:23–27PubMed Kuwert T, Woesler B, Morgenroth C et al (1998) Diagnosis of recurrent glioma with SPECT and iodine-123-alpha-methyl tyrosine. J Nucl Med 39:23–27PubMed
78.
go back to reference Henze M, Mohammed A, Schlemmer H et al (2002) Detection of tumour progression in the follow-up of irradiated low-grade astrocytomas: comparison of 3-[123I]iodo-alpha-methyl-l-tyrosine and 99mTc-MIBI SPET. Eur J Nucl Med Mol Imaging 29:1455–1461. doi:10.1007/s00259-002-0896-0 PubMedCrossRef Henze M, Mohammed A, Schlemmer H et al (2002) Detection of tumour progression in the follow-up of irradiated low-grade astrocytomas: comparison of 3-[123I]iodo-alpha-methyl-l-tyrosine and 99mTc-MIBI SPET. Eur J Nucl Med Mol Imaging 29:1455–1461. doi:10.​1007/​s00259-002-0896-0 PubMedCrossRef
79.
go back to reference Di Chiro G, Oldfield E, Wright DC et al (1988) Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am J Roentgenol 150:189–197PubMedCrossRef Di Chiro G, Oldfield E, Wright DC et al (1988) Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am J Roentgenol 150:189–197PubMedCrossRef
81.
go back to reference Kim EE, Chung S-K, Haynie TP et al (1992) Differentiation of residual or recurrent tumors from post-treatment changes in F-18 FDG PET. Radiographics 12:269–279PubMedCrossRef Kim EE, Chung S-K, Haynie TP et al (1992) Differentiation of residual or recurrent tumors from post-treatment changes in F-18 FDG PET. Radiographics 12:269–279PubMedCrossRef
82.
go back to reference Valk PE, Budinger TF, Levin VA (1988) PET of malignant tumors after interstitial brachytherapy: demonstration of metabolic activity and correlation with clinical outcome. J Neurosurg 69:830–838PubMedCrossRef Valk PE, Budinger TF, Levin VA (1988) PET of malignant tumors after interstitial brachytherapy: demonstration of metabolic activity and correlation with clinical outcome. J Neurosurg 69:830–838PubMedCrossRef
83.
go back to reference Glantz MJ, Hoffman JM, Coleman RE et al (1991) Identification of early recurrence of primary central nervous system tumors by 18F fluorodeoxyglucose positron emission tomography. Ann Neurol 29:347–355. doi:10.1002/ana.410290403 PubMedCrossRef Glantz MJ, Hoffman JM, Coleman RE et al (1991) Identification of early recurrence of primary central nervous system tumors by 18F fluorodeoxyglucose positron emission tomography. Ann Neurol 29:347–355. doi:10.​1002/​ana.​410290403 PubMedCrossRef
84.
go back to reference Ogawa T, Kanno I, Shishido F et al (1991) Clinical value of PET with [18F]fluorodeoxyglucose and l-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol 32:197–202PubMedCrossRef Ogawa T, Kanno I, Shishido F et al (1991) Clinical value of PET with [18F]fluorodeoxyglucose and l-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol 32:197–202PubMedCrossRef
85.
go back to reference Ricci PE, Karis JP, Heiserman JE et al (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 19:407–413PubMed Ricci PE, Karis JP, Heiserman JE et al (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 19:407–413PubMed
87.
go back to reference Gómez-Río M, Rodríguez-Fernández A, Ramos-Font C et al (2008) Diagnostic accuracy of 201Thallium-SPECT and 18F-FDG-PET in the clinical assessment of glioma recurrence. Eur J Nucl Med Mol Imaging 35:966–975. doi:10.1007/s00259-007-0661-5 PubMedCrossRef Gómez-Río M, Rodríguez-Fernández A, Ramos-Font C et al (2008) Diagnostic accuracy of 201Thallium-SPECT and 18F-FDG-PET in the clinical assessment of glioma recurrence. Eur J Nucl Med Mol Imaging 35:966–975. doi:10.​1007/​s00259-007-0661-5 PubMedCrossRef
88.
go back to reference Kahn D, Follett KA, Bushnell DL et al (1994) Diagnosis of recurrent brain tumor: value of 201Tl SPECT vs 18F-fluorodeoxyglucose PET. AJR Am J Roentgenol 163:1459–1465PubMedCrossRef Kahn D, Follett KA, Bushnell DL et al (1994) Diagnosis of recurrent brain tumor: value of 201Tl SPECT vs 18F-fluorodeoxyglucose PET. AJR Am J Roentgenol 163:1459–1465PubMedCrossRef
89.
go back to reference Stokkel M, Stevens H, Taphoorn M et al (1999) Differentiation between recurrent brain tumour and post-radiation necrosis: the value of 201Tl SPET versus 18F-FDG PET using a dual-headed coincidence camera—a pilot study. Nucl Med Commun 20:411–417PubMedCrossRef Stokkel M, Stevens H, Taphoorn M et al (1999) Differentiation between recurrent brain tumour and post-radiation necrosis: the value of 201Tl SPET versus 18F-FDG PET using a dual-headed coincidence camera—a pilot study. Nucl Med Commun 20:411–417PubMedCrossRef
91.
go back to reference Tsuyuguchi N, Takami T, Sunada I et al (2004) Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery—in malignant glioma. Ann Nucl Med 18:291–296. doi:10.1007/BF02984466 PubMedCrossRef Tsuyuguchi N, Takami T, Sunada I et al (2004) Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery—in malignant glioma. Ann Nucl Med 18:291–296. doi:10.​1007/​BF02984466 PubMedCrossRef
92.
go back to reference Sonoda Y, Kumabe T, Takahashi T et al (1998) Clinical usefulness of 11C-MET PET and 201T1 SPECT for differentiation of recurrent glioma from radiation necrosis. Neurol Med Chir 38:342–347. doi:10.2176/nmc.38.342 (Tokyo)CrossRef Sonoda Y, Kumabe T, Takahashi T et al (1998) Clinical usefulness of 11C-MET PET and 201T1 SPECT for differentiation of recurrent glioma from radiation necrosis. Neurol Med Chir 38:342–347. doi:10.​2176/​nmc.​38.​342 (Tokyo)CrossRef
93.
go back to reference Van Laere K, Ceyssens S, Van Calenbergh F et al (2005) Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 32:39–51. doi:10.1007/s00259-004-1564-3 PubMedCrossRef Van Laere K, Ceyssens S, Van Calenbergh F et al (2005) Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 32:39–51. doi:10.​1007/​s00259-004-1564-3 PubMedCrossRef
94.
go back to reference Jacobs AH, Thomas A, Kracht LW et al (2005) 18F-fluoro-l-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46:1948–1958PubMed Jacobs AH, Thomas A, Kracht LW et al (2005) 18F-fluoro-l-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46:1948–1958PubMed
95.
go back to reference Chen W, Cloughesy T, Kamdar N et al (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46:945–952PubMed Chen W, Cloughesy T, Kamdar N et al (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46:945–952PubMed
96.
go back to reference Yamamoto Y, Wong TZ, Turkington TG et al (2006) 3′-Deoxy-3′-[F-18]fluorothymidine positron emission tomography in patients with recurrent glioblastoma multiforme: comparison with Gd-DTPA enhanced magnetic resonance imaging. Mol Imaging Biol 8:340–347. doi:10.1007/s11307-006-0063-2 PubMedCrossRef Yamamoto Y, Wong TZ, Turkington TG et al (2006) 3′-Deoxy-3′-[F-18]fluorothymidine positron emission tomography in patients with recurrent glioblastoma multiforme: comparison with Gd-DTPA enhanced magnetic resonance imaging. Mol Imaging Biol 8:340–347. doi:10.​1007/​s11307-006-0063-2 PubMedCrossRef
97.
go back to reference Chen W, Silverman DH, Delaloye S et al (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47:904–911PubMed Chen W, Silverman DH, Delaloye S et al (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47:904–911PubMed
101.
go back to reference Mehrkens JH, Pöpperl G, Rachinger W et al (2008) The positive predictive value of O-(2-[18F]fluoroethyl)-l-tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment. J Neurooncol 88:27–35. doi:10.1007/s11060-008-9526-4 PubMedCrossRef Mehrkens JH, Pöpperl G, Rachinger W et al (2008) The positive predictive value of O-(2-[18F]fluoroethyl)-l-tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment. J Neurooncol 88:27–35. doi:10.​1007/​s11060-008-9526-4 PubMedCrossRef
Metadata
Title
Glioma recurrence versus radiation necrosis: accuracy of current imaging modalities
Authors
George A. Alexiou
Spyridon Tsiouris
Athanasios P. Kyritsis
Spyridon Voulgaris
Maria I. Argyropoulou
Andreas D. Fotopoulos
Publication date
01-10-2009
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 1/2009
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-009-9897-1

Other articles of this Issue 1/2009

Journal of Neuro-Oncology 1/2009 Go to the issue