Skip to main content
Top
Published in: Journal of Medical Systems 7/2019

01-07-2019 | Computed Tomography | Image & Signal Processing

An Appraisal of Nodule Diagnosis for Lung Cancer in CT Images

Authors: Guobin Zhang, Zhiyong Yang, Li Gong, Shan Jiang, Lu Wang, Xi Cao, Lin Wei, Hongyun Zhang, Ziqi Liu

Published in: Journal of Medical Systems | Issue 7/2019

Login to get access

Abstract

As “the second eyes” of radiologists, computer-aided diagnosis systems play a significant role in nodule detection and diagnosis for lung cancer. In this paper, we aim to provide a systematic survey of state-of-the-art techniques (both traditional techniques and deep learning techniques) for nodule diagnosis from computed tomography images. This review first introduces the current progress and the popular structure used for nodule diagnosis. In particular, we provide a detailed overview of the five major stages in the computer-aided diagnosis systems: data acquisition, nodule segmentation, feature extraction, feature selection and nodule classification. Second, we provide a detailed report of the selected works and make a comprehensive comparison between selected works. The selected papers are from the IEEE Xplore, Science Direct, PubMed, and Web of Science databases up to December 2018. Third, we discuss and summarize the better techniques used in nodule diagnosis and indicate the existing future challenges in this field, such as improving the area under the receiver operating characteristic curve and accuracy, developing new deep learning-based diagnosis techniques, building efficient feature sets (fusing traditional features and deep features), developing high-quality labeled databases with malignant and benign nodules and promoting the cooperation between medical organizations and academic institutions.
Literature
1.
go back to reference Siegel, R. L., Miller, K. D., and Jemal, A., Cancer statistics, 2018. Ca-Cancer J Clin 60(5):277–300, 2018. Siegel, R. L., Miller, K. D., and Jemal, A., Cancer statistics, 2018. Ca-Cancer J Clin 60(5):277–300, 2018.
2.
go back to reference Siegel, R., Naishadham, D., and Jemal, A., Cancer statistics, 2013. Ca-Cancer J Clin, 2013. Siegel, R., Naishadham, D., and Jemal, A., Cancer statistics, 2013. Ca-Cancer J Clin, 2013.
3.
go back to reference McGuire, S., World cancer report 2014. World Health Organization 7(2):418–419, 2015. McGuire, S., World cancer report 2014. World Health Organization 7(2):418–419, 2015.
4.
go back to reference Henschke, C. I., Mccauley, D. I., Yankelevitz, D. F., Naidich, D. P., Mcguinness, G., Miettinen, O. S., Libby, D. M., Pasmantier, M. W., Koizumi, J., and Altorki, N. K., Early Lung Cancer Action Project: overall design and findings from baseline screening. Cancer-Am Cancer Soc 354(9173):2474–2482, 1999. Henschke, C. I., Mccauley, D. I., Yankelevitz, D. F., Naidich, D. P., Mcguinness, G., Miettinen, O. S., Libby, D. M., Pasmantier, M. W., Koizumi, J., and Altorki, N. K., Early Lung Cancer Action Project: overall design and findings from baseline screening. Cancer-Am Cancer Soc 354(9173):2474–2482, 1999.
5.
go back to reference Gibaldi, A., Barone, D., Gavelli, G., Malavasi, S., and Bevilacqua, A., Effects of Guided Random Sampling of TCCs on Blood Flow Values in CT Perfusion Studies of Lung Tumors. Acad. Radiol. 22(1):58–69, 2015.PubMed Gibaldi, A., Barone, D., Gavelli, G., Malavasi, S., and Bevilacqua, A., Effects of Guided Random Sampling of TCCs on Blood Flow Values in CT Perfusion Studies of Lung Tumors. Acad. Radiol. 22(1):58–69, 2015.PubMed
6.
go back to reference Ng, Q. S., and Goh, V., Angiogenesis in non-small cell lung cancer: imaging with perfusion computed tomography. J Thorac Inag 25(2):142, 2010. Ng, Q. S., and Goh, V., Angiogenesis in non-small cell lung cancer: imaging with perfusion computed tomography. J Thorac Inag 25(2):142, 2010.
7.
go back to reference Aberle, D. R., Adams, A. M., Berg, C. D., Black, W. C., Clapp, J. D., Fagerstrom, R. M., Gareen, I. F., Gatsonis, C., Marcus, P. M., and Sicks, J. D., Reduced lung-cancer mortality with low-dose computed tomographic screening. New Engl J Med 365(5):395–409, 2011.PubMed Aberle, D. R., Adams, A. M., Berg, C. D., Black, W. C., Clapp, J. D., Fagerstrom, R. M., Gareen, I. F., Gatsonis, C., Marcus, P. M., and Sicks, J. D., Reduced lung-cancer mortality with low-dose computed tomographic screening. New Engl J Med 365(5):395–409, 2011.PubMed
8.
go back to reference Gould, M. K., Maclean, C. C., Kuschner, W. G., Rydzak, C. E., and Owens, D. K., Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. Jama-J Am Med Assoc 285(7):914–924, 2001. Gould, M. K., Maclean, C. C., Kuschner, W. G., Rydzak, C. E., and Owens, D. K., Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. Jama-J Am Med Assoc 285(7):914–924, 2001.
9.
go back to reference Doi, K., Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Comput. Med. Imaging Graph. 31(4):198–211, 2007.PubMedPubMedCentral Doi, K., Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Comput. Med. Imaging Graph. 31(4):198–211, 2007.PubMedPubMedCentral
10.
go back to reference Ma, Z., Tavares, J. M. R. S., and Jorge, R. M. N., A review on the current segmentation algorithms for medical images. In: 1st International Conference on Imaging Theory and Applications (IMAGAPP), INSTICC Press, Lisbon, 135–140, 2015. Ma, Z., Tavares, J. M. R. S., and Jorge, R. M. N., A review on the current segmentation algorithms for medical images. In: 1st International Conference on Imaging Theory and Applications (IMAGAPP), INSTICC Press, Lisbon, 135–140, 2015.
11.
go back to reference Ma, Z., Tavares, J. M. R. S., Jorge, R. N., and Mascarenhas, T., A review of algorithms for medical image segmentation and their applications to the female pelvic cavity. Comput Method Biomec 13(2):235–246, 2010. Ma, Z., Tavares, J. M. R. S., Jorge, R. N., and Mascarenhas, T., A review of algorithms for medical image segmentation and their applications to the female pelvic cavity. Comput Method Biomec 13(2):235–246, 2010.
12.
go back to reference Zhang, J. J., Xia, Y., Cui, H. F., and Zhang, Y. N., Pulmonary nodule detection in medical images: A survey. Biomed Signal Proces 43:138–147, 2018. Zhang, J. J., Xia, Y., Cui, H. F., and Zhang, Y. N., Pulmonary nodule detection in medical images: A survey. Biomed Signal Proces 43:138–147, 2018.
13.
go back to reference Zhang, G. B., Jiang, S., Yang, Z. Y., Gong, L., Ma, X. D., Zhou, Z. Y., Bao, C., and Liu, Q., Automatic nodule detection for lung cancer in CT images: A review. Comput. Biol. Med. 103:287–300, 2018.PubMed Zhang, G. B., Jiang, S., Yang, Z. Y., Gong, L., Ma, X. D., Zhou, Z. Y., Bao, C., and Liu, Q., Automatic nodule detection for lung cancer in CT images: A review. Comput. Biol. Med. 103:287–300, 2018.PubMed
14.
go back to reference El-Regaily, S. A., Salem, M. A., Aziz, M. H. A., and Roushdy, M. I., Survey of Computer Aided Detection Systems for Lung Cancer in Computed Tomography. Curr Med Imaging Rev 14(1):3–18, 2018. El-Regaily, S. A., Salem, M. A., Aziz, M. H. A., and Roushdy, M. I., Survey of Computer Aided Detection Systems for Lung Cancer in Computed Tomography. Curr Med Imaging Rev 14(1):3–18, 2018.
15.
go back to reference Rehman, M. Z. U., Javaid, M., Shah, S. I. A., Gilani, S. O., Jamil, M., and Butt, S. I., An appraisal of nodules detection techniques for lung cancer in CT images. Biomed Signal Proces 41:140–151, 2018. Rehman, M. Z. U., Javaid, M., Shah, S. I. A., Gilani, S. O., Jamil, M., and Butt, S. I., An appraisal of nodules detection techniques for lung cancer in CT images. Biomed Signal Proces 41:140–151, 2018.
16.
go back to reference Naqi, S. M., and Sharif, M., Recent Developments in Computer Aided Diagnosis for Lung Nodule Detection from CT images: A Review. Curr Med Imaging Rev 13(1):3–19, 2017. Naqi, S. M., and Sharif, M., Recent Developments in Computer Aided Diagnosis for Lung Nodule Detection from CT images: A Review. Curr Med Imaging Rev 13(1):3–19, 2017.
17.
go back to reference Valente, I. R. S., Cortez, P. C., Neto, E. C., Soares, J. M., Albuquerque, V. H. C. D., and Tavares, J. M. R. S., Automatic 3D pulmonary nodule detection in CT images: A survey. Comput. Methods Prog. Biomed. 124(C):91–107, 2016. Valente, I. R. S., Cortez, P. C., Neto, E. C., Soares, J. M., Albuquerque, V. H. C. D., and Tavares, J. M. R. S., Automatic 3D pulmonary nodule detection in CT images: A survey. Comput. Methods Prog. Biomed. 124(C):91–107, 2016.
18.
go back to reference Lee, S. L. A., Kouzani, A. Z., and Hu, E. J., Automated detection of lung nodules in computed tomography images: a review. Mach. Vis. Appl. 23(1):151–163, 2012. Lee, S. L. A., Kouzani, A. Z., and Hu, E. J., Automated detection of lung nodules in computed tomography images: a review. Mach. Vis. Appl. 23(1):151–163, 2012.
19.
go back to reference El-Baz, A., Elnakib, A., Abou, E.-G. M., Gimel'Farb, G., Falk, R., and Farag, A., Automatic Detection of 2D and 3D Lung Nodules in Chest Spiral CT Scans. International Journal of Biomedical Imaging 2013(1):517632, 2013.PubMedPubMedCentral El-Baz, A., Elnakib, A., Abou, E.-G. M., Gimel'Farb, G., Falk, R., and Farag, A., Automatic Detection of 2D and 3D Lung Nodules in Chest Spiral CT Scans. International Journal of Biomedical Imaging 2013(1):517632, 2013.PubMedPubMedCentral
20.
go back to reference Eadie, L. H., Paul, T., and Gibson, A. P., A systematic review of computer-assisted diagnosis in diagnostic cancer imaging. Eur. J. Radiol. 81(1):e70–e76, 2012.PubMed Eadie, L. H., Paul, T., and Gibson, A. P., A systematic review of computer-assisted diagnosis in diagnostic cancer imaging. Eur. J. Radiol. 81(1):e70–e76, 2012.PubMed
21.
go back to reference Firmino, M., Morais, A. H., Mendoça, R. M., Dantas, M. R., Hekis, H. R., and Valentim, R., Computer-aided detection system for lung cancer in computed tomography scans: Review and future prospects. Biomed. Eng. Online 13(1):41, 2014.PubMedPubMedCentral Firmino, M., Morais, A. H., Mendoça, R. M., Dantas, M. R., Hekis, H. R., and Valentim, R., Computer-aided detection system for lung cancer in computed tomography scans: Review and future prospects. Biomed. Eng. Online 13(1):41, 2014.PubMedPubMedCentral
22.
go back to reference Yang, Y. X., Feng, X. Y., Chi, W. H., Li, Z. Y., Duan, W. Z., Liu, H. P., Liang, W. H., Wang, W., Chen, P., He, J. X., and Liu, B., Deep learning aided decision support for pulmonary nodules diagnosing: a review. J Thorac Dis 10:S867–S875, 2018.PubMedPubMedCentral Yang, Y. X., Feng, X. Y., Chi, W. H., Li, Z. Y., Duan, W. Z., Liu, H. P., Liang, W. H., Wang, W., Chen, P., He, J. X., and Liu, B., Deep learning aided decision support for pulmonary nodules diagnosing: a review. J Thorac Dis 10:S867–S875, 2018.PubMedPubMedCentral
23.
go back to reference Hu, Z., Tang, J., Wang, Z., Kai, Z., Lin, Z., and Sun, Q., Deep Learning for Image-based Cancer Detection and Diagnosis — A Survey. Pattern Recogn. 83:134–149, 2018. Hu, Z., Tang, J., Wang, Z., Kai, Z., Lin, Z., and Sun, Q., Deep Learning for Image-based Cancer Detection and Diagnosis — A Survey. Pattern Recogn. 83:134–149, 2018.
24.
go back to reference Paulraj, T., and Chellliah, K. S. V., Computer-Aided Diagnosis of lung cancer in Computed Tomography scans: A Review. Curr Med Imaging Rev 14(3):374–388, 2018. Paulraj, T., and Chellliah, K. S. V., Computer-Aided Diagnosis of lung cancer in Computed Tomography scans: A Review. Curr Med Imaging Rev 14(3):374–388, 2018.
25.
go back to reference Dean, J. C., and Ilvento, C. C., Improved cancer detection using computer-aided detection with diagnostic and screening mammography: prospective study of 104 cancers. Breast Diseases A Year Book Quarterly 187(1):20–28, 2006. Dean, J. C., and Ilvento, C. C., Improved cancer detection using computer-aided detection with diagnostic and screening mammography: prospective study of 104 cancers. Breast Diseases A Year Book Quarterly 187(1):20–28, 2006.
26.
go back to reference Singh, S., Maxwell, J., Baker, J. A., and Nicholas, J. L., Computer -aided classification of breast masses: performance and interobserver variability of expert radiologists versus residents. International Journal of Medical Radiology 258(1):73–80, 2011. Singh, S., Maxwell, J., Baker, J. A., and Nicholas, J. L., Computer -aided classification of breast masses: performance and interobserver variability of expert radiologists versus residents. International Journal of Medical Radiology 258(1):73–80, 2011.
27.
go back to reference Berkman, S., Heang-Ping, C., Roubidoux, M. A., Hadjiiski, L. M., Helvie, M. A., Chintana, P., Janet, B., Nees, A. V., and Caroline, B., Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy. Radiology 242(3):716–724, 2007. Berkman, S., Heang-Ping, C., Roubidoux, M. A., Hadjiiski, L. M., Helvie, M. A., Chintana, P., Janet, B., Nees, A. V., and Caroline, B., Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy. Radiology 242(3):716–724, 2007.
28.
go back to reference Giger, M. L., Karssemeijer, N., and Schnabel, J. A., Breast Image Analysis for Risk Assessment, Detection, Diagnosis, and Treatment of Cancer. Annu. Rev. Biomed. Eng. 15(1):327–357, 2013.PubMed Giger, M. L., Karssemeijer, N., and Schnabel, J. A., Breast Image Analysis for Risk Assessment, Detection, Diagnosis, and Treatment of Cancer. Annu. Rev. Biomed. Eng. 15(1):327–357, 2013.PubMed
29.
go back to reference Reeves, A. P., Biancardi, A. M., Apanasovich, T. V. et al., The Lung Image Database Consortium (LIDC): A comparison of different size metrics for pulmonary nodule measurements. Acad. Radiol. 14(12):1475–1485, 2007.PubMedPubMedCentral Reeves, A. P., Biancardi, A. M., Apanasovich, T. V. et al., The Lung Image Database Consortium (LIDC): A comparison of different size metrics for pulmonary nodule measurements. Acad. Radiol. 14(12):1475–1485, 2007.PubMedPubMedCentral
30.
go back to reference Armato, S. G., Geoffrey, M. L., Mcnitt-Gray, M. F., Meyer, C. R., David, Y., Aberle, D. R., Henschke, C. I., Hoffman, E. A., Kazerooni, E. A., and Heber, M. M., Lung image database consortium: developing a resource for the medical imaging research community. Radiology 232(3):739–748, 2004.PubMed Armato, S. G., Geoffrey, M. L., Mcnitt-Gray, M. F., Meyer, C. R., David, Y., Aberle, D. R., Henschke, C. I., Hoffman, E. A., Kazerooni, E. A., and Heber, M. M., Lung image database consortium: developing a resource for the medical imaging research community. Radiology 232(3):739–748, 2004.PubMed
31.
go back to reference Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., and Pringle, M., The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. J. Digit. Imaging 26(6):1045–1057, 2013.PubMedPubMedCentral Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., and Pringle, M., The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. J. Digit. Imaging 26(6):1045–1057, 2013.PubMedPubMedCentral
32.
go back to reference Messay, T., Hardie, R. C., and Tuinstra, T. R., Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the Lung Image Database Consortium and Image Database Resource Initiative dataset. Med. Image Anal. 22(1):48–62, 2015.PubMed Messay, T., Hardie, R. C., and Tuinstra, T. R., Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the Lung Image Database Consortium and Image Database Resource Initiative dataset. Med. Image Anal. 22(1):48–62, 2015.PubMed
33.
go back to reference Setio, A. A. A., Traverso, A., de Bel, T. et al., Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Med. Image Anal. 42:1–13, 2017.PubMed Setio, A. A. A., Traverso, A., de Bel, T. et al., Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Med. Image Anal. 42:1–13, 2017.PubMed
34.
go back to reference Henschke, C. I., Yankelevitz, D. F., Libby, D. M., Pasmantier, M. W., Smith, J. P., and Miettinen, O. S., Survival of patients with stage I lung cancer detected on CT screening. New Engl J Med 355(17):1763–1771, 2006.PubMed Henschke, C. I., Yankelevitz, D. F., Libby, D. M., Pasmantier, M. W., Smith, J. P., and Miettinen, O. S., Survival of patients with stage I lung cancer detected on CT screening. New Engl J Med 355(17):1763–1771, 2006.PubMed
35.
go back to reference Rowena, Y., Henschke, C. I., Yankelevitz, D. F., and Smith, J. P., CT screening for lung cancer: alternative definitions of positive test result based on the national lung screening trial and international early lung cancer action program databases. Radiology 273(2):591–596, 2014. Rowena, Y., Henschke, C. I., Yankelevitz, D. F., and Smith, J. P., CT screening for lung cancer: alternative definitions of positive test result based on the national lung screening trial and international early lung cancer action program databases. Radiology 273(2):591–596, 2014.
36.
go back to reference Carrilloa, M. C., and Katz, R. G., Maximizing the Alzheimer's Disease Neuroimaging Initiative II. Alzheimers & Dementia the Journal of the Alzheimers Association 5(3):271–275, 2009. Carrilloa, M. C., and Katz, R. G., Maximizing the Alzheimer's Disease Neuroimaging Initiative II. Alzheimers & Dementia the Journal of the Alzheimers Association 5(3):271–275, 2009.
37.
go back to reference Weisheng, W., Jiawei, L., Xuedong, Y., and Hongli, L., Data analysis of the Lung Imaging Database Consortium and Image Database Resource Initiative. Acad. Radiol. 22(4):488–495, 2015. Weisheng, W., Jiawei, L., Xuedong, Y., and Hongli, L., Data analysis of the Lung Imaging Database Consortium and Image Database Resource Initiative. Acad. Radiol. 22(4):488–495, 2015.
38.
go back to reference Armato, S. G., McLennan, G., Bidaut, L. et al., The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans. Med. Phys. 38(2):915–931, 2011.PubMedPubMedCentral Armato, S. G., McLennan, G., Bidaut, L. et al., The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans. Med. Phys. 38(2):915–931, 2011.PubMedPubMedCentral
39.
go back to reference Filho, A. O. D. C., Silva, A. C., Paiva, A. C. D., Nunes, R. A., and Gattass, M., Computer-Aided Diagnosis of Lung Nodules in Computed Tomography by Using Phylogenetic Diversity, Genetic Algorithm, and SVM. J. Digit. Imaging 30(6):812–822, 2017. Filho, A. O. D. C., Silva, A. C., Paiva, A. C. D., Nunes, R. A., and Gattass, M., Computer-Aided Diagnosis of Lung Nodules in Computed Tomography by Using Phylogenetic Diversity, Genetic Algorithm, and SVM. J. Digit. Imaging 30(6):812–822, 2017.
40.
go back to reference Costa, R. W. D. S., Silva, G. L. F. D., Filho, A. O. D. C., Silva, A. C., Paiva, A. C. D., and Gattass, M., Classification of malignant and benign lung nodules using taxonomic diversity index and phylogenetic distance. Med. Biol. Eng. Comput. 56(11):2125–2136, 2018. Costa, R. W. D. S., Silva, G. L. F. D., Filho, A. O. D. C., Silva, A. C., Paiva, A. C. D., and Gattass, M., Classification of malignant and benign lung nodules using taxonomic diversity index and phylogenetic distance. Med. Biol. Eng. Comput. 56(11):2125–2136, 2018.
41.
go back to reference Kumar, D., Wong, A., and Clausi, D. A., Lung Nodule Classification Using Deep Features in CT Images. Conference on Computer & Robot Vision:133–138, 2015. Kumar, D., Wong, A., and Clausi, D. A., Lung Nodule Classification Using Deep Features in CT Images. Conference on Computer & Robot Vision:133–138, 2015.
42.
go back to reference Wu, P., Xia, K., and Yu, H., Relevance Vector Machine Based Pulmonary Nodule Classification. J Med Imag Health In 6(1):163–169, 2016. Wu, P., Xia, K., and Yu, H., Relevance Vector Machine Based Pulmonary Nodule Classification. J Med Imag Health In 6(1):163–169, 2016.
43.
go back to reference Akram, S., Javed, Y., Akram, U., Qamar, U., and Hassan, A., Pulmonary Nodules Detection and Classification Using Hybrid Features from Computerized Tomographic Images. J Med Imag Health In 6(1):252–259, 2016. Akram, S., Javed, Y., Akram, U., Qamar, U., and Hassan, A., Pulmonary Nodules Detection and Classification Using Hybrid Features from Computerized Tomographic Images. J Med Imag Health In 6(1):252–259, 2016.
44.
go back to reference Akram, S., Javed, M. Y., Hussain, A., Riaz, F., and Akram, M. U., Intensity-based statistical features for classification of lungs CT scan nodules using artificial intelligence techniques. J Exp Theor Artif In 27(6):737–751, 2015. Akram, S., Javed, M. Y., Hussain, A., Riaz, F., and Akram, M. U., Intensity-based statistical features for classification of lungs CT scan nodules using artificial intelligence techniques. J Exp Theor Artif In 27(6):737–751, 2015.
45.
go back to reference Filho, A. O. D. C., Silva, A. C. E., Paiva, A. C. D., Nunes, R. A., and Gattass, M., Classification of patterns of benignity and malignancy based on CT using topology-based phylogenetic diversity index and convolutional neural network. Pattern Recogn. 81:200–212, 2018. Filho, A. O. D. C., Silva, A. C. E., Paiva, A. C. D., Nunes, R. A., and Gattass, M., Classification of patterns of benignity and malignancy based on CT using topology-based phylogenetic diversity index and convolutional neural network. Pattern Recogn. 81:200–212, 2018.
46.
go back to reference Filho, A. O. D. C., Silva, A. C., Paiva, A. C. D., Nunes, R. A., and Gattass, M., Computer-aided diagnosis system for lung nodules based on computed tomography using shape analysis, a genetic algorithm, and SVM. Med. Biol. Eng. Comput. 55(8):1129–1146, 2017. Filho, A. O. D. C., Silva, A. C., Paiva, A. C. D., Nunes, R. A., and Gattass, M., Computer-aided diagnosis system for lung nodules based on computed tomography using shape analysis, a genetic algorithm, and SVM. Med. Biol. Eng. Comput. 55(8):1129–1146, 2017.
47.
go back to reference Sweetlin, J. D., Nehemiah, H. K., and Kannan, A., Computer aided diagnosis of pulmonary hamartoma from CT scan images using ant colony optimization based feature selection. Alexandria Engineering Journal 57(3):1557–1567, 2017. Sweetlin, J. D., Nehemiah, H. K., and Kannan, A., Computer aided diagnosis of pulmonary hamartoma from CT scan images using ant colony optimization based feature selection. Alexandria Engineering Journal 57(3):1557–1567, 2017.
48.
go back to reference Firmino, M., Angelo, G., Morais, H., Dantas, M. R., and Valentim, R., Computer-aided detection (CADe) and diagnosis (CADx) system for lung cancer with likelihood of malignancy. Biomed. Eng. Online 15(1):2, 2016.PubMedPubMedCentral Firmino, M., Angelo, G., Morais, H., Dantas, M. R., and Valentim, R., Computer-aided detection (CADe) and diagnosis (CADx) system for lung cancer with likelihood of malignancy. Biomed. Eng. Online 15(1):2, 2016.PubMedPubMedCentral
49.
go back to reference Orozco, H. M., Villegas, O. O. V., Sánchez, V. G. C., Domínguez, H. D. J. O., and Alfaro, M. D. J. N., Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine. Biomed. Eng. Online 14(1):9, 2015. Orozco, H. M., Villegas, O. O. V., Sánchez, V. G. C., Domínguez, H. D. J. O., and Alfaro, M. D. J. N., Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine. Biomed. Eng. Online 14(1):9, 2015.
50.
go back to reference Li, X. X., Li, B., Tian, L. F., and Zhang, L., Automatic benign and malignant classification of pulmonary nodules in thoracic computed tomography based on RF algorithm. IET Image Process. 12(7):1253–1264, 2018. Li, X. X., Li, B., Tian, L. F., and Zhang, L., Automatic benign and malignant classification of pulmonary nodules in thoracic computed tomography based on RF algorithm. IET Image Process. 12(7):1253–1264, 2018.
51.
go back to reference Gong, J., Liu, J. Y., Sun, X. W., Zheng, B., and Nie, S. D., Computer-aided diagnosis of lung cancer: the effect of training data sets on classification accuracy of lung nodules. Phys. Med. Biol. 63(3):035036, 2018.PubMed Gong, J., Liu, J. Y., Sun, X. W., Zheng, B., and Nie, S. D., Computer-aided diagnosis of lung cancer: the effect of training data sets on classification accuracy of lung nodules. Phys. Med. Biol. 63(3):035036, 2018.PubMed
52.
go back to reference Dhara, A. K., Mukhopadhyay, S., Dutta, A., Garg, M., and Khandelwal, N., A Combination of Shape and Texture Features for Classification of Pulmonary Nodules in Lung CT Images. J. Digit. Imaging 29(4):466–475, 2016.PubMedPubMedCentral Dhara, A. K., Mukhopadhyay, S., Dutta, A., Garg, M., and Khandelwal, N., A Combination of Shape and Texture Features for Classification of Pulmonary Nodules in Lung CT Images. J. Digit. Imaging 29(4):466–475, 2016.PubMedPubMedCentral
53.
go back to reference Xie, Y. T., Zhang, J. P., Xia, Y., Fulham, M., and Zhang, Y. N., Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT. Inform Fusion 42:102–110, 2018. Xie, Y. T., Zhang, J. P., Xia, Y., Fulham, M., and Zhang, Y. N., Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT. Inform Fusion 42:102–110, 2018.
54.
go back to reference Cataldo, S. D., Bottino, A., Islam, I. U., Vieira, T. F., and Ficarra, E., Subclass Discriminant Analysis of morphological and textural features for HEp-2 staining pattern classification. Pattern Recogn. 47(7):2389–2399, 2014. Cataldo, S. D., Bottino, A., Islam, I. U., Vieira, T. F., and Ficarra, E., Subclass Discriminant Analysis of morphological and textural features for HEp-2 staining pattern classification. Pattern Recogn. 47(7):2389–2399, 2014.
55.
go back to reference Shen, W., Zhou, M., Yang, F., Yu, D., Dong, D., Yang, C., Zang, Y., and Tian, J., Multi-crop Convolutional Neural Networks for lung nodule malignancy suspiciousness classification. Pattern Recogn. 61(61):663–673, 2017. Shen, W., Zhou, M., Yang, F., Yu, D., Dong, D., Yang, C., Zang, Y., and Tian, J., Multi-crop Convolutional Neural Networks for lung nodule malignancy suspiciousness classification. Pattern Recogn. 61(61):663–673, 2017.
56.
go back to reference Tajbakhsh, N., and Suzuki, K., Comparing two classes of end-to-end machine-learning models in lung nodule detection and classification MTANNs vs. CNNs. Pattern Recogn. 63:476–486, 2017. Tajbakhsh, N., and Suzuki, K., Comparing two classes of end-to-end machine-learning models in lung nodule detection and classification MTANNs vs. CNNs. Pattern Recogn. 63:476–486, 2017.
57.
go back to reference Silva, G. L. F. D., Neto, O. P. D. S., Silva, A. C., Paiva, A. C. D., and Gattass, M., Lung nodules diagnosis based on evolutionary convolutional neural network. Multimed. Tools Appl. (2):1–17, 2017. Silva, G. L. F. D., Neto, O. P. D. S., Silva, A. C., Paiva, A. C. D., and Gattass, M., Lung nodules diagnosis based on evolutionary convolutional neural network. Multimed. Tools Appl. (2):1–17, 2017.
58.
go back to reference Sun, W., Zheng, B., and Wei, Q., Computer aided lung cancer diagnosis with deep learning algorithms. Medical Imaging: Computer-Aided Diagnosis, 2015. Sun, W., Zheng, B., and Wei, Q., Computer aided lung cancer diagnosis with deep learning algorithms. Medical Imaging: Computer-Aided Diagnosis, 2015.
59.
go back to reference Cheng, J. Z., Ni, D., Chou, Y. H., Qin, J., Tiu, C. M., Chang, Y. C., Huang, C. S., Shen, D., and Chen, C. M., Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans. Sci Rep-UK 6:24454, 2016. Cheng, J. Z., Ni, D., Chou, Y. H., Qin, J., Tiu, C. M., Chang, Y. C., Huang, C. S., Shen, D., and Chen, C. M., Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans. Sci Rep-UK 6:24454, 2016.
60.
go back to reference Hua, K. L., Hsu, C. H., Hidayati, S. C., Cheng, W. H., and Chen, Y. J., Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Oncotargets Ther 8:2015, 2015-2022. Hua, K. L., Hsu, C. H., Hidayati, S. C., Cheng, W. H., and Chen, Y. J., Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Oncotargets Ther 8:2015, 2015-2022.
61.
go back to reference Tu, X., Xie, M., Gao, J., Ma, Z., Chen, D., Wang, Q., Finlayson, S. G., Ou, Y., and Cheng, J. Z., Automatic Categorization and Scoring of Solid, Part-Solid and Non-Solid Pulmonary Nodules in CT Images with. Convolutional Neural Network. Sci Rep-UK 7(1):8533, 2017. Tu, X., Xie, M., Gao, J., Ma, Z., Chen, D., Wang, Q., Finlayson, S. G., Ou, Y., and Cheng, J. Z., Automatic Categorization and Scoring of Solid, Part-Solid and Non-Solid Pulmonary Nodules in CT Images with. Convolutional Neural Network. Sci Rep-UK 7(1):8533, 2017.
62.
go back to reference Sun, W., Zheng, B., and Qian, W., Automatic Feature Learning Using Multichannel ROI Based on Deep Structured Algorithms for Computerized Lung Cancer Diagnosis. Comput. Biol. Med. 89:530–539, 2017.PubMed Sun, W., Zheng, B., and Qian, W., Automatic Feature Learning Using Multichannel ROI Based on Deep Structured Algorithms for Computerized Lung Cancer Diagnosis. Comput. Biol. Med. 89:530–539, 2017.PubMed
63.
go back to reference Chen, M., Shi, X. B., Zhang, Y., Wu, D., and Mohsen, G., Deep Features Learning for Medical Image Analysis with Convolutional Autoencoder Neural Network. IEEE Transactions on Big Data PP(99):1, 2017. Chen, M., Shi, X. B., Zhang, Y., Wu, D., and Mohsen, G., Deep Features Learning for Medical Image Analysis with Convolutional Autoencoder Neural Network. IEEE Transactions on Big Data PP(99):1, 2017.
64.
go back to reference Yuan, J. J., Liu, X. L., Hou, F., Qin, H., and Hao, A. M., Hybrid-feature-guided lung nodule type classification on CT images. Comput. Graph. 70:288–299, 2017. Yuan, J. J., Liu, X. L., Hou, F., Qin, H., and Hao, A. M., Hybrid-feature-guided lung nodule type classification on CT images. Comput. Graph. 70:288–299, 2017.
65.
go back to reference Ciompi, F., Chung, K., Riel, S. J. V., Setio, A. A. A., Gerke, P. K., Jacobs, C., Scholten, E. T., Schaeferprokop, C., Wille, M. M. W., and Marchianò, A., Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci Rep-UK 7:46479, 2016. Ciompi, F., Chung, K., Riel, S. J. V., Setio, A. A. A., Gerke, P. K., Jacobs, C., Scholten, E. T., Schaeferprokop, C., Wille, M. M. W., and Marchianò, A., Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci Rep-UK 7:46479, 2016.
66.
go back to reference Zhu, W., DeepLung: 3D Deep Convolutional Nets for Automated Pulmonary Nodule Detection and Classification, 2017. Zhu, W., DeepLung: 3D Deep Convolutional Nets for Automated Pulmonary Nodule Detection and Classification, 2017.
67.
go back to reference Zhu, W., Liu, C., Wei, F., and Xie, X., DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification. In: IEEE Winter Conf. on Applications of Computer Vision (WACV2018). pp 673–681, 2018. Zhu, W., Liu, C., Wei, F., and Xie, X., DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification. In: IEEE Winter Conf. on Applications of Computer Vision (WACV2018). pp 673–681, 2018.
68.
go back to reference Liao, F., Ming, L., Zhe, L., Hu, X., and Song, S., Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or Network, 2017. Liao, F., Ming, L., Zhe, L., Hu, X., and Song, S., Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or Network, 2017.
69.
go back to reference Wang, H. F., Zhao, T. T., Li, L. C., Pan, H. X., Liu, W. Q., Gao, H. Q., Han, F. F., Wang, Y. H., Qi, Y. F., and Liang, Z. R., A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation. J X-Ray Sci Technol 26(2):171–187, 2018. Wang, H. F., Zhao, T. T., Li, L. C., Pan, H. X., Liu, W. Q., Gao, H. Q., Han, F. F., Wang, Y. H., Qi, Y. F., and Liang, Z. R., A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation. J X-Ray Sci Technol 26(2):171–187, 2018.
70.
go back to reference Zhao, X., Liu, L., Qi, S., Teng, Y., Li, J., and Wei, Q., Agile convolutional neural network for pulmonary nodule classification using CT images. Int J Comput Ass Rad 13(4):585–595, 2018. Zhao, X., Liu, L., Qi, S., Teng, Y., Li, J., and Wei, Q., Agile convolutional neural network for pulmonary nodule classification using CT images. Int J Comput Ass Rad 13(4):585–595, 2018.
71.
go back to reference Kaya, A., Cascaded Classifiers and Stacking Methods for Classification of Pulmonary Nodule Characteristics. Comput. Methods Prog. Biomed. 166:77–89, 2018. Kaya, A., Cascaded Classifiers and Stacking Methods for Classification of Pulmonary Nodule Characteristics. Comput. Methods Prog. Biomed. 166:77–89, 2018.
72.
go back to reference Liu, Y., Hao, P., Zhang, P., Xu, X., Wu, J., and Chen, W., Dense Convolutional Binary-Tree Networks for Lung Nodule Classification. IEEE Access 6:49080–49088, 2018. Liu, Y., Hao, P., Zhang, P., Xu, X., Wu, J., and Chen, W., Dense Convolutional Binary-Tree Networks for Lung Nodule Classification. IEEE Access 6:49080–49088, 2018.
73.
go back to reference Wang, Z., Xin, J., Sun, P., Lin, Z., Yao, Y., and Gao, X., Improved Lung Nodule Diagnosis Accuracy Using Lung CT Images With Uncertain Class. Comput. Methods Prog. Biomed. 162:197–209, 2018. Wang, Z., Xin, J., Sun, P., Lin, Z., Yao, Y., and Gao, X., Improved Lung Nodule Diagnosis Accuracy Using Lung CT Images With Uncertain Class. Comput. Methods Prog. Biomed. 162:197–209, 2018.
74.
go back to reference Nibali, A., He, Z., and Wollersheim, D., Pulmonary nodule classification with deep residual networks. Int J Comput Ass Rad 12(10):1799–1808, 2017. Nibali, A., He, Z., and Wollersheim, D., Pulmonary nodule classification with deep residual networks. Int J Comput Ass Rad 12(10):1799–1808, 2017.
75.
go back to reference Liu, K., and Kang, G., 3D multi-view convolutional neural networks for lung nodule classification. PLoS One 12(1):12–22, 2017. Liu, K., and Kang, G., 3D multi-view convolutional neural networks for lung nodule classification. PLoS One 12(1):12–22, 2017.
76.
go back to reference Zhang, G., 3D Spatial Pyramid Dilated Network for Pulmonary Nodule Classification. Symmetry-Basel. 10(9), 2018. Zhang, G., 3D Spatial Pyramid Dilated Network for Pulmonary Nodule Classification. Symmetry-Basel. 10(9), 2018.
77.
go back to reference Yan, Q., Lei, G., Xin, Z., Zhang, X., and Tang, X., Pulmonary nodule diagnosis using dual-modal supervised autoencoder based on extreme learning machine. Expert. Syst. 34(6):e12224, 2017. Yan, Q., Lei, G., Xin, Z., Zhang, X., and Tang, X., Pulmonary nodule diagnosis using dual-modal supervised autoencoder based on extreme learning machine. Expert. Syst. 34(6):e12224, 2017.
78.
go back to reference Jung, H., Kim, B., Lee, I., Lee, J., and Kang, J., Classification of lung nodules in CT scans using three-dimensional deep convolutional neural networks with a checkpoint ensemble method. BMC Med. Imaging 18, 2018. Jung, H., Kim, B., Lee, I., Lee, J., and Kang, J., Classification of lung nodules in CT scans using three-dimensional deep convolutional neural networks with a checkpoint ensemble method. BMC Med. Imaging 18, 2018.
79.
go back to reference Nishio, M., Sugiyama, O., Yakami, M., Ueno, S., Kubo, T., Kuroda, T., and Togashi, K., Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PLoS One 13(7):e0200721, 2018.PubMedPubMedCentral Nishio, M., Sugiyama, O., Yakami, M., Ueno, S., Kubo, T., Kuroda, T., and Togashi, K., Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PLoS One 13(7):e0200721, 2018.PubMedPubMedCentral
80.
go back to reference Liu, S., Xie, Y., Jirapatnakul, A., and Reeves, A. P., Pulmonary nodule classification in lung cancer screening with three-dimensional convolutional neural networks. Journal of Medical Imaging 4(4):041308, 2017.PubMedPubMedCentral Liu, S., Xie, Y., Jirapatnakul, A., and Reeves, A. P., Pulmonary nodule classification in lung cancer screening with three-dimensional convolutional neural networks. Journal of Medical Imaging 4(4):041308, 2017.PubMedPubMedCentral
81.
go back to reference Wei, G. H., Ma, H., Qian, W., Han, F. F., Jiang, H. Y., Qi, S. L., and Qiu, M., Lung nodule classification using local kernel regression models with out-of-sample extension. Biomed Signal Proces 40:1–9, 2018. Wei, G. H., Ma, H., Qian, W., Han, F. F., Jiang, H. Y., Qi, S. L., and Qiu, M., Lung nodule classification using local kernel regression models with out-of-sample extension. Biomed Signal Proces 40:1–9, 2018.
82.
go back to reference Farag, A. A., Ali, A., Elshazly, S., and Farag, A. A., Feature fusion for lung nodule classification. Int J Comput Ass Rad 12(10):1809–1818, 2017. Farag, A. A., Ali, A., Elshazly, S., and Farag, A. A., Feature fusion for lung nodule classification. Int J Comput Ass Rad 12(10):1809–1818, 2017.
83.
go back to reference Dilger, S. K., Judisch, A., Uthoff, J., Hammond, E., Newell, J. D., and Sieren, J. C., Improved pulmonary nodule classification utilizing lung parenchyma texture features. Medical Imaging: Computer-Aided Diagnosis, 2015. Dilger, S. K., Judisch, A., Uthoff, J., Hammond, E., Newell, J. D., and Sieren, J. C., Improved pulmonary nodule classification utilizing lung parenchyma texture features. Medical Imaging: Computer-Aided Diagnosis, 2015.
84.
go back to reference Kaya, A., and Can, A. B., A weighted rule based method for predicting malignancy of pulmonary nodules by nodule characteristics. J. Biomed. Inform. 56(C):69–79, 2015.PubMed Kaya, A., and Can, A. B., A weighted rule based method for predicting malignancy of pulmonary nodules by nodule characteristics. J. Biomed. Inform. 56(C):69–79, 2015.PubMed
85.
go back to reference Chen, C. H., Chang, C. K., Tu, C. Y., Liao, W. C., Wu, B. R., Chou, K. T., Chiou, Y. R., Yang, S. N., Zhang, G., and Huang, T. C., Radiomic features analysis in computed tomography images of lung nodule classification. PLoS One 13(2):e0192002, 2018.PubMedPubMedCentral Chen, C. H., Chang, C. K., Tu, C. Y., Liao, W. C., Wu, B. R., Chou, K. T., Chiou, Y. R., Yang, S. N., Zhang, G., and Huang, T. C., Radiomic features analysis in computed tomography images of lung nodule classification. PLoS One 13(2):e0192002, 2018.PubMedPubMedCentral
86.
go back to reference Reeves, A. P., Xie, Y., and Jirapatnakul, A., Automated pulmonary nodule CT image characterization in lung cancer screening. Int J Comput Ass Rad 11(1):1–16, 2015. Reeves, A. P., Xie, Y., and Jirapatnakul, A., Automated pulmonary nodule CT image characterization in lung cancer screening. Int J Comput Ass Rad 11(1):1–16, 2015.
87.
go back to reference Sun, W., Xia, H., Tseng, T. L., Zhang, J., and Wei, Q., Computerized lung cancer malignancy level analysis using 3D texture features. Medical Imaging: Computer-aided Diagnosis, 2016. Sun, W., Xia, H., Tseng, T. L., Zhang, J., and Wei, Q., Computerized lung cancer malignancy level analysis using 3D texture features. Medical Imaging: Computer-aided Diagnosis, 2016.
88.
go back to reference Ferreira, J. R., and Oliveira, M. C., Characterization of Pulmonary Nodules Based on Features of Margin Sharpness and Texture. J. Digit. Imaging:1–13, 2017. Ferreira, J. R., and Oliveira, M. C., Characterization of Pulmonary Nodules Based on Features of Margin Sharpness and Texture. J. Digit. Imaging:1–13, 2017.
89.
go back to reference Nishio, M., Nishizawa, M., Sugiyama, O., Kojima, R., Yakami, M., Kuroda, T., and Togashi, K., Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization. PLoS One 13(4):e0195875, 2017. Nishio, M., Nishizawa, M., Sugiyama, O., Kojima, R., Yakami, M., Kuroda, T., and Togashi, K., Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization. PLoS One 13(4):e0195875, 2017.
90.
go back to reference Hancock, M. C., and Magnan, J. F., Lung nodule malignancy classification using only radiologist-quantified image features as inputs to statistical learning algorithms: probing the Lung Image Database Consortium dataset with two statistical learning methods. J Med Imaging 3(4):044504, 2016. Hancock, M. C., and Magnan, J. F., Lung nodule malignancy classification using only radiologist-quantified image features as inputs to statistical learning algorithms: probing the Lung Image Database Consortium dataset with two statistical learning methods. J Med Imaging 3(4):044504, 2016.
91.
go back to reference Mao, K. M., and Deng, Z. F., Lung Nodule Image Classification Based on Local Difference Pattern and Combined Classifier. Comput Math Method M, 2016. Mao, K. M., and Deng, Z. F., Lung Nodule Image Classification Based on Local Difference Pattern and Combined Classifier. Comput Math Method M, 2016.
92.
go back to reference Hawkins, S. H., Korecki, J. N., Balagurunathan, Y., Gu, Y., Kumar, V., Basu, S., Hall, L. O., Goldgof, D. B., Gatenby, R. A., and Gillies, R. J., Predicting Outcomes of Nonsmall Cell Lung Cancer Using CT Image Features. IEEE Access 2:1418–1426, 2014. Hawkins, S. H., Korecki, J. N., Balagurunathan, Y., Gu, Y., Kumar, V., Basu, S., Hall, L. O., Goldgof, D. B., Gatenby, R. A., and Gillies, R. J., Predicting Outcomes of Nonsmall Cell Lung Cancer Using CT Image Features. IEEE Access 2:1418–1426, 2014.
93.
go back to reference Li, Q., and Doi, K., Reduction of bias and variance for evaluation of computer-aided diagnostic schemes. Med. Phys. 33(4):868–875, 2006.PubMed Li, Q., and Doi, K., Reduction of bias and variance for evaluation of computer-aided diagnostic schemes. Med. Phys. 33(4):868–875, 2006.PubMed
94.
go back to reference He, K. M., Zhang, X. Y., Ren S. Q., Sun, J., Deep residual learning for image recognition. In CVPR: 770–778, 2016. He, K. M., Zhang, X. Y., Ren S. Q., Sun, J., Deep residual learning for image recognition. In CVPR: 770–778, 2016.
95.
go back to reference Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q., Densely connected convolutional networks. In CVPR 2261–2269, 2017. Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q., Densely connected convolutional networks. In CVPR 2261–2269, 2017.
96.
go back to reference Krizhevsky, A., Sutskever, I., and Hinton, G. E., ImageNet Classification with Deep Convolutional Neural Networks. International Conference on Neural Information Processing Systems, 2012. Krizhevsky, A., Sutskever, I., and Hinton, G. E., ImageNet Classification with Deep Convolutional Neural Networks. International Conference on Neural Information Processing Systems, 2012.
97.
go back to reference Padma, A., and Giridharan, N., Performance comparison of texture feature analysis methods using PNN classifier for segmentation and classification of brain CT images: Performance Comparison of Texture Feature Analysis Methods Using PNN Classifier for Segmentation and Classification of B. Int. J. Imaging Syst. Technol. 26(2):97–105, 2016. Padma, A., and Giridharan, N., Performance comparison of texture feature analysis methods using PNN classifier for segmentation and classification of brain CT images: Performance Comparison of Texture Feature Analysis Methods Using PNN Classifier for Segmentation and Classification of B. Int. J. Imaging Syst. Technol. 26(2):97–105, 2016.
98.
go back to reference Amato, F., Mazzocca, N., Moscato, F., and Vivenzio, E., Multilayer Perceptron: An Intelligent Model for Classification and Intrusion Detection. International Conference on Advanced Information Networking & Applications Workshops, 2017. Amato, F., Mazzocca, N., Moscato, F., and Vivenzio, E., Multilayer Perceptron: An Intelligent Model for Classification and Intrusion Detection. International Conference on Advanced Information Networking & Applications Workshops, 2017.
99.
go back to reference Sindhumol, S., Kumar, A., and Balakrishnan, K., Spectral clustering independent component analysis for tissue classification from brain MRI. Biomed Signal Proces 8(6):667–674, 2013. Sindhumol, S., Kumar, A., and Balakrishnan, K., Spectral clustering independent component analysis for tissue classification from brain MRI. Biomed Signal Proces 8(6):667–674, 2013.
100.
go back to reference Feiping, N., Zinan, Z., Tsang, I. W., Dong, X., and Changshui, Z., Spectral embedded clustering: a framework for in-sample and out-of-sample spectral clustering. IEEE Trans. Neural Netw. 22(11):1796–1808, 2011. Feiping, N., Zinan, Z., Tsang, I. W., Dong, X., and Changshui, Z., Spectral embedded clustering: a framework for in-sample and out-of-sample spectral clustering. IEEE Trans. Neural Netw. 22(11):1796–1808, 2011.
101.
go back to reference de Carvalho, A. O., de Sampaio, W. B., Silva, A. C., de Paivaa, A. C., Nunes, R. A., and Gattass, M., Automatic detection of solitary lung nodules using quality threshold clustering, genetic algorithm and diversity index. Artif. Intell. Med. 60(3):165–177, 2014. de Carvalho, A. O., de Sampaio, W. B., Silva, A. C., de Paivaa, A. C., Nunes, R. A., and Gattass, M., Automatic detection of solitary lung nodules using quality threshold clustering, genetic algorithm and diversity index. Artif. Intell. Med. 60(3):165–177, 2014.
102.
go back to reference Ohtsu, N., A Threshold Selection Method from Gray-Level Histograms. IEEE T Syst Man Cy-S 9(1):62–66, 2007. Ohtsu, N., A Threshold Selection Method from Gray-Level Histograms. IEEE T Syst Man Cy-S 9(1):62–66, 2007.
104.
go back to reference Lecun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D., Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1(4):541–551, 2014. Lecun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D., Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1(4):541–551, 2014.
105.
go back to reference Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P., Gradient-based learning applied to document recognition. P IEEE 86(11):2278–2324, 1998. Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P., Gradient-based learning applied to document recognition. P IEEE 86(11):2278–2324, 1998.
106.
go back to reference Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., and Montreal, U., Greedy layer-wise training of deep networks. Adv. Neural Inf. Proces. Syst. 19:153–160, 2007. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., and Montreal, U., Greedy layer-wise training of deep networks. Adv. Neural Inf. Proces. Syst. 19:153–160, 2007.
107.
go back to reference Coates A, Lee H, and Ng, A. Y., An analysis of single-layer networks in unsupervised feature learning. In Aistats, 2011. Coates A, Lee H, and Ng, A. Y., An analysis of single-layer networks in unsupervised feature learning. In Aistats, 2011.
108.
go back to reference Ronneberger, O., Fischer, P., and Brox, T., U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention 9351:234–241, 2015. Ronneberger, O., Fischer, P., and Brox, T., U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention 9351:234–241, 2015.
109.
go back to reference Heckerman, D., A tractable inference algorithm for diagnosing multiple diseases. Proceedings of the Fifth Annual Conference on Uncertainty in Artificial Intelligence. North-Holland Publishing Co:163–172, 1990. Heckerman, D., A tractable inference algorithm for diagnosing multiple diseases. Proceedings of the Fifth Annual Conference on Uncertainty in Artificial Intelligence. North-Holland Publishing Co:163–172, 1990.
110.
go back to reference Dalal, N., and Triggs, B., Histograms of oriented gradients for human detection 886–893, 2005. Dalal, N., and Triggs, B., Histograms of oriented gradients for human detection 886–893, 2005.
111.
go back to reference Ojala, T., Pietikainen, M., and Harwood, D., A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1):51–59, 1996. Ojala, T., Pietikainen, M., and Harwood, D., A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1):51–59, 1996.
112.
go back to reference Krizhevsky, A., Sutskever, I., and Hinton, G. E., ImageNet classification with deep convolutional neural networks. In: NIPS: 1097–1105, 2012. Krizhevsky, A., Sutskever, I., and Hinton, G. E., ImageNet classification with deep convolutional neural networks. In: NIPS: 1097–1105, 2012.
113.
go back to reference Bengio, Y., Louradour, J., Collobert, R., and Weston, J., Curriculum learning. Procintconfon Machine Learning 60(60):6, 2009. Bengio, Y., Louradour, J., Collobert, R., and Weston, J., Curriculum learning. Procintconfon Machine Learning 60(60):6, 2009.
114.
go back to reference Mcnittgray, M. F., Armato, S. G., Iii, M. C. R., Reeves, A. P., Mclennan, G., Pais, R., Freymann, J., Brown, M. S., Engelmann, R. M., and Bland, P. H., The Lung Image Database Consortium (LIDC) Data Collection Process for Nodule Detection and Annotation. Acad. Radiol. 14(12):1464–1474, 2007. Mcnittgray, M. F., Armato, S. G., Iii, M. C. R., Reeves, A. P., Mclennan, G., Pais, R., Freymann, J., Brown, M. S., Engelmann, R. M., and Bland, P. H., The Lung Image Database Consortium (LIDC) Data Collection Process for Nodule Detection and Annotation. Acad. Radiol. 14(12):1464–1474, 2007.
115.
go back to reference Dhara, A. K., Mukhopadhyay, S., Gupta, R. D., Garg, M., and Khandelwal, N., Erratum to: A Segmentation Framework of Pulmonary Nodules in Lung CT Images. J. Digit. Imaging 29(1):86–103, 2016. Dhara, A. K., Mukhopadhyay, S., Gupta, R. D., Garg, M., and Khandelwal, N., Erratum to: A Segmentation Framework of Pulmonary Nodules in Lung CT Images. J. Digit. Imaging 29(1):86–103, 2016.
116.
go back to reference Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P. A., Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 11(12):3371–3408, 2010. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P. A., Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 11(12):3371–3408, 2010.
117.
go back to reference Jing-Jing, W., Hai-Feng, W., Tao, S., Xia, L., Wei, W., Li-Xin, T., Da, H., Ping-Xin, L., Wen, H., and Xiu-Hua, G., Prediction models for solitary pulmonary nodules based on curvelet textural features and clinical parameters. Asian Pacific Journal of Cancer Prevention Apjcp 14(10):6019–6023, 2013. Jing-Jing, W., Hai-Feng, W., Tao, S., Xia, L., Wei, W., Li-Xin, T., Da, H., Ping-Xin, L., Wen, H., and Xiu-Hua, G., Prediction models for solitary pulmonary nodules based on curvelet textural features and clinical parameters. Asian Pacific Journal of Cancer Prevention Apjcp 14(10):6019–6023, 2013.
118.
go back to reference Haifeng, W., Tao, S., Jingjing, W., Xia, L., Wei, W., Da, H., Pingxin, L., Wen, H., Keyang, W., and Xiuhua, G., Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography. J. Digit. Imaging 26(4):797–802, 2013. Haifeng, W., Tao, S., Jingjing, W., Xia, L., Wei, W., Da, H., Pingxin, L., Wen, H., Keyang, W., and Xiuhua, G., Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography. J. Digit. Imaging 26(4):797–802, 2013.
119.
go back to reference Farag, A. A., Farag, A. A., Falk, R., Ali, A. M., Graham, J., Elshazly, S., Evaluation of geometric feature descriptors for detection and classification of lung nodules in low dose CT scans of the chest, 2011. Farag, A. A., Farag, A. A., Falk, R., Ali, A. M., Graham, J., Elshazly, S., Evaluation of geometric feature descriptors for detection and classification of lung nodules in low dose CT scans of the chest, 2011.
120.
go back to reference Farag, A., Elhabian, S., Graham, J., Farag, A., and Falk, R., Toward Precise Pulmonary Nodule Descriptors for Nodule Type Classification. International Conference on Medical Image Computing & Computer-assisted Intervention, 2010. Farag, A., Elhabian, S., Graham, J., Farag, A., and Falk, R., Toward Precise Pulmonary Nodule Descriptors for Nodule Type Classification. International Conference on Medical Image Computing & Computer-assisted Intervention, 2010.
121.
go back to reference Lin, P. L., Huang, P. W., Lee, C. H., and Wu, M. T., Automatic classification for solitary pulmonary nodule in CT image by fractal analysis based on fractional Brownian motion model. Pattern Recogn. 46(12):3279–3287, 2013. Lin, P. L., Huang, P. W., Lee, C. H., and Wu, M. T., Automatic classification for solitary pulmonary nodule in CT image by fractal analysis based on fractional Brownian motion model. Pattern Recogn. 46(12):3279–3287, 2013.
Metadata
Title
An Appraisal of Nodule Diagnosis for Lung Cancer in CT Images
Authors
Guobin Zhang
Zhiyong Yang
Li Gong
Shan Jiang
Lu Wang
Xi Cao
Lin Wei
Hongyun Zhang
Ziqi Liu
Publication date
01-07-2019
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 7/2019
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-019-1327-0

Other articles of this Issue 7/2019

Journal of Medical Systems 7/2019 Go to the issue