Skip to main content
Top
Published in: Journal of Neuro-Oncology 2/2007

01-11-2007 | Lab Investigation-Human/Animal Tissue

Organotypic distribution of stem cell markers in formalin-fixed brain harboring glioblastoma multiforme

Authors: Rudolph J. Schrot, Joyce H. Ma, Claudia M. Greco, Angelo D. Arias, James M. Angelastro

Published in: Journal of Neuro-Oncology | Issue 2/2007

Login to get access

Abstract

The role of stem cells in the origin, growth patterns, and infiltration of glioblastoma multiforme is a subject of intense investigation. One possibility is that glioblastoma may arise from transformed stem cells in the ventricular zone. To explore this hypothesis, we examined the distribution of two stem cell markers, activating transcription factor 5 (ATF5) and CD133, in an autopsy brain specimen from an individual with glioblastoma multiforme. A 41-year-old male with a right posterior temporal glioblastoma had undergone surgery, radiation, and chemotherapy. The brain was harvested within several hours after death. After formalin fixation, sectioning, and mapping of tumor location in the gross specimen, histologic specimens were prepared from tumor-bearing and grossly normal hemispheres. Fluorescence immunohistochemistry and colorimetric staining were performed for ATF5 and CD133. Both markers co-localized to the ependymal and subependymal zones on the side of the tumor, but not in the normal hemisphere or more rostrally in the affected hemisphere. ATF5 staining was especially robust within the diseased hemisphere in histologically normal ependyma. To our knowledge, this is the first in situ demonstration of stem cell markers in whole human brain. These preliminary results support the hypothesis that some glioblastomas may arise from the neurogenic zone of the lateral ventricle. The robust staining for ATF5 and CD133 in histologically normal ventricular zone suggests that an increase in periventricular stem cell activity occurred in this patient on the side of the tumor, either as a localized response to brain injury or as an integral component of oncogenesis and tumor recurrence.
Literature
1.
go back to reference Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353:811–822PubMedCrossRef Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353:811–822PubMedCrossRef
2.
go back to reference Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia Verdugo J, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744PubMedCrossRef Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia Verdugo J, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744PubMedCrossRef
3.
go back to reference Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMed Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMed
4.
go back to reference Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRef Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRef
5.
go back to reference Quinones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadeh Z, Gil-Perotin S, Romero-Rodriguez R, Berger MS, Garcia-Verdugo JM, Alvarez-Buylla A (2006) Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 494:415–434PubMedCrossRef Quinones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadeh Z, Gil-Perotin S, Romero-Rodriguez R, Berger MS, Garcia-Verdugo JM, Alvarez-Buylla A (2006) Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 494:415–434PubMedCrossRef
6.
go back to reference Druckrey H, Ivankovic S, Preussmann R (1966) Teratogenic and carcinogenic effects in the offspring after single injection of ethylnitrosourea to pregnant rats. Nature 210:1378–1379PubMedCrossRef Druckrey H, Ivankovic S, Preussmann R (1966) Teratogenic and carcinogenic effects in the offspring after single injection of ethylnitrosourea to pregnant rats. Nature 210:1378–1379PubMedCrossRef
7.
go back to reference Lantos PL, Cox DJ (1976) The origin of experimental brain tumours: a sequential study. Experientia 32:1467–1468PubMedCrossRef Lantos PL, Cox DJ (1976) The origin of experimental brain tumours: a sequential study. Experientia 32:1467–1468PubMedCrossRef
8.
go back to reference Yaşargil M (1984) Microneurosurgery. Thieme Stratton, New York Yaşargil M (1984) Microneurosurgery. Thieme Stratton, New York
9.
go back to reference Pilkington GJ, Lantos PL (1979) The development of experimental brain tumours a sequential light and electron microscope study of the subependymal plate. II. Microtumours. Acta Neuropathol (Berl) 45:177–185CrossRef Pilkington GJ, Lantos PL (1979) The development of experimental brain tumours a sequential light and electron microscope study of the subependymal plate. II. Microtumours. Acta Neuropathol (Berl) 45:177–185CrossRef
10.
go back to reference Angelastro JM, Canoll PD, Kuo J, Weicker M, Costa A, Bruce JN, Greene LA (2006) Selective destruction of glioblastoma cells by interference with the activity or expression of ATF5. Oncogene 25:907–916PubMedCrossRef Angelastro JM, Canoll PD, Kuo J, Weicker M, Costa A, Bruce JN, Greene LA (2006) Selective destruction of glioblastoma cells by interference with the activity or expression of ATF5. Oncogene 25:907–916PubMedCrossRef
11.
go back to reference Angelastro JM, Ignatova TN, Kukekov VG, Steindler DA, Stengren GB, Mendelsohn C, Greene LA (2003) Regulated expression of ATF5 is required for the progression of neural progenitor cells to neurons. J Neurosci 23:4590–4600PubMed Angelastro JM, Ignatova TN, Kukekov VG, Steindler DA, Stengren GB, Mendelsohn C, Greene LA (2003) Regulated expression of ATF5 is required for the progression of neural progenitor cells to neurons. J Neurosci 23:4590–4600PubMed
12.
go back to reference Angelastro JM, Mason JL, Ignatova TN, Kukekov VG, Stengren GB, Goldman JE, Greene LA (2005) Downregulation of activating transcription factor 5 is required for differentiation of neural progenitor cells into astrocytes. J Neurosci 25:3889–3899PubMedCrossRef Angelastro JM, Mason JL, Ignatova TN, Kukekov VG, Stengren GB, Goldman JE, Greene LA (2005) Downregulation of activating transcription factor 5 is required for differentiation of neural progenitor cells into astrocytes. J Neurosci 25:3889–3899PubMedCrossRef
13.
go back to reference Mason JL, Angelastro JM, Ignatova TN, Kukekov VG, Lin G, Greene LA, Goldman JE (2005) ATF5 regulates the proliferation and differentiation of oligodendrocytes. Mol Cell Neurosci 29:372–380PubMedCrossRef Mason JL, Angelastro JM, Ignatova TN, Kukekov VG, Lin G, Greene LA, Goldman JE (2005) ATF5 regulates the proliferation and differentiation of oligodendrocytes. Mol Cell Neurosci 29:372–380PubMedCrossRef
14.
go back to reference Spassky N, Merkle FT, Flames N, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25:10–18PubMedCrossRef Spassky N, Merkle FT, Flames N, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25:10–18PubMedCrossRef
15.
go back to reference Globus J, Kuhlenbeck H (1944) The subependymal cell plate (matrix) and its relationship to brain tumors of the ependymal type. J Neuropathol Exp Neurol 3:1–35 Globus J, Kuhlenbeck H (1944) The subependymal cell plate (matrix) and its relationship to brain tumors of the ependymal type. J Neuropathol Exp Neurol 3:1–35
16.
go back to reference Globus J, Kuhlenbeck H (1942) Tumors of the striatothalamic and related regions: their probable source of origin and more common forms. Arch Pathol 24:674–734 Globus J, Kuhlenbeck H (1942) Tumors of the striatothalamic and related regions: their probable source of origin and more common forms. Arch Pathol 24:674–734
17.
go back to reference Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317PubMedCrossRef Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317PubMedCrossRef
18.
go back to reference Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP, Messing A, Parada LF (2005) Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8:119–130PubMedCrossRef Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP, Messing A, Parada LF (2005) Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8:119–130PubMedCrossRef
19.
go back to reference Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P (2006) Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 26:6781–6790PubMedCrossRef Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P (2006) Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 26:6781–6790PubMedCrossRef
21.
go back to reference Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34PubMedCrossRef Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34PubMedCrossRef
22.
Metadata
Title
Organotypic distribution of stem cell markers in formalin-fixed brain harboring glioblastoma multiforme
Authors
Rudolph J. Schrot
Joyce H. Ma
Claudia M. Greco
Angelo D. Arias
James M. Angelastro
Publication date
01-11-2007
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 2/2007
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-007-9401-8

Other articles of this Issue 2/2007

Journal of Neuro-Oncology 2/2007 Go to the issue