Skip to main content
Top
Published in: Journal of Interventional Cardiac Electrophysiology 5/2023

13-12-2022 | Right Bundle Branch Block

Clinical predictors and implications of cardiac inflammation detected on positron emission tomography (PET) in patients referred for premature ventricular complex (PVC) ablation

Authors: Wei-Hsin Chung, Justin Hayase, Duc H. Do, Neal Dixit, Olujimi Ajijola, Eric Buch, Noel Boyle, Kalyanam Shivkumar, Jason S. Bradfield

Published in: Journal of Interventional Cardiac Electrophysiology | Issue 5/2023

Login to get access

Abstract

Background

Positron emission tomography computed tomography (PET-CT) is not routinely used for premature ventricular complexes (PVCs). Whether specific clinical factors are associated with abnormal PET-CT results is not clear.

Methods

The treatment courses and baseline characteristics of consecutive patients in a single center between 2012 and 2021, age > 18 years old, and who received 18F-fluorodeoxyglucose (FDG) PET-CT imaging for evaluation of PVCs were retrospectively analyzed.

Results

A total of 102 patients was included. Of these, 27 patients (26.4%) had abnormal PET-CT and 61 (59.8%) had normal imaging. Abnormal PET-CT findings were associated with non-sustained ventricular tachycardia (NSVT) (95.2% vs. 52.6%, p = 0.001), higher number of PVC morphologies (2.29 ± 0.7 vs. 1.31 ± 0.6, p < 0.001), greater PVC coupling interval dispersion (72.47 ± 66.4 ms vs. 13.42 ± 17.9 ms, p < 0.001), and greater likelihood of fast heart rate dependent PVCs (78.5% vs. 38.2%, p = 0.017). Fourteen (51.8%) patients had an abnormal PET-CT and abnormal late gadolinium enhancement (LGE). Patients with abnormal PET-CT were more frequently treated with immunosuppression (81.4% vs. 3.2%, p < .0001) than with catheter ablation (11.1% vs. 45.9%, p = 0.002) compared to the normal PET-CT group. Over a median follow-up of 862 days (IQR 134, 1407), PVC burden decreased in both groups [from 23 ± 16% to 9 ± 10% (p < 0.001) in abnormal PET-CT group and from 21 ± 15% to 7 ± 10% (p < 0.001) in normal PET-CT group].

Conclusions

Abnormal PET-CT findings were more commonly associated with NSVT, multiform PVCs, greater PVC coupling interval dispersion, and fast heart rate dependent PVCs. LGE was not sensitive for detecting inflammation. Immunosuppression was effective in managing PVCs with abnormal PET-CT.
Appendix
Available only for authorised users
Literature
1.
go back to reference Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Executive summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm. 2018;15(10):e190–e252. Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Executive summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm. 2018;15(10):e190–e252.
2.
go back to reference Lakkireddy D, Turagam MK, Yarlagadda B, et al. Myocarditis causing premature ventricular contractions: insights from the MAVERIC Registry. Circ Arrhythm Electrophysiol. 2019;12(12): e007520.CrossRefPubMed Lakkireddy D, Turagam MK, Yarlagadda B, et al. Myocarditis causing premature ventricular contractions: insights from the MAVERIC Registry. Circ Arrhythm Electrophysiol. 2019;12(12): e007520.CrossRefPubMed
3.
go back to reference Tung R, Bauer B, Schelbert H, et al. Incidence of abnormal positron emission tomography in patients with unexplained cardiomyopathy and ventricular arrhythmias: the potential role of occult inflammation in arrhythmogenesis. Heart Rhythm. 2015;12(12):2488–98.CrossRefPubMedPubMedCentral Tung R, Bauer B, Schelbert H, et al. Incidence of abnormal positron emission tomography in patients with unexplained cardiomyopathy and ventricular arrhythmias: the potential role of occult inflammation in arrhythmogenesis. Heart Rhythm. 2015;12(12):2488–98.CrossRefPubMedPubMedCentral
4.
go back to reference Kaur D, Roukoz H, Shah M, et al. Impact of the inflammation on the outcomes of catheter ablation of drug-refractory ventricular tachycardia in cardiac sarcoidosis. J Cardiovasc Electrophysiol. 2020;31(3):612–20.CrossRefPubMed Kaur D, Roukoz H, Shah M, et al. Impact of the inflammation on the outcomes of catheter ablation of drug-refractory ventricular tachycardia in cardiac sarcoidosis. J Cardiovasc Electrophysiol. 2020;31(3):612–20.CrossRefPubMed
5.
go back to reference Hamon D, Abehsira G, Gu K, et al. Circadian variability patterns predict and guide premature ventricular contraction ablation procedural inducibility and outcomes. Heart Rhythm. 2018;15(1):99–106.CrossRefPubMed Hamon D, Abehsira G, Gu K, et al. Circadian variability patterns predict and guide premature ventricular contraction ablation procedural inducibility and outcomes. Heart Rhythm. 2018;15(1):99–106.CrossRefPubMed
6.
go back to reference Bradfield JS, Homsi M, Shivkumar K, et al. Coupling interval variability differentiates ventricular ectopic complexes arising in the aortic sinus of valsalva and great cardiac vein from other sources: mechanistic and arrhythmic risk implications. J Am Coll Cardiol. 2014;63(20):2151–8.CrossRefPubMedPubMedCentral Bradfield JS, Homsi M, Shivkumar K, et al. Coupling interval variability differentiates ventricular ectopic complexes arising in the aortic sinus of valsalva and great cardiac vein from other sources: mechanistic and arrhythmic risk implications. J Am Coll Cardiol. 2014;63(20):2151–8.CrossRefPubMedPubMedCentral
7.
go back to reference Enriquez A, Baranchuk A, Briceno D, et al. How to use the 12-lead ECG to predict the site of origin of idiopathic ventricular arrhythmias. Heart Rhythm. 2019;16(10):1538–44.CrossRefPubMed Enriquez A, Baranchuk A, Briceno D, et al. How to use the 12-lead ECG to predict the site of origin of idiopathic ventricular arrhythmias. Heart Rhythm. 2019;16(10):1538–44.CrossRefPubMed
8.
go back to reference Berruezo A, Mont L, Nava S, et al. Electrocardiographic recognition of the epicardial origin of ventricular tachycardias. Circulation. 2004;109(15):1842–7.CrossRefPubMed Berruezo A, Mont L, Nava S, et al. Electrocardiographic recognition of the epicardial origin of ventricular tachycardias. Circulation. 2004;109(15):1842–7.CrossRefPubMed
9.
go back to reference Valles E, Bazan V, Marchlinski FE. ECG criteria to identify epicardial ventricular tachycardia in nonischemic cardiomyopathy. Circ Arrhythm Electrophysiol. 2010;3(1):63–71.CrossRefPubMed Valles E, Bazan V, Marchlinski FE. ECG criteria to identify epicardial ventricular tachycardia in nonischemic cardiomyopathy. Circ Arrhythm Electrophysiol. 2010;3(1):63–71.CrossRefPubMed
10.
go back to reference Das MK, Suradi H, Maskoun W, et al. Fragmented wide QRS on a 12-lead ECG: a sign of myocardial scar and poor prognosis. Circ Arrhythm Electrophysiol. 2008;1(4):258–68.CrossRefPubMed Das MK, Suradi H, Maskoun W, et al. Fragmented wide QRS on a 12-lead ECG: a sign of myocardial scar and poor prognosis. Circ Arrhythm Electrophysiol. 2008;1(4):258–68.CrossRefPubMed
11.
go back to reference Rashid S, Rapacchi S, Vaseghi M, et al. Improved late gadolinium enhancement MR imaging for patients with implanted cardiac devices. Radiology. 2014;270(1):269–74.CrossRefPubMedPubMedCentral Rashid S, Rapacchi S, Vaseghi M, et al. Improved late gadolinium enhancement MR imaging for patients with implanted cardiac devices. Radiology. 2014;270(1):269–74.CrossRefPubMedPubMedCentral
12.
go back to reference Frustaci A, Russo MA, Chimenti C. Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur Heart J. 2009;30(16):1995–2002.CrossRefPubMed Frustaci A, Russo MA, Chimenti C. Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur Heart J. 2009;30(16):1995–2002.CrossRefPubMed
13.
go back to reference Peretto G, Sala S, Rizzo S, et al. Ventricular arrhythmias in myocarditis: characterization and relationships with myocardial inflammation. J Am Coll Cardiol. 2020;75(9):1046–57.CrossRefPubMed Peretto G, Sala S, Rizzo S, et al. Ventricular arrhythmias in myocarditis: characterization and relationships with myocardial inflammation. J Am Coll Cardiol. 2020;75(9):1046–57.CrossRefPubMed
14.
go back to reference Peretto G, Sala S, Basso C, et al. Programmed ventricular stimulation in patients with active vs previous arrhythmic myocarditis. J Cardiovasc Electrophysiol. 2020;31(3):692–701.CrossRefPubMed Peretto G, Sala S, Basso C, et al. Programmed ventricular stimulation in patients with active vs previous arrhythmic myocarditis. J Cardiovasc Electrophysiol. 2020;31(3):692–701.CrossRefPubMed
15.
go back to reference Kawamura M, Badhwar N, Vedantham V, et al. Coupling interval dispersion and body mass index are independent predictors of idiopathic premature ventricular complex-induced cardiomyopathy. J Cardiovasc Electrophysiol. 2014;25(7):756–62.CrossRefPubMed Kawamura M, Badhwar N, Vedantham V, et al. Coupling interval dispersion and body mass index are independent predictors of idiopathic premature ventricular complex-induced cardiomyopathy. J Cardiovasc Electrophysiol. 2014;25(7):756–62.CrossRefPubMed
16.
go back to reference Hamon D, Rajendran PS, Chui RW, et al. Premature ventricular contraction coupling interval variability destabilizes cardiac neuronal and electrophysiological control: insights from simultaneous cardioneural mapping. Circ Arrhythm Electrophysiol. 2017;10(4):e004937. Hamon D, Rajendran PS, Chui RW, et al. Premature ventricular contraction coupling interval variability destabilizes cardiac neuronal and electrophysiological control: insights from simultaneous cardioneural mapping. Circ Arrhythm Electrophysiol. 2017;10(4):e004937.
17.
go back to reference Levine RL, Pepe PE, Fromm RE Jr, et al. Prospective evidence of a circadian rhythm for out-of-hospital cardiac arrests. JAMA. 1992;267(21):2935–7.CrossRefPubMed Levine RL, Pepe PE, Fromm RE Jr, et al. Prospective evidence of a circadian rhythm for out-of-hospital cardiac arrests. JAMA. 1992;267(21):2935–7.CrossRefPubMed
18.
go back to reference Englund A, Behrens S, Wegscheider K, et al. Circadian variation of malignant ventricular arrhythmias in patients with ischemic and nonischemic heart disease after cardioverter defibrillator implantation. European 7219 Jewel Investigators. J Am Coll Cardiol. 1999;34(5):1560–8.CrossRefPubMed Englund A, Behrens S, Wegscheider K, et al. Circadian variation of malignant ventricular arrhythmias in patients with ischemic and nonischemic heart disease after cardioverter defibrillator implantation. European 7219 Jewel Investigators. J Am Coll Cardiol. 1999;34(5):1560–8.CrossRefPubMed
19.
go back to reference Hayashi H, Fujiki A, Tani M, et al. Circadian variation of idiopathic ventricular tachycardia originating from right ventricular outflow tract. Am J Cardiol. 1999;84(1):99–101, A8.CrossRefPubMed Hayashi H, Fujiki A, Tani M, et al. Circadian variation of idiopathic ventricular tachycardia originating from right ventricular outflow tract. Am J Cardiol. 1999;84(1):99–101, A8.CrossRefPubMed
Metadata
Title
Clinical predictors and implications of cardiac inflammation detected on positron emission tomography (PET) in patients referred for premature ventricular complex (PVC) ablation
Authors
Wei-Hsin Chung
Justin Hayase
Duc H. Do
Neal Dixit
Olujimi Ajijola
Eric Buch
Noel Boyle
Kalyanam Shivkumar
Jason S. Bradfield
Publication date
13-12-2022
Publisher
Springer US
Published in
Journal of Interventional Cardiac Electrophysiology / Issue 5/2023
Print ISSN: 1383-875X
Electronic ISSN: 1572-8595
DOI
https://doi.org/10.1007/s10840-022-01446-z

Other articles of this Issue 5/2023

Journal of Interventional Cardiac Electrophysiology 5/2023 Go to the issue