Skip to main content
Top
Published in: Journal of Clinical Immunology 6/2015

Open Access 01-08-2015 | Original Research

A Novel Targeted Screening Tool for Hypogammaglobulinemia: Measurement of Serum Immunoglobulin (IgG, IgM, IgA) Levels from Dried Blood Spots (Ig-DBS Assay)

Authors: Leman Yel, Christopher J. Rabbat, Charlotte Cunningham-Rundles, Jordan S. Orange, Troy R. Torgerson, James W. Verbsky, Yeong Wang, Maoyong Fu, Terry S. Robins, Marc S. Edwards, Jesper Nymann-Andersen

Published in: Journal of Clinical Immunology | Issue 6/2015

Login to get access

Abstract

Purpose

To develop an assay to quantify serum immunoglobulin (IgG, IgM, IgA) levels using dried blood spots (DBS) obtained on collection cards to be used as a tool for targeted screening for hypogammaglobulinemia.

Methods

DBS samples, along with simultaneous serum samples, were collected from 107 healthy individuals (11 months to 57 years of age). After eluting proteins from DBS, IgG, IgM, and IgA were quantified by an enzyme-linked immunosorbent assay (ELISA). The Ig-DBS assay was validated through calibration curve performance, intra- and inter-assay precision, accuracy, specificity, selectivity, and linearity. The ELISA measurements were compared with serum Ig levels obtained using a standard nephelometry assay on serum samples collected simultaneously with the DBS samples and the results of the two assays were correlated. The stability of IgG, IgM, and IgA in the DBS was tested at room temperature, 36° to 38 °C, 2 to 8 °C, and −25 to −40 °C, from 4 to 14 days.

Results

The Ig-DBS assay demonstrated precision, accuracy, specificity, selectivity, and linearity. Using the identified correlation coefficients of 0.834 for IgG, 0.789 for IgM, and 0.918 for IgA, the standard nephelometry-based normal reference ranges for all 3 serum Ig isotypes could be used with the Ig-DBS assay in individuals ≥16 years of age. The DBS samples were stable for 14 days at room temperature in a closed polyethylene bag.

Conclusions

The Ig-DBS assay is both sensitive and accurate for quantification of serum immunoglobulins. Samples are sufficiently stable at ambient temperature to allow for convenient shipping and analysis at a centralized laboratory. This assay therefore presents a new option for screening patients ≥16 years of age for hypogammaglobulinemia in any setting.
Literature
1.
go back to reference Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, Cunningham-Rundles C, et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency. Front Immunol. 2014;5:162.PubMedPubMedCentral Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, Cunningham-Rundles C, et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency. Front Immunol. 2014;5:162.PubMedPubMedCentral
3.
go back to reference Bousfiha AA, Jeddane L, Ailal F, Benhsaien I, Mahlaoui N, Casanova JL, et al. Primary immunodeficiency diseases worldwide: more common than generally thought. J Clin Immunol. 2013;33:1–7.CrossRefPubMed Bousfiha AA, Jeddane L, Ailal F, Benhsaien I, Mahlaoui N, Casanova JL, et al. Primary immunodeficiency diseases worldwide: more common than generally thought. J Clin Immunol. 2013;33:1–7.CrossRefPubMed
4.
go back to reference Modell V, Gee B, Lewis DB, Orange JS, Roifman CM, Routes JM, et al. Global study of primary immunodeficiency diseases (PI)—diagnosis, treatment, and economic impact: an updated report from the Jeffrey Modell Foundation. Immunol Res. 2011;51:61–70.CrossRefPubMed Modell V, Gee B, Lewis DB, Orange JS, Roifman CM, Routes JM, et al. Global study of primary immunodeficiency diseases (PI)—diagnosis, treatment, and economic impact: an updated report from the Jeffrey Modell Foundation. Immunol Res. 2011;51:61–70.CrossRefPubMed
6.
go back to reference Ballow M, Notarangelo L, Grimbacher B, Cunningham-Rundles C, Stein M, Helbert M, et al. Immunodeficiencies. Clin Exp Immunol. 2009;158 Suppl 1:14–22.CrossRefPubMedPubMedCentral Ballow M, Notarangelo L, Grimbacher B, Cunningham-Rundles C, Stein M, Helbert M, et al. Immunodeficiencies. Clin Exp Immunol. 2009;158 Suppl 1:14–22.CrossRefPubMedPubMedCentral
7.
go back to reference Quartier P, Debré M, De Blic J, de Sauverzac R, Sayegh N, Jabado N, et al. Early and prolonged intravenous immunoglobulin replacement therapy in childhood agammaglobulinemia: a retrospective survey of 31 patients. J Pediatr. 1999;134:589–96.CrossRefPubMed Quartier P, Debré M, De Blic J, de Sauverzac R, Sayegh N, Jabado N, et al. Early and prolonged intravenous immunoglobulin replacement therapy in childhood agammaglobulinemia: a retrospective survey of 31 patients. J Pediatr. 1999;134:589–96.CrossRefPubMed
8.
go back to reference Busse PJ, Razvi S, Cunningham-Rundles C. Efficacy of intravenous immunoglobulin in the prevention of pneumonia in patients with common variable immunodeficiency. J Allergy Clin Immunol. 2002;109:1001–4.CrossRefPubMed Busse PJ, Razvi S, Cunningham-Rundles C. Efficacy of intravenous immunoglobulin in the prevention of pneumonia in patients with common variable immunodeficiency. J Allergy Clin Immunol. 2002;109:1001–4.CrossRefPubMed
10.
go back to reference Berger M, Murphy E, Riley P, Bergman GE, VIRTUE Trial Investigators. Improved quality of life, immunoglobulin G levels, and infection rates in patients with primary immunodeficiency diseases during self-treatment with subcutaneous immunoglobulin G. South Med J. 2010;103:856–63.CrossRefPubMed Berger M, Murphy E, Riley P, Bergman GE, VIRTUE Trial Investigators. Improved quality of life, immunoglobulin G levels, and infection rates in patients with primary immunodeficiency diseases during self-treatment with subcutaneous immunoglobulin G. South Med J. 2010;103:856–63.CrossRefPubMed
11.
go back to reference Plebani A, Soresina A, Rondelli R, Amato GM, Azzari C, Cardinale F, et al. Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian multicenter study. Clin Immunol. 2002;104:221–30.CrossRefPubMed Plebani A, Soresina A, Rondelli R, Amato GM, Azzari C, Cardinale F, et al. Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian multicenter study. Clin Immunol. 2002;104:221–30.CrossRefPubMed
12.
go back to reference Joshi AY, Iyer VN, Hagan JB, St Sauver JL, Boyce TG. Incidence and temporal trends of primary immunodeficiency: a population-based cohort study. Mayo Clin Proc. 2009;84:16–22.CrossRefPubMedPubMedCentral Joshi AY, Iyer VN, Hagan JB, St Sauver JL, Boyce TG. Incidence and temporal trends of primary immunodeficiency: a population-based cohort study. Mayo Clin Proc. 2009;84:16–22.CrossRefPubMedPubMedCentral
13.
go back to reference Gill JD. Newborn screening for SCID. The time is now. IDF Advocate. 2010;63:1–4. Gill JD. Newborn screening for SCID. The time is now. IDF Advocate. 2010;63:1–4.
14.
go back to reference Srinivasa BT, Alizadehfar R, Desrosiers M, Shuster J, Pai NP, Tsoukas CM. Adult primary immune deficiency: what are we missing? Am J Med. 2012;125:779–86.CrossRefPubMed Srinivasa BT, Alizadehfar R, Desrosiers M, Shuster J, Pai NP, Tsoukas CM. Adult primary immune deficiency: what are we missing? Am J Med. 2012;125:779–86.CrossRefPubMed
17.
go back to reference McGhee SA, Stiehm ER, McCabe ER. Potential costs and benefits of newborn screening for severe combined immunodeficiency. J Pediatr. 2005;147:603–8.CrossRefPubMed McGhee SA, Stiehm ER, McCabe ER. Potential costs and benefits of newborn screening for severe combined immunodeficiency. J Pediatr. 2005;147:603–8.CrossRefPubMed
18.
go back to reference Green NS, Rinaldo P, Brower A, Boyle C, Dougherty D, Lloyd-Puryear M, et al. Committee report: advancing the current recommended panel of conditions for newborn screening. Genet Med. 2007;9:792–6.CrossRefPubMed Green NS, Rinaldo P, Brower A, Boyle C, Dougherty D, Lloyd-Puryear M, et al. Committee report: advancing the current recommended panel of conditions for newborn screening. Genet Med. 2007;9:792–6.CrossRefPubMed
19.
go back to reference Puck JM, SCID Newborn Screening Working Group. Population-based newborn screening for severe combined immunodeficiency: steps toward implementation. J Allergy Clin Immunol. 2007;120:760–8.CrossRefPubMed Puck JM, SCID Newborn Screening Working Group. Population-based newborn screening for severe combined immunodeficiency: steps toward implementation. J Allergy Clin Immunol. 2007;120:760–8.CrossRefPubMed
20.
go back to reference Baker MW, Grossman WJ, Laessig RH, Hoffman GL, Brokopp CD, Kurtycz DF, et al. Development of a routine newborn screening protocol for severe combined immunodeficiency. J Allergy Clin Immunol. 2009;124:522–7.CrossRefPubMed Baker MW, Grossman WJ, Laessig RH, Hoffman GL, Brokopp CD, Kurtycz DF, et al. Development of a routine newborn screening protocol for severe combined immunodeficiency. J Allergy Clin Immunol. 2009;124:522–7.CrossRefPubMed
21.
go back to reference Baker MW, Laessig RH, Katcher ML, Routes JM, Grossman WJ, Verbsky J, et al. Implementing routine testing for severe combined immunodeficiency within Wisconsin’s newborn screening program. Public Health Rep. 2010;125 Suppl 2:88–95.CrossRefPubMedPubMedCentral Baker MW, Laessig RH, Katcher ML, Routes JM, Grossman WJ, Verbsky J, et al. Implementing routine testing for severe combined immunodeficiency within Wisconsin’s newborn screening program. Public Health Rep. 2010;125 Suppl 2:88–95.CrossRefPubMedPubMedCentral
22.
go back to reference Lipstein EA, Vorono S, Browning MF, Green NS, Kemper AR, Knapp AA, et al. Systematic evidence review of newborn screening and treatment of severe combined immunodeficiency. Pediatrics. 2010;125:e1226–35.CrossRefPubMed Lipstein EA, Vorono S, Browning MF, Green NS, Kemper AR, Knapp AA, et al. Systematic evidence review of newborn screening and treatment of severe combined immunodeficiency. Pediatrics. 2010;125:e1226–35.CrossRefPubMed
23.
go back to reference Verbsky JW, Baker MW, Grossman WJ, Hintermeyer M, Dasu T, Bonacci B, et al. Newborn screening for severe combined immunodeficiency; the Wisconsin experience (2008–2011). J Clin Immunol. 2012;32:82–8.CrossRefPubMed Verbsky JW, Baker MW, Grossman WJ, Hintermeyer M, Dasu T, Bonacci B, et al. Newborn screening for severe combined immunodeficiency; the Wisconsin experience (2008–2011). J Clin Immunol. 2012;32:82–8.CrossRefPubMed
25.
go back to reference Borte S, von Döbeln U, Fasth A, Wang N, Janzi M, Winiarski J, et al. Neonatal screening for severe primary immunodeficiency diseases using high-throughput triplex real-time PCR. Blood. 2012;119:2552–5.CrossRefPubMed Borte S, von Döbeln U, Fasth A, Wang N, Janzi M, Winiarski J, et al. Neonatal screening for severe primary immunodeficiency diseases using high-throughput triplex real-time PCR. Blood. 2012;119:2552–5.CrossRefPubMed
26.
go back to reference van Zelm MC, van der Burg M, Langerak AW, van Dongen JJ. PID comes full circle: applications of V(D)J recombination excision circles in research, diagnostics and newborn screening of primary immunodeficiency disorders. Front Immunol. 2011;2:12.PubMedPubMedCentral van Zelm MC, van der Burg M, Langerak AW, van Dongen JJ. PID comes full circle: applications of V(D)J recombination excision circles in research, diagnostics and newborn screening of primary immunodeficiency disorders. Front Immunol. 2011;2:12.PubMedPubMedCentral
27.
go back to reference Reda SM, El-Ghoneimy DH, Afifi HM. Clinical predictors of primary immunodeficiency diseases in children. Allergy Asthma Immunol Res. 2013;5:88–95.CrossRefPubMed Reda SM, El-Ghoneimy DH, Afifi HM. Clinical predictors of primary immunodeficiency diseases in children. Allergy Asthma Immunol Res. 2013;5:88–95.CrossRefPubMed
28.
go back to reference Subbarayan A, Colarusso G, Hughes SM, Gennery AR, Slatter M, Cant AJ, et al. Clinical features that identify children with primary immunodeficiency diseases. Pediatrics. 2011;127:810–6.CrossRefPubMed Subbarayan A, Colarusso G, Hughes SM, Gennery AR, Slatter M, Cant AJ, et al. Clinical features that identify children with primary immunodeficiency diseases. Pediatrics. 2011;127:810–6.CrossRefPubMed
30.
go back to reference Bonilla FA, Bernstein IL, Khan DA, Ballas ZK, Chinen J, Frank MM, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. Ann Allergy Asthma Immunol. 2005;94(5 Suppl 1):S1–63.CrossRefPubMed Bonilla FA, Bernstein IL, Khan DA, Ballas ZK, Chinen J, Frank MM, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. Ann Allergy Asthma Immunol. 2005;94(5 Suppl 1):S1–63.CrossRefPubMed
34.
go back to reference Cunningham-Rundles C, Sidi P, Estrella L, Doucette J. Identifying undiagnosed primary immunodeficiency diseases in minority subjects by using computer sorting of diagnosis codes. J Allergy Clin Immunol. 2004;113:747–55.CrossRefPubMed Cunningham-Rundles C, Sidi P, Estrella L, Doucette J. Identifying undiagnosed primary immunodeficiency diseases in minority subjects by using computer sorting of diagnosis codes. J Allergy Clin Immunol. 2004;113:747–55.CrossRefPubMed
37.
go back to reference Chapel H, Lucas M, Lee M, Bjorkander J, Webster D, Grimbacher B, et al. Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood. 2008;112:277–86.CrossRefPubMed Chapel H, Lucas M, Lee M, Bjorkander J, Webster D, Grimbacher B, et al. Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood. 2008;112:277–86.CrossRefPubMed
38.
go back to reference Borte S, Wang N, Oskarsdóttir S, von Döbeln U, Hammarström L. Newborn screening for primary immunodeficiencies: beyond SCID and XLA. Ann N Y Acad Sci. 2011;1246:118–30.CrossRefPubMed Borte S, Wang N, Oskarsdóttir S, von Döbeln U, Hammarström L. Newborn screening for primary immunodeficiencies: beyond SCID and XLA. Ann N Y Acad Sci. 2011;1246:118–30.CrossRefPubMed
39.
go back to reference Borte S, Janzi M, Pan-Hammarström Q, von Döbeln U, Nordvall L, Winiarski J, et al. Placental transfer of maternally-derived IgA precludes the use of Guthrie card eluates as a screening tool for primary immunodeficiency diseases. PLoS One. 2012;7, e43419.CrossRefPubMedPubMedCentral Borte S, Janzi M, Pan-Hammarström Q, von Döbeln U, Nordvall L, Winiarski J, et al. Placental transfer of maternally-derived IgA precludes the use of Guthrie card eluates as a screening tool for primary immunodeficiency diseases. PLoS One. 2012;7, e43419.CrossRefPubMedPubMedCentral
40.
go back to reference Janzi M, Sjöberg R, Wan J, Fischler B, von Döbeln U, Isaac L, et al. Screening for C3 deficiency in newborns using microarrays. PLoS One. 2009;4, e5321.CrossRefPubMedPubMedCentral Janzi M, Sjöberg R, Wan J, Fischler B, von Döbeln U, Isaac L, et al. Screening for C3 deficiency in newborns using microarrays. PLoS One. 2009;4, e5321.CrossRefPubMedPubMedCentral
41.
go back to reference Nyland JF, Wang SB, Shirley DL, Santos EO, Ventura AM, de Souza JM, et al. Fetal and maternal immune responses to methylmercury exposure: a cross-sectional study. Environ Res. 2011;111:584–9.CrossRefPubMedPubMedCentral Nyland JF, Wang SB, Shirley DL, Santos EO, Ventura AM, de Souza JM, et al. Fetal and maternal immune responses to methylmercury exposure: a cross-sectional study. Environ Res. 2011;111:584–9.CrossRefPubMedPubMedCentral
42.
go back to reference Kawikova I, Grady BP, Tobiasova Z, Zhang Y, Vojdani A, Katsovich L, et al. Children with Tourette’s syndrome may suffer immunoglobulin A dysgammaglobulinemia: preliminary report. Biol Psychiatry. 2010;67:679–83.CrossRefPubMed Kawikova I, Grady BP, Tobiasova Z, Zhang Y, Vojdani A, Katsovich L, et al. Children with Tourette’s syndrome may suffer immunoglobulin A dysgammaglobulinemia: preliminary report. Biol Psychiatry. 2010;67:679–83.CrossRefPubMed
43.
go back to reference Islam SK, Hossain KJ, Kamal M, Ahsan M. Serum immunoglobulins and white blood cells status of drug addicts: influence of illicit drugs and sex habit. Addict Biol. 2004;9:27–33.CrossRefPubMed Islam SK, Hossain KJ, Kamal M, Ahsan M. Serum immunoglobulins and white blood cells status of drug addicts: influence of illicit drugs and sex habit. Addict Biol. 2004;9:27–33.CrossRefPubMed
44.
go back to reference Wu TL, Tsao KC, Chang CP, Li CN, Sun CF, Wu JT. Development of ELISA on microplate for serum C-reactive protein and establishment of age-dependent normal reference range. Clin Chim Acta. 2002;322:163–8.CrossRefPubMed Wu TL, Tsao KC, Chang CP, Li CN, Sun CF, Wu JT. Development of ELISA on microplate for serum C-reactive protein and establishment of age-dependent normal reference range. Clin Chim Acta. 2002;322:163–8.CrossRefPubMed
45.
go back to reference Hossain MA, Emara M, El Moselhi H, Shoker A. Comparing measures of cystatin C in human sera by three methods. Am J Nephrol. 2009;29:381–91.CrossRefPubMed Hossain MA, Emara M, El Moselhi H, Shoker A. Comparing measures of cystatin C in human sera by three methods. Am J Nephrol. 2009;29:381–91.CrossRefPubMed
46.
go back to reference Chambers AG, Percy AJ, Yang J, Camenzind AG, Borchers CH. Multiplexed quantitation of endogenous proteins in dried blood spots by multiple reaction monitoring mass spectrometry. Mol Cell Proteomics. 2013;12(3):781–91.CrossRefPubMed Chambers AG, Percy AJ, Yang J, Camenzind AG, Borchers CH. Multiplexed quantitation of endogenous proteins in dried blood spots by multiple reaction monitoring mass spectrometry. Mol Cell Proteomics. 2013;12(3):781–91.CrossRefPubMed
47.
go back to reference Marques BL, Brandão CU, Silva EF, Marques VA, Villela-Nogueira CA, Do ÓKM, et al. Dried blood spot samples: optimization of commercial EIAs for hepatitis C antibody detection and stability under different storage conditions. J Med Virol. 2012;84:1600–7.CrossRefPubMed Marques BL, Brandão CU, Silva EF, Marques VA, Villela-Nogueira CA, Do ÓKM, et al. Dried blood spot samples: optimization of commercial EIAs for hepatitis C antibody detection and stability under different storage conditions. J Med Virol. 2012;84:1600–7.CrossRefPubMed
48.
go back to reference McDade TW, Woodruff TK, Huang YY, Funk WE, Prewitt M, Kondapalli L, et al. Quantification of anti-Müllerian hormone (AMH) in dried blood spots: validation of a minimally invasive method for assessing ovarian reserve. Hum Reprod. 2012;27:2503–8.CrossRefPubMedPubMedCentral McDade TW, Woodruff TK, Huang YY, Funk WE, Prewitt M, Kondapalli L, et al. Quantification of anti-Müllerian hormone (AMH) in dried blood spots: validation of a minimally invasive method for assessing ovarian reserve. Hum Reprod. 2012;27:2503–8.CrossRefPubMedPubMedCentral
49.
go back to reference Lin YQ, Zhang Y, Li C, Li L, Zhang K, Li S. Evaluation of dry blood spot technique for quantification of an anti-CD20 monoclonal antibody drug in human blood samples. J Pharmacol Toxicol Methods. 2012;65:44–8.CrossRefPubMed Lin YQ, Zhang Y, Li C, Li L, Zhang K, Li S. Evaluation of dry blood spot technique for quantification of an anti-CD20 monoclonal antibody drug in human blood samples. J Pharmacol Toxicol Methods. 2012;65:44–8.CrossRefPubMed
Metadata
Title
A Novel Targeted Screening Tool for Hypogammaglobulinemia: Measurement of Serum Immunoglobulin (IgG, IgM, IgA) Levels from Dried Blood Spots (Ig-DBS Assay)
Authors
Leman Yel
Christopher J. Rabbat
Charlotte Cunningham-Rundles
Jordan S. Orange
Troy R. Torgerson
James W. Verbsky
Yeong Wang
Maoyong Fu
Terry S. Robins
Marc S. Edwards
Jesper Nymann-Andersen
Publication date
01-08-2015
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue 6/2015
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-015-0184-y

Other articles of this Issue 6/2015

Journal of Clinical Immunology 6/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.