Skip to main content
Top
Published in: Metabolic Brain Disease 4/2023

11-03-2023 | Glioblastoma | Original Article

Circular RNA circ_0000741/miR-379-5p/TRIM14 signaling axis promotes HDAC inhibitor (SAHA) tolerance in glioblastoma

Authors: Liang Meng, Yuefei Wang, Qin Tu, Yuan Zhu, Xiaoqin Dai, Ji Yang

Published in: Metabolic Brain Disease | Issue 4/2023

Login to get access

Abstract

Background

Histone deacetylase (HDAC) inhibitor-based therapeutic drug tolerance is a major obstacle to glioblastoma (GBM) treatment. Meanwhile, non-coding RNAs have been reported to be involved in the regulation of HDAC inhibitor (SAHA) tolerance in some human tumors. However, the relationship between circular RNAs (circRNAs) and SAHA tolerance is still unknown. Herein, we explored the role and mechanism of circ_0000741 on SAHA tolerance in GBM.

Methods

Circ_0000741, microRNA-379-5p (miR-379-5p), and tripartite motif-containing 14 (TRIM14) level were detected by real-time quantitative polymerase chain reaction (RT-qPCR). (4-5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2’-deoxyuridine (EdU), Colony formation, flow cytometry, and transwell assays were used to detect SAHA tolerance, proliferation, apoptosis, and invasion in SAHA-tolerant GBM cells. Western blot analysis of protein levels of E-cadherin, N-cadherin, and TRIM14. After Starbase2.0 analysis, the binding between miR-379-5p and circ_0000741 or TRIM14 was proved using a dual-luciferase reporter. The role of circ_0000741 on drug tolerance was assessed using a xenograft tumor model in vivo.

Results

Circ_0000741 and TRIM14 were upregulated, and miR-379-5p was reduced in SAHA-tolerant GBM cells. Furthermore, circ_0000741 absence reduced SAHA tolerance, suppressed proliferation, invasion, and induced apoptosis in SAHA-tolerant GBM cells. Mechanistically, circ_0000741 might affect TRIM14 content via sponging miR-379-5p. Besides, circ_0000741 silencing enhanced the drug sensitivity of GBM in vivo.

Conclusion

Circ_0000741 might accelerate SAHA tolerance by regulating the miR-379-5p/TRIM14 axis, which provided a promising therapeutic target for GBM treatment.
Appendix
Available only for authorised users
Literature
go back to reference Abbas MN, Kausar S, Cui H (2020) Therapeutic potential of natural products in glioblastoma treatment: targeting key glioblastoma signaling pathways and epigenetic alterations. Clin Transl Oncol 22(7):963–977PubMedCrossRef Abbas MN, Kausar S, Cui H (2020) Therapeutic potential of natural products in glioblastoma treatment: targeting key glioblastoma signaling pathways and epigenetic alterations. Clin Transl Oncol 22(7):963–977PubMedCrossRef
go back to reference Adams CM, Eischen CM (2016) Histone deacetylase inhibition reveals a tumor-suppressive function of MYC-regulated miRNA in breast and lung carcinoma. Cell Death Differ 23(8):1312–1321PubMedPubMedCentralCrossRef Adams CM, Eischen CM (2016) Histone deacetylase inhibition reveals a tumor-suppressive function of MYC-regulated miRNA in breast and lung carcinoma. Cell Death Differ 23(8):1312–1321PubMedPubMedCentralCrossRef
go back to reference Belousova EA, Filipenko ML, Kushlinskii NE (2018) Circular RNA: New Regulatory Molecules. Bull Exp Biol Med 164(6):803–815PubMedCrossRef Belousova EA, Filipenko ML, Kushlinskii NE (2018) Circular RNA: New Regulatory Molecules. Bull Exp Biol Med 164(6):803–815PubMedCrossRef
go back to reference Bhat AA, Younes SN, Raza SS, Zarif L, Nisar S, Ahmed I et al (2020) Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance. Mol Cancer 19(1):57PubMedPubMedCentralCrossRef Bhat AA, Younes SN, Raza SS, Zarif L, Nisar S, Ahmed I et al (2020) Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance. Mol Cancer 19(1):57PubMedPubMedCentralCrossRef
go back to reference Bian X, Liang Z, Feng A, Salgado E, Shim H (2018) HDAC inhibitor suppresses proliferation and invasion of breast cancer cells through regulation of miR-200c targeting CRKL. Biochem Pharmacol 147:30–37PubMedCrossRef Bian X, Liang Z, Feng A, Salgado E, Shim H (2018) HDAC inhibitor suppresses proliferation and invasion of breast cancer cells through regulation of miR-200c targeting CRKL. Biochem Pharmacol 147:30–37PubMedCrossRef
go back to reference Campos B, Olsen LR, Urup T, Poulsen HS (2016) A comprehensive profile of recurrent glioblastoma. Oncogene 35(45):5819–5825PubMedCrossRef Campos B, Olsen LR, Urup T, Poulsen HS (2016) A comprehensive profile of recurrent glioblastoma. Oncogene 35(45):5819–5825PubMedCrossRef
go back to reference Chen B, Chen C, Zhang Y, Xu J (2021) Recent incidence trend of elderly patients with glioblastoma in the United States, 2000–2017. BMC Cancer 21(1):54PubMedPubMedCentralCrossRef Chen B, Chen C, Zhang Y, Xu J (2021) Recent incidence trend of elderly patients with glioblastoma in the United States, 2000–2017. BMC Cancer 21(1):54PubMedPubMedCentralCrossRef
go back to reference Deng Y, Zhu H, Xiao L, Liu C, Meng X (2020) Circ_0005198 enhances temozolomide resistance of glioma cells through miR-198/TRIM14 axis. Aging 13(2):2198–2211PubMedPubMedCentralCrossRef Deng Y, Zhu H, Xiao L, Liu C, Meng X (2020) Circ_0005198 enhances temozolomide resistance of glioma cells through miR-198/TRIM14 axis. Aging 13(2):2198–2211PubMedPubMedCentralCrossRef
go back to reference Feng S, Cai X, Li Y, Jian X, Zhang L, Li B (2019) Tripartite motif-containing 14 (TRIM14) promotes epithelial-mesenchymal transition via ZEB2 in glioblastoma cells. J Exp Clin Cancer Res 38(1):57PubMedPubMedCentralCrossRef Feng S, Cai X, Li Y, Jian X, Zhang L, Li B (2019) Tripartite motif-containing 14 (TRIM14) promotes epithelial-mesenchymal transition via ZEB2 in glioblastoma cells. J Exp Clin Cancer Res 38(1):57PubMedPubMedCentralCrossRef
go back to reference Ghasabi M, Mansoori B, Mohammadi A, Duijf PH, Shomali N, Shirafkan N et al (2019) MicroRNAs in cancer drug resistance: basic evidence and clinical applications. J Cell Physiol 234(3):2152–2168PubMedCrossRef Ghasabi M, Mansoori B, Mohammadi A, Duijf PH, Shomali N, Shirafkan N et al (2019) MicroRNAs in cancer drug resistance: basic evidence and clinical applications. J Cell Physiol 234(3):2152–2168PubMedCrossRef
go back to reference Glenfield C, McLysaght A (2018) Pseudogenes provide evolutionary evidence for the competitive endogenous RNA hypothesis. Mol Biol Evol 35(12):2886–2899PubMedPubMedCentral Glenfield C, McLysaght A (2018) Pseudogenes provide evolutionary evidence for the competitive endogenous RNA hypothesis. Mol Biol Evol 35(12):2886–2899PubMedPubMedCentral
go back to reference Grillone K, Riillo C, Scionti F, Rocca R, Tradigo G, Guzzi PH et al (2020) Non-coding RNAs in cancer: platforms and strategies for investigating the genomic “dark matter”. J Exp Clin Cancer Res 39(1):117PubMedPubMedCentralCrossRef Grillone K, Riillo C, Scionti F, Rocca R, Tradigo G, Guzzi PH et al (2020) Non-coding RNAs in cancer: platforms and strategies for investigating the genomic “dark matter”. J Exp Clin Cancer Res 39(1):117PubMedPubMedCentralCrossRef
go back to reference Gusyatiner O, Hegi ME (2018) Glioma epigenetics: from subclassification to novel treatment options. Semin Cancer Biol 51:50–58PubMedCrossRef Gusyatiner O, Hegi ME (2018) Glioma epigenetics: from subclassification to novel treatment options. Semin Cancer Biol 51:50–58PubMedCrossRef
go back to reference Hallal S, Mallawaaratchy DM, Wei H, Ebrahimkhani S, Stringer BW, Day BW et al (2019) Extracellular vesicles released by Glioblastoma cells stimulate normal astrocytes to acquire a tumor-supportive phenotype Via p53 and MYC signaling pathways. Mol Neurobiol 56(6):4566–4581PubMedCrossRef Hallal S, Mallawaaratchy DM, Wei H, Ebrahimkhani S, Stringer BW, Day BW et al (2019) Extracellular vesicles released by Glioblastoma cells stimulate normal astrocytes to acquire a tumor-supportive phenotype Via p53 and MYC signaling pathways. Mol Neurobiol 56(6):4566–4581PubMedCrossRef
go back to reference Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388PubMedCrossRef Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388PubMedCrossRef
go back to reference He C, Wang X, Du M, Dong Y (2021) LncRNA MSC-AS1 Promotes Colorectal Cancer Progression by Regulating miR-325/TRIM14 Axis. J Oncol 2021:9954214 He C, Wang X, Du M, Dong Y (2021) LncRNA MSC-AS1 Promotes Colorectal Cancer Progression by Regulating miR-325/TRIM14 Axis. J Oncol 2021:9954214
go back to reference Jiang Y, Zhao J, Xu J, Zhang H, Zhou J, Li H et al (2022) Glioblastoma-associated microglia-derived exosomal circKIF18A promotes angiogenesis by targeting FOXC2. Oncogene 41(26):3461–3473PubMedCrossRef Jiang Y, Zhao J, Xu J, Zhang H, Zhou J, Li H et al (2022) Glioblastoma-associated microglia-derived exosomal circKIF18A promotes angiogenesis by targeting FOXC2. Oncogene 41(26):3461–3473PubMedCrossRef
go back to reference Jones PA, Issa JP, Baylin S (2016) Targeting the cancer epigenome for therapy. Nat Rev Genet 17(10):630–641PubMedCrossRef Jones PA, Issa JP, Baylin S (2016) Targeting the cancer epigenome for therapy. Nat Rev Genet 17(10):630–641PubMedCrossRef
go back to reference Khathayer F, Taylor MA, Ray SK (2020) Synergism of 4HPR and SAHA increases anti-tumor actions in glioblastoma cells. Apoptosis 25(3–4):217–232PubMedCrossRef Khathayer F, Taylor MA, Ray SK (2020) Synergism of 4HPR and SAHA increases anti-tumor actions in glioblastoma cells. Apoptosis 25(3–4):217–232PubMedCrossRef
go back to reference Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20(11):675–691PubMedCrossRef Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20(11):675–691PubMedCrossRef
go back to reference Kristensen LS, Jakobsen T, Hager H, Kjems J (2022) The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol 19(3):188–206PubMedCrossRef Kristensen LS, Jakobsen T, Hager H, Kjems J (2022) The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol 19(3):188–206PubMedCrossRef
go back to reference Kunadis E, Lakiotaki E, Korkolopoulou P, Piperi C (2021) Targeting post-translational histone modifying enzymes in glioblastoma. Pharmacol Ther 220:107721PubMedCrossRef Kunadis E, Lakiotaki E, Korkolopoulou P, Piperi C (2021) Targeting post-translational histone modifying enzymes in glioblastoma. Pharmacol Ther 220:107721PubMedCrossRef
go back to reference Li X, Yang L, Chen LL (2018) The Biogenesis, Functions, and Challenges of Circular RNAs. Mol Cell 71(3):428–442PubMedCrossRef Li X, Yang L, Chen LL (2018) The Biogenesis, Functions, and Challenges of Circular RNAs. Mol Cell 71(3):428–442PubMedCrossRef
go back to reference Li S, Teng S, Xu J, Su G, Zhang Y, Zhao J et al (2019) Microarray is an efficient tool for circRNA profiling. Brief Bioinform 20(4):1420–1433PubMedCrossRef Li S, Teng S, Xu J, Su G, Zhang Y, Zhao J et al (2019) Microarray is an efficient tool for circRNA profiling. Brief Bioinform 20(4):1420–1433PubMedCrossRef
go back to reference Li X, Wang N, Leng H, Yuan H, Xu L (2022) Hsa_circ_0043949 reinforces temozolomide resistance via upregulating oncogene ITGA1 axis in glioblastoma. Metab Brain Dis 37(8):2979–2993PubMedCrossRef Li X, Wang N, Leng H, Yuan H, Xu L (2022) Hsa_circ_0043949 reinforces temozolomide resistance via upregulating oncogene ITGA1 axis in glioblastoma. Metab Brain Dis 37(8):2979–2993PubMedCrossRef
go back to reference Lopez-Jimenez E, Rojas AM, Andres-Leon E (2018) RNA sequencing and prediction tools for circular RNAs analysis. Adv Exp Med Biol 1087:17–33PubMedCrossRef Lopez-Jimenez E, Rojas AM, Andres-Leon E (2018) RNA sequencing and prediction tools for circular RNAs analysis. Adv Exp Med Biol 1087:17–33PubMedCrossRef
go back to reference Lv X, Wang M, Qiang J, Guo S (2019) Circular RNA circ-PITX1 promotes the progression of glioblastoma by acting as a competing endogenous RNA to regulate miR-379-5p/MAP3K2 axis. Eur J Pharmacol 863:172643PubMedCrossRef Lv X, Wang M, Qiang J, Guo S (2019) Circular RNA circ-PITX1 promotes the progression of glioblastoma by acting as a competing endogenous RNA to regulate miR-379-5p/MAP3K2 axis. Eur J Pharmacol 863:172643PubMedCrossRef
go back to reference Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y et al (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol 15(Suppl 2):ii1–56PubMedPubMedCentralCrossRef Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y et al (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol 15(Suppl 2):ii1–56PubMedPubMedCentralCrossRef
go back to reference Pastorino O, Gentile MT, Mancini A, Del Gaudio N, Di Costanzo A, Bajetto A et al (2019) Histone deacetylase inhibitors impair vasculogenic mimicry from Glioblastoma cells. Cancers (Basel) 11(6):747PubMedCrossRef Pastorino O, Gentile MT, Mancini A, Del Gaudio N, Di Costanzo A, Bajetto A et al (2019) Histone deacetylase inhibitors impair vasculogenic mimicry from Glioblastoma cells. Cancers (Basel) 11(6):747PubMedCrossRef
go back to reference Rajaratnam V, Islam MM, Yang M, Slaby R, Ramirez HM, Mirza SP (2020) Glioblastoma: pathogenesis and current status of Chemotherapy and other Novel treatments. Cancers (Basel) 12(4):937PubMedCrossRef Rajaratnam V, Islam MM, Yang M, Slaby R, Ramirez HM, Mirza SP (2020) Glioblastoma: pathogenesis and current status of Chemotherapy and other Novel treatments. Cancers (Basel) 12(4):937PubMedCrossRef
go back to reference Ramaiah MJ, Tangutur AD, Manyam RR (2021) Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci 277:119504PubMedCrossRef Ramaiah MJ, Tangutur AD, Manyam RR (2021) Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci 277:119504PubMedCrossRef
go back to reference Singh D, Assaraf YG, Gacche RN (2022) Long non-coding RNA mediated drug resistance in breast cancer. Drug Resist Updat 63:100851PubMedCrossRef Singh D, Assaraf YG, Gacche RN (2022) Long non-coding RNA mediated drug resistance in breast cancer. Drug Resist Updat 63:100851PubMedCrossRef
go back to reference Tan Z, Song L, Wu W, Zhou Y, Zhu J, Wu G et al (2018) TRIM14 promotes chemoresistance in gliomas by activating Wnt/beta-catenin signaling via stabilizing Dvl2. Oncogene 37(40):5403–5415PubMedCrossRef Tan Z, Song L, Wu W, Zhou Y, Zhu J, Wu G et al (2018) TRIM14 promotes chemoresistance in gliomas by activating Wnt/beta-catenin signaling via stabilizing Dvl2. Oncogene 37(40):5403–5415PubMedCrossRef
go back to reference Toden S, Zumwalt TJ, Goel A (2021) Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer 1875(1):188491PubMedCrossRef Toden S, Zumwalt TJ, Goel A (2021) Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer 1875(1):188491PubMedCrossRef
go back to reference Touat M, Idbaih A, Sanson M, Ligon KL (2017) Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann Oncol 28(7):1457–1472PubMedPubMedCentralCrossRef Touat M, Idbaih A, Sanson M, Ligon KL (2017) Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann Oncol 28(7):1457–1472PubMedPubMedCentralCrossRef
go back to reference Uddin MS, Mamun AA, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS et al (2022) Epigenetics of glioblastoma multiforme: from molecular mechanisms to therapeutic approaches. Semin Cancer Biol 83:100–120PubMedCrossRef Uddin MS, Mamun AA, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS et al (2022) Epigenetics of glioblastoma multiforme: from molecular mechanisms to therapeutic approaches. Semin Cancer Biol 83:100–120PubMedCrossRef
go back to reference Wei JW, Huang K, Yang C, Kang CS (2017) Non-coding RNAs as regulators in epigenetics (review). Oncol Rep 37(1):3–9PubMedCrossRef Wei JW, Huang K, Yang C, Kang CS (2017) Non-coding RNAs as regulators in epigenetics (review). Oncol Rep 37(1):3–9PubMedCrossRef
go back to reference Xue F, Cheng Y, Xu L, Tian C, Jiao H, Wang R et al (2020) LncRNA NEAT1/miR-129/Bcl-2 signaling axis contributes to HDAC inhibitor tolerance in nasopharyngeal cancer. Aging 12(14):14174–14188PubMedPubMedCentralCrossRef Xue F, Cheng Y, Xu L, Tian C, Jiao H, Wang R et al (2020) LncRNA NEAT1/miR-129/Bcl-2 signaling axis contributes to HDAC inhibitor tolerance in nasopharyngeal cancer. Aging 12(14):14174–14188PubMedPubMedCentralCrossRef
go back to reference Yamamoto K, Seike M, Takeuchi S, Soeno C, Miyanaga A, Noro R et al (2014) MiR-379/411 cluster regulates IL-18 and contributes to drug resistance in malignant pleural mesothelioma. Oncol Rep 32(6):2365–2372PubMedCrossRef Yamamoto K, Seike M, Takeuchi S, Soeno C, Miyanaga A, Noro R et al (2014) MiR-379/411 cluster regulates IL-18 and contributes to drug resistance in malignant pleural mesothelioma. Oncol Rep 32(6):2365–2372PubMedCrossRef
go back to reference Zhang HD, Jiang LH, Sun DW, Hou JC, Ji ZL (2018a) CircRNA: a novel type of biomarker for cancer. Breast Cancer 25(1):1–7PubMedCrossRef Zhang HD, Jiang LH, Sun DW, Hou JC, Ji ZL (2018a) CircRNA: a novel type of biomarker for cancer. Breast Cancer 25(1):1–7PubMedCrossRef
go back to reference Zhang C, Zhou Y, Gao Y, Zhu Z, Zeng X, Liang W et al (2022) Radiated glioblastoma cell-derived exosomal circ_0012381 induce M2 polarization of microglia to promote the growth of glioblastoma by CCL2/CCR2 axis. J Transl Med 20(1):388PubMedPubMedCentralCrossRef Zhang C, Zhou Y, Gao Y, Zhu Z, Zeng X, Liang W et al (2022) Radiated glioblastoma cell-derived exosomal circ_0012381 induce M2 polarization of microglia to promote the growth of glioblastoma by CCL2/CCR2 axis. J Transl Med 20(1):388PubMedPubMedCentralCrossRef
Metadata
Title
Circular RNA circ_0000741/miR-379-5p/TRIM14 signaling axis promotes HDAC inhibitor (SAHA) tolerance in glioblastoma
Authors
Liang Meng
Yuefei Wang
Qin Tu
Yuan Zhu
Xiaoqin Dai
Ji Yang
Publication date
11-03-2023
Publisher
Springer US
Published in
Metabolic Brain Disease / Issue 4/2023
Print ISSN: 0885-7490
Electronic ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-023-01184-9

Other articles of this Issue 4/2023

Metabolic Brain Disease 4/2023 Go to the issue