Skip to main content
Top
Published in: Journal of Interventional Cardiac Electrophysiology 2/2015

Open Access 01-08-2015 | REVIEWS

The genetic basis for inherited forms of sinoatrial dysfunction and atrioventricular node dysfunction

Authors: Raffaella Milanesi, Annalisa Bucchi, Mirko Baruscotti

Published in: Journal of Interventional Cardiac Electrophysiology | Issue 2/2015

Login to get access

Abstract

The sinoatrial node (SAN) and the atrioventricular node (AVN) are the anatomical and functional regions of the heart which play critical roles in the generation and conduction of the electrical impulse. Their functions are ensured by peculiar structural cytological properties and specific collections of ion channels. Impairment of SAN and AVN activity is generally acquired,but in some cases familial inheritance has been established and therefore a genetic cause is involved. In recent years, combined efforts of clinical practice and experimental basic science studies have identified and characterized several causative gene mutations associated with the nodal syndromes. Channelopathies, i.e., diseases associated with defective ion channels, remain the major cause of genetically determined nodal arrhythmias; however, it is becoming increasingly evident that mutations in other classes of regulatory and structural proteins also have profound pathophysiological roles. In this review, we will present some aspects of the genetic identification of the molecular mechanism underlying both SAN and AVN dysfunctions with a particular focus on mutations of the Na, pacemaker (HCN), and Ca channels. Genetic defects in regulatory proteins and calcium-handling proteins will be also considered. In conclusion, the identification of the genetic defects associated with familial nodal dysfunction is an essential step for implementing an appropriate therapeutic treatment.
Literature
1.
go back to reference Dobrzynski, H., Anderson, R. H., Atkinson, A., Borbas, Z., D'Souza, A., Fraser, J. F., et al. (2013). Structure, function and clinical relevance of the cardiac conduction system, including the atrioventricular ring and outflow tract tissues. Pharmacology and Therapeutics, 139(2), 260–288.PubMed Dobrzynski, H., Anderson, R. H., Atkinson, A., Borbas, Z., D'Souza, A., Fraser, J. F., et al. (2013). Structure, function and clinical relevance of the cardiac conduction system, including the atrioventricular ring and outflow tract tissues. Pharmacology and Therapeutics, 139(2), 260–288.PubMed
2.
go back to reference Baruscotti, M., Barbuti, A., & Bucchi, A. (2010). The cardiac pacemaker current. Journal of Molecular and Cellular Cardiology, 48(1), 55–64.PubMed Baruscotti, M., Barbuti, A., & Bucchi, A. (2010). The cardiac pacemaker current. Journal of Molecular and Cellular Cardiology, 48(1), 55–64.PubMed
3.
go back to reference Beinart, R., Ruskin, J., & Milan, D. (2010). The genetics of conduction disease. Heart Failure Clinics, 6(2), 201–214.PubMed Beinart, R., Ruskin, J., & Milan, D. (2010). The genetics of conduction disease. Heart Failure Clinics, 6(2), 201–214.PubMed
4.
go back to reference Benson, D. W. (2004). Genetics of atrioventricular conduction disease in humans. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 280(2), 934–939. Benson, D. W. (2004). Genetics of atrioventricular conduction disease in humans. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 280(2), 934–939.
5.
go back to reference Remme, C. A. (2013). Cardiac sodium channelopathy associated with SCN5A mutations: electrophysiological, molecular and genetic aspects. The Journal of Physiology, 591(Pt 17), 4099–4116.PubMedCentralPubMed Remme, C. A. (2013). Cardiac sodium channelopathy associated with SCN5A mutations: electrophysiological, molecular and genetic aspects. The Journal of Physiology, 591(Pt 17), 4099–4116.PubMedCentralPubMed
6.
go back to reference Wolf, C. M., & Berul, C. I. (2006). Inherited conduction system abnormalities—one group of diseases, many genes. Journal of Cardiovascular Electrophysiology, 17(4), 446–455.PubMed Wolf, C. M., & Berul, C. I. (2006). Inherited conduction system abnormalities—one group of diseases, many genes. Journal of Cardiovascular Electrophysiology, 17(4), 446–455.PubMed
7.
go back to reference Brioschi, C., Micheloni, S., Tellez, J. O., Pisoni, G., Longhi, R., Moroni, P., et al. (2009). Distribution of the pacemaker HCN4 channel mRNA and protein in the rabbit sinoatrial node. Journal of Molecular and Cellular Cardiology, 47(2), 221–227.PubMed Brioschi, C., Micheloni, S., Tellez, J. O., Pisoni, G., Longhi, R., Moroni, P., et al. (2009). Distribution of the pacemaker HCN4 channel mRNA and protein in the rabbit sinoatrial node. Journal of Molecular and Cellular Cardiology, 47(2), 221–227.PubMed
8.
go back to reference Honjo, H., Boyett, M. R., Kodama, I., & Toyama, J. (1996). Correlation between electrical activity and the size of rabbit sino-atrial node cells. The Journal of Physiology, 496(Pt 3), 795–808.PubMedCentralPubMed Honjo, H., Boyett, M. R., Kodama, I., & Toyama, J. (1996). Correlation between electrical activity and the size of rabbit sino-atrial node cells. The Journal of Physiology, 496(Pt 3), 795–808.PubMedCentralPubMed
9.
go back to reference DiFrancesco, D. (2010). The role of the funny current in pacemaker activity. Circulation Research, 106(3), 434–446.PubMed DiFrancesco, D. (2010). The role of the funny current in pacemaker activity. Circulation Research, 106(3), 434–446.PubMed
10.
go back to reference Lakatta, E. G., & DiFrancesco, D. (2009). What keeps us ticking: a funny current, a calcium clock, or both? Journal of Molecular and Cellular Cardiology, 47(2), 157–170.PubMed Lakatta, E. G., & DiFrancesco, D. (2009). What keeps us ticking: a funny current, a calcium clock, or both? Journal of Molecular and Cellular Cardiology, 47(2), 157–170.PubMed
11.
go back to reference Munk, A. A., Adjemian, R. A., Zhao, J., Ogbaghebriel, A., & Shrier, A. (1996). Electrophysiological properties of morphologically distinct cells isolated from the rabbit atrioventricular node. The Journal of Physiology, 493(Pt 3), 801–818.PubMedCentralPubMed Munk, A. A., Adjemian, R. A., Zhao, J., Ogbaghebriel, A., & Shrier, A. (1996). Electrophysiological properties of morphologically distinct cells isolated from the rabbit atrioventricular node. The Journal of Physiology, 493(Pt 3), 801–818.PubMedCentralPubMed
12.
go back to reference Benson, D. W., Wang, D. W., Dyment, M., Knilans, T. K., Fish, F. A., Strieper, M. J., et al. (2003). Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). The Journal of Clinical Investigation, 112(7), 1019–1028.PubMedCentralPubMed Benson, D. W., Wang, D. W., Dyment, M., Knilans, T. K., Fish, F. A., Strieper, M. J., et al. (2003). Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). The Journal of Clinical Investigation, 112(7), 1019–1028.PubMedCentralPubMed
13.
go back to reference Mangrum, J. M., & DiMarco, J. P. (2000). The evaluation and management of bradycardia. The New England Journal of Medicine, 342(10), 703–709.PubMed Mangrum, J. M., & DiMarco, J. P. (2000). The evaluation and management of bradycardia. The New England Journal of Medicine, 342(10), 703–709.PubMed
14.
go back to reference Baruteau, A. E., Behaghel, A., Fouchard, S., Mabo, P., Schott, J. J., Dina, C., et al. (2012). Parental electrocardiographic screening identifies a high degree of inheritance for congenital and childhood nonimmune isolated atrioventricular block. Circulation, 126(12), 1469–1477.PubMed Baruteau, A. E., Behaghel, A., Fouchard, S., Mabo, P., Schott, J. J., Dina, C., et al. (2012). Parental electrocardiographic screening identifies a high degree of inheritance for congenital and childhood nonimmune isolated atrioventricular block. Circulation, 126(12), 1469–1477.PubMed
15.
go back to reference Baruscotti, M., DiFrancesco, D., & Robinson, R. B. (1996). A TTX-sensitive inward sodium current contributes to spontaneous activity in newborn rabbit sino-atrial node cells. The Journal of Physiology, 492(Pt 1), 21–30.PubMedCentralPubMed Baruscotti, M., DiFrancesco, D., & Robinson, R. B. (1996). A TTX-sensitive inward sodium current contributes to spontaneous activity in newborn rabbit sino-atrial node cells. The Journal of Physiology, 492(Pt 1), 21–30.PubMedCentralPubMed
16.
go back to reference Kodama, I., Nikmaram, M. R., Boyett, M. R., Suzuki, R., Honjo, H., & Owen, J. M. (1997). Regional differences in the role of the Ca2+ and Na+ currents in pacemaker activity in the sinoatrial node. The American Journal of Physiology, 272(6 Pt 2), H2793–2806.PubMed Kodama, I., Nikmaram, M. R., Boyett, M. R., Suzuki, R., Honjo, H., & Owen, J. M. (1997). Regional differences in the role of the Ca2+ and Na+ currents in pacemaker activity in the sinoatrial node. The American Journal of Physiology, 272(6 Pt 2), H2793–2806.PubMed
17.
go back to reference Remme, C. A., Verkerk, A. O., Hoogaars, W. M., Aanhaanen, W. T., Scicluna, B. P., Annink, C., et al. (2009). The cardiac sodium channel displays differential distribution in the conduction system and transmural heterogeneity in the murine ventricular myocardium. Basic Research in Cardiology, 104(5), 511–522.PubMedCentralPubMed Remme, C. A., Verkerk, A. O., Hoogaars, W. M., Aanhaanen, W. T., Scicluna, B. P., Annink, C., et al. (2009). The cardiac sodium channel displays differential distribution in the conduction system and transmural heterogeneity in the murine ventricular myocardium. Basic Research in Cardiology, 104(5), 511–522.PubMedCentralPubMed
18.
go back to reference Maier, S. K., Westenbroek, R. E., Yamanushi, T. T., Dobrzynski, H., Boyett, M. R., Catterall, W. A., et al. (2003). An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node. Proceedings of the National Academy of Sciences of the United States of America, 100(6), 3507–3512.PubMedCentralPubMed Maier, S. K., Westenbroek, R. E., Yamanushi, T. T., Dobrzynski, H., Boyett, M. R., Catterall, W. A., et al. (2003). An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node. Proceedings of the National Academy of Sciences of the United States of America, 100(6), 3507–3512.PubMedCentralPubMed
19.
go back to reference Dobrzynski, H., Boyett, M. R., & Anderson, R. H. (2007). New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation, 115(14), 1921–1932.PubMed Dobrzynski, H., Boyett, M. R., & Anderson, R. H. (2007). New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation, 115(14), 1921–1932.PubMed
20.
go back to reference Makiyama, T., Akao, M., Tsuji, K., Doi, T., Ohno, S., Takenaka, K., et al. (2005). High risk for bradyarrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations. Journal of the American College of Cardiology, 46(11), 2100–2106.PubMed Makiyama, T., Akao, M., Tsuji, K., Doi, T., Ohno, S., Takenaka, K., et al. (2005). High risk for bradyarrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations. Journal of the American College of Cardiology, 46(11), 2100–2106.PubMed
21.
go back to reference Chandler, N. J., Greener, I. D., Tellez, J. O., Inada, S., Musa, H., Molenaar, P., et al. (2009). Molecular architecture of the human sinus node: insights into the function of the cardiac pacemaker. Circulation, 119(12), 1562–1575.PubMed Chandler, N. J., Greener, I. D., Tellez, J. O., Inada, S., Musa, H., Molenaar, P., et al. (2009). Molecular architecture of the human sinus node: insights into the function of the cardiac pacemaker. Circulation, 119(12), 1562–1575.PubMed
22.
go back to reference Verkerk, A. O., Wilders, R., van Borren, M. M., & Tan, H. L. (2009). Is sodium current present in human sinoatrial node cells? International Journal of Biological Sciences, 5(2), 201–204.PubMedCentralPubMed Verkerk, A. O., Wilders, R., van Borren, M. M., & Tan, H. L. (2009). Is sodium current present in human sinoatrial node cells? International Journal of Biological Sciences, 5(2), 201–204.PubMedCentralPubMed
23.
go back to reference Makita, N., Sumitomo, N., Watanabe, I., & Tsutsui, H. (2007). Novel SCN5A mutation (Q55X) associated with age-dependent expression of Brugada syndrome presenting as neurally mediated syncope. Heart Rhythm, 4(4), 516–519.PubMed Makita, N., Sumitomo, N., Watanabe, I., & Tsutsui, H. (2007). Novel SCN5A mutation (Q55X) associated with age-dependent expression of Brugada syndrome presenting as neurally mediated syncope. Heart Rhythm, 4(4), 516–519.PubMed
24.
go back to reference Holst, A. G., Liang, B., Jespersen, T., Bundgaard, H., Haunso, S., Svendsen, J. H., et al. (2010). Sick sinus syndrome, progressive cardiac conduction disease, atrial flutter and ventricular tachycardia caused by a novel SCN5A mutation. Cardiology, 115(4), 311–316.PubMed Holst, A. G., Liang, B., Jespersen, T., Bundgaard, H., Haunso, S., Svendsen, J. H., et al. (2010). Sick sinus syndrome, progressive cardiac conduction disease, atrial flutter and ventricular tachycardia caused by a novel SCN5A mutation. Cardiology, 115(4), 311–316.PubMed
25.
go back to reference Bezzina, C. R., Rook, M. B., Groenewegen, W. A., Herfst, L. J., van der Wal, A. C., Lam, J., et al. (2003). Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system. Circulation Research, 92(2), 159–168.PubMed Bezzina, C. R., Rook, M. B., Groenewegen, W. A., Herfst, L. J., van der Wal, A. C., Lam, J., et al. (2003). Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system. Circulation Research, 92(2), 159–168.PubMed
26.
go back to reference Smits, J. P., Koopmann, T. T., Wilders, R., Veldkamp, M. W., Opthof, T., Bhuiyan, Z. A., et al. (2005). A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. Journal of Molecular and Cellular Cardiology, 38(6), 969–981.PubMed Smits, J. P., Koopmann, T. T., Wilders, R., Veldkamp, M. W., Opthof, T., Bhuiyan, Z. A., et al. (2005). A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. Journal of Molecular and Cellular Cardiology, 38(6), 969–981.PubMed
27.
go back to reference Makita, N., Sasaki, K., Groenewegen, W. A., Yokota, T., Yokoshiki, H., Murakami, T., et al. (2005). Congenital atrial standstill associated with coinheritance of a novel SCN5A mutation and connexin 40 polymorphisms. Heart Rhythm, 2(10), 1128–1134.PubMed Makita, N., Sasaki, K., Groenewegen, W. A., Yokota, T., Yokoshiki, H., Murakami, T., et al. (2005). Congenital atrial standstill associated with coinheritance of a novel SCN5A mutation and connexin 40 polymorphisms. Heart Rhythm, 2(10), 1128–1134.PubMed
28.
go back to reference Gui, J., Wang, T., Jones, R. P., Trump, D., Zimmer, T., & Lei, M. (2010). Multiple loss-of-function mechanisms contribute to SCN5A-related familial sick sinus syndrome. PLoS One, 5(6), e10985.PubMedCentralPubMed Gui, J., Wang, T., Jones, R. P., Trump, D., Zimmer, T., & Lei, M. (2010). Multiple loss-of-function mechanisms contribute to SCN5A-related familial sick sinus syndrome. PLoS One, 5(6), e10985.PubMedCentralPubMed
29.
go back to reference Olson, T. M., Michels, V. V., Ballew, J. D., Reyna, S. P., Karst, M. L., Herron, K. J., et al. (2005). Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA, 293(4), 447–454.PubMedCentralPubMed Olson, T. M., Michels, V. V., Ballew, J. D., Reyna, S. P., Karst, M. L., Herron, K. J., et al. (2005). Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA, 293(4), 447–454.PubMedCentralPubMed
30.
go back to reference Wang, D. W., Viswanathan, P. C., Balser, J. R., George, A. L., Jr., & Benson, D. W. (2002). Clinical, genetic, and biophysical characterization of SCN5A mutations associated with atrioventricular conduction block. Circulation, 105(3), 341–346.PubMed Wang, D. W., Viswanathan, P. C., Balser, J. R., George, A. L., Jr., & Benson, D. W. (2002). Clinical, genetic, and biophysical characterization of SCN5A mutations associated with atrioventricular conduction block. Circulation, 105(3), 341–346.PubMed
31.
go back to reference Detta, N., Frisso, G., Limongelli, G., Marzullo, M., Calabro, R., & Salvatore, F. (2014). Genetic analysis in a family affected by sick sinus syndrome may reduce the sudden death risk in a young aspiring competitive athlete. International Journal of Cardiology, 170(3), e63–65.PubMed Detta, N., Frisso, G., Limongelli, G., Marzullo, M., Calabro, R., & Salvatore, F. (2014). Genetic analysis in a family affected by sick sinus syndrome may reduce the sudden death risk in a young aspiring competitive athlete. International Journal of Cardiology, 170(3), e63–65.PubMed
32.
go back to reference Rossenbacker, T., Carroll, S. J., Liu, H., Kuiperi, C., de Ravel, T. J., Devriendt, K., et al. (2004). Novel pore mutation in SCN5A manifests as a spectrum of phenotypes ranging from atrial flutter, conduction disease, and Brugada syndrome to sudden cardiac death. Heart Rhythm, 1(5), 610–615.PubMed Rossenbacker, T., Carroll, S. J., Liu, H., Kuiperi, C., de Ravel, T. J., Devriendt, K., et al. (2004). Novel pore mutation in SCN5A manifests as a spectrum of phenotypes ranging from atrial flutter, conduction disease, and Brugada syndrome to sudden cardiac death. Heart Rhythm, 1(5), 610–615.PubMed
33.
go back to reference Horne, A. J., Eldstrom, J., Sanatani, S., & Fedida, D. (2011). A novel mechanism for LQT3 with 2:1 block: a pore-lining mutation in Nav1.5 significantly affects voltage-dependence of activation. Heart Rhythm, 8(5), 770–777.PubMed Horne, A. J., Eldstrom, J., Sanatani, S., & Fedida, D. (2011). A novel mechanism for LQT3 with 2:1 block: a pore-lining mutation in Nav1.5 significantly affects voltage-dependence of activation. Heart Rhythm, 8(5), 770–777.PubMed
34.
go back to reference Viswanathan, P. C., Benson, D. W., & Balser, J. R. (2003). A common SCN5A polymorphism modulates the biophysical effects of an SCN5A mutation. The Journal of Clinical Investigation, 111(3), 341–346.PubMedCentralPubMed Viswanathan, P. C., Benson, D. W., & Balser, J. R. (2003). A common SCN5A polymorphism modulates the biophysical effects of an SCN5A mutation. The Journal of Clinical Investigation, 111(3), 341–346.PubMedCentralPubMed
35.
go back to reference Tan, H. L., Bink-Boelkens, M. T., Bezzina, C. R., Viswanathan, P. C., Beaufort-Krol, G. C., van Tintelen, P. J., et al. (2001). A sodium-channel mutation causes isolated cardiac conduction disease. Nature, 409(6823), 1043–1047.PubMed Tan, H. L., Bink-Boelkens, M. T., Bezzina, C. R., Viswanathan, P. C., Beaufort-Krol, G. C., van Tintelen, P. J., et al. (2001). A sodium-channel mutation causes isolated cardiac conduction disease. Nature, 409(6823), 1043–1047.PubMed
36.
go back to reference Zhang, Y., Wang, T., Ma, A., Zhou, X., Gui, J., Wan, H., et al. (2008). Correlations between clinical and physiological consequences of the novel mutation R878C in a highly conserved pore residue in the cardiac Na+ channel. Acta Physiologica (Oxford, England), 194(4), 311–323. Zhang, Y., Wang, T., Ma, A., Zhou, X., Gui, J., Wan, H., et al. (2008). Correlations between clinical and physiological consequences of the novel mutation R878C in a highly conserved pore residue in the cardiac Na+ channel. Acta Physiologica (Oxford, England), 194(4), 311–323.
37.
go back to reference Ge, J., Sun, A., Paajanen, V., Wang, S., Su, C., Yang, Z., et al. (2008). Molecular and clinical characterization of a novel SCN5A mutation associated with atrioventricular block and dilated cardiomyopathy. Circulation. Arrhythmia and Electrophysiology, 1(2), 83–92.PubMed Ge, J., Sun, A., Paajanen, V., Wang, S., Su, C., Yang, Z., et al. (2008). Molecular and clinical characterization of a novel SCN5A mutation associated with atrioventricular block and dilated cardiomyopathy. Circulation. Arrhythmia and Electrophysiology, 1(2), 83–92.PubMed
38.
go back to reference Kyndt, F., Probst, V., Potet, F., Demolombe, S., Chevallier, J. C., Baro, I., et al. (2001). Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family. Circulation, 104(25), 3081–3086.PubMed Kyndt, F., Probst, V., Potet, F., Demolombe, S., Chevallier, J. C., Baro, I., et al. (2001). Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family. Circulation, 104(25), 3081–3086.PubMed
39.
go back to reference Niu, D. M., Hwang, B., Hwang, H. W., Wang, N. H., Wu, J. Y., Lee, P. C., et al. (2006). A common SCN5A polymorphism attenuates a severe cardiac phenotype caused by a nonsense SCN5A mutation in a Chinese family with an inherited cardiac conduction defect. Journal of Medical Genetics, 43(10), 817–821.PubMedCentralPubMed Niu, D. M., Hwang, B., Hwang, H. W., Wang, N. H., Wu, J. Y., Lee, P. C., et al. (2006). A common SCN5A polymorphism attenuates a severe cardiac phenotype caused by a nonsense SCN5A mutation in a Chinese family with an inherited cardiac conduction defect. Journal of Medical Genetics, 43(10), 817–821.PubMedCentralPubMed
40.
go back to reference Zumhagen, S., Veldkamp, M. W., Stallmeyer, B., Baartscheer, A., Eckardt, L., Paul, M., et al. (2013). A heterozygous deletion mutation in the cardiac sodium channel gene SCN5A with loss- and gain-of-function characteristics manifests as isolated conduction disease, without signs of Brugada or long QT syndrome. PLoS One, 8(6), e67963.PubMedCentralPubMed Zumhagen, S., Veldkamp, M. W., Stallmeyer, B., Baartscheer, A., Eckardt, L., Paul, M., et al. (2013). A heterozygous deletion mutation in the cardiac sodium channel gene SCN5A with loss- and gain-of-function characteristics manifests as isolated conduction disease, without signs of Brugada or long QT syndrome. PLoS One, 8(6), e67963.PubMedCentralPubMed
41.
go back to reference Grant, A. O., Carboni, M. P., Neplioueva, V., Starmer, C. F., Memmi, M., Napolitano, C., et al. (2002). Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. The Journal of Clinical Investigation, 110(8), 1201–1209.PubMedCentralPubMed Grant, A. O., Carboni, M. P., Neplioueva, V., Starmer, C. F., Memmi, M., Napolitano, C., et al. (2002). Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. The Journal of Clinical Investigation, 110(8), 1201–1209.PubMedCentralPubMed
42.
go back to reference Bennett, P. B., Yazawa, K., Makita, N., & George, A. L., Jr. (1995). Molecular mechanism for an inherited cardiac arrhythmia. Nature, 376(6542), 683–685.PubMed Bennett, P. B., Yazawa, K., Makita, N., & George, A. L., Jr. (1995). Molecular mechanism for an inherited cardiac arrhythmia. Nature, 376(6542), 683–685.PubMed
43.
go back to reference Keller, D. I., Acharfi, S., Delacretaz, E., Benammar, N., Rotter, M., Pfammatter, J. P., et al. (2003). A novel mutation in SCN5A, delQKP 1507–1509, causing long QT syndrome: role of Q1507 residue in sodium channel inactivation. Journal of Molecular and Cellular Cardiology, 35(12), 1513–1521.PubMed Keller, D. I., Acharfi, S., Delacretaz, E., Benammar, N., Rotter, M., Pfammatter, J. P., et al. (2003). A novel mutation in SCN5A, delQKP 1507–1509, causing long QT syndrome: role of Q1507 residue in sodium channel inactivation. Journal of Molecular and Cellular Cardiology, 35(12), 1513–1521.PubMed
44.
go back to reference Akai, J., Makita, N., Sakurada, H., Shirai, N., Ueda, K., Kitabatake, A., et al. (2000). A novel SCN5A mutation associated with idiopathic ventricular fibrillation without typical ECG findings of Brugada syndrome. FEBS Letters, 479(1–2), 29–34.PubMed Akai, J., Makita, N., Sakurada, H., Shirai, N., Ueda, K., Kitabatake, A., et al. (2000). A novel SCN5A mutation associated with idiopathic ventricular fibrillation without typical ECG findings of Brugada syndrome. FEBS Letters, 479(1–2), 29–34.PubMed
45.
go back to reference Chang, C. C., Acharfi, S., Wu, M. H., Chiang, F. T., Wang, J. K., Sung, T. C., et al. (2004). A novel SCN5A mutation manifests as a malignant form of long QT syndrome with perinatal onset of tachycardia/bradycardia. Cardiovascular Research, 64(2), 268–278.PubMed Chang, C. C., Acharfi, S., Wu, M. H., Chiang, F. T., Wang, J. K., Sung, T. C., et al. (2004). A novel SCN5A mutation manifests as a malignant form of long QT syndrome with perinatal onset of tachycardia/bradycardia. Cardiovascular Research, 64(2), 268–278.PubMed
46.
go back to reference Lupoglazoff, J. M., Cheav, T., Baroudi, G., Berthet, M., Denjoy, I., Cauchemez, B., et al. (2001). Homozygous SCN5A mutation in long-QT syndrome with functional two-to-one atrioventricular block. Circulation Research, 89(2), E16–21.PubMed Lupoglazoff, J. M., Cheav, T., Baroudi, G., Berthet, M., Denjoy, I., Cauchemez, B., et al. (2001). Homozygous SCN5A mutation in long-QT syndrome with functional two-to-one atrioventricular block. Circulation Research, 89(2), E16–21.PubMed
47.
go back to reference Wei, J., Wang, D. W., Alings, M., Fish, F., Wathen, M., Roden, D. M., et al. (1999). Congenital long-QT syndrome caused by a novel mutation in a conserved acidic domain of the cardiac Na+ channel. Circulation, 99(24), 3165–3171.PubMed Wei, J., Wang, D. W., Alings, M., Fish, F., Wathen, M., Roden, D. M., et al. (1999). Congenital long-QT syndrome caused by a novel mutation in a conserved acidic domain of the cardiac Na+ channel. Circulation, 99(24), 3165–3171.PubMed
48.
go back to reference An, R. H., Wang, X. L., Kerem, B., Benhorin, J., Medina, A., Goldmit, M., et al. (1998). Novel LQT-3 mutation affects Na+ channel activity through interactions between alpha- and beta1-subunits. Circulation Research, 83(2), 141–146.PubMed An, R. H., Wang, X. L., Kerem, B., Benhorin, J., Medina, A., Goldmit, M., et al. (1998). Novel LQT-3 mutation affects Na+ channel activity through interactions between alpha- and beta1-subunits. Circulation Research, 83(2), 141–146.PubMed
49.
go back to reference Veldkamp, M. W., Wilders, R., Baartscheer, A., Zegers, J. G., Bezzina, C. R., & Wilde, A. A. (2003). Contribution of sodium channel mutations to bradycardia and sinus node dysfunction in LQT3 families. Circulation Research, 92(9), 976–983.PubMed Veldkamp, M. W., Wilders, R., Baartscheer, A., Zegers, J. G., Bezzina, C. R., & Wilde, A. A. (2003). Contribution of sodium channel mutations to bradycardia and sinus node dysfunction in LQT3 families. Circulation Research, 92(9), 976–983.PubMed
50.
go back to reference Bezzina, C., Veldkamp, M. W., van Den Berg, M. P., Postma, A. V., Rook, M. B., Viersma, J. W., et al. (1999). A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circulation Research, 85(12), 1206–1213.PubMed Bezzina, C., Veldkamp, M. W., van Den Berg, M. P., Postma, A. V., Rook, M. B., Viersma, J. W., et al. (1999). A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circulation Research, 85(12), 1206–1213.PubMed
51.
go back to reference Tan, B. H., Iturralde-Torres, P., Medeiros-Domingo, A., Nava, S., Tester, D. J., Valdivia, C. R., et al. (2007). A novel C-terminal truncation SCN5A mutation from a patient with sick sinus syndrome, conduction disorder and ventricular tachycardia. Cardiovascular Research, 76(3), 409–417.PubMedCentralPubMed Tan, B. H., Iturralde-Torres, P., Medeiros-Domingo, A., Nava, S., Tester, D. J., Valdivia, C. R., et al. (2007). A novel C-terminal truncation SCN5A mutation from a patient with sick sinus syndrome, conduction disorder and ventricular tachycardia. Cardiovascular Research, 76(3), 409–417.PubMedCentralPubMed
52.
go back to reference Ziyadeh-Isleem, A., Clatot, J., Duchatelet, S., Gandjbakhch, E., Denjoy, I., Hidden-Lucet, F., et al. (2014). A truncating SCN5A mutation combined with genetic variability causes sick sinus syndrome and early atrial fibrillation. Heart Rhythm, 11(6), 1015–1023.PubMedCentralPubMed Ziyadeh-Isleem, A., Clatot, J., Duchatelet, S., Gandjbakhch, E., Denjoy, I., Hidden-Lucet, F., et al. (2014). A truncating SCN5A mutation combined with genetic variability causes sick sinus syndrome and early atrial fibrillation. Heart Rhythm, 11(6), 1015–1023.PubMedCentralPubMed
53.
go back to reference Schott, J. J., Alshinawi, C., Kyndt, F., Probst, V., Hoorntje, T. M., Hulsbeek, M., et al. (1999). Cardiac conduction defects associate with mutations in SCN5A. Nature Genetics, 23(1), 20–21.PubMed Schott, J. J., Alshinawi, C., Kyndt, F., Probst, V., Hoorntje, T. M., Hulsbeek, M., et al. (1999). Cardiac conduction defects associate with mutations in SCN5A. Nature Genetics, 23(1), 20–21.PubMed
54.
go back to reference Probst, V., Kyndt, F., Potet, F., Trochu, J. N., Mialet, G., Demolombe, S., et al. (2003). Haploinsufficiency in combination with aging causes SCN5A-linked hereditary Lenegre disease. Journal of the American College of Cardiology, 41(4), 643–652.PubMed Probst, V., Kyndt, F., Potet, F., Trochu, J. N., Mialet, G., Demolombe, S., et al. (2003). Haploinsufficiency in combination with aging causes SCN5A-linked hereditary Lenegre disease. Journal of the American College of Cardiology, 41(4), 643–652.PubMed
55.
go back to reference Herfst, L. J., Potet, F., Bezzina, C. R., Groenewegen, W. A., Le Marec, H., Hoorntje, T. M., et al. (2003). Na+ channel mutation leading to loss of function and non-progressive cardiac conduction defects. Journal of Molecular and Cellular Cardiology, 35(5), 549–557.PubMed Herfst, L. J., Potet, F., Bezzina, C. R., Groenewegen, W. A., Le Marec, H., Hoorntje, T. M., et al. (2003). Na+ channel mutation leading to loss of function and non-progressive cardiac conduction defects. Journal of Molecular and Cellular Cardiology, 35(5), 549–557.PubMed
56.
go back to reference Lei, M., Huang, C. L., & Zhang, Y. (2008). Genetic Na+ channelopathies and sinus node dysfunction. Progress in Biophysics and Molecular Biology, 98(2–3), 171–178.PubMed Lei, M., Huang, C. L., & Zhang, Y. (2008). Genetic Na+ channelopathies and sinus node dysfunction. Progress in Biophysics and Molecular Biology, 98(2–3), 171–178.PubMed
57.
go back to reference Butters, T. D., Aslanidi, O. V., Inada, S., Boyett, M. R., Hancox, J. C., Lei, M., et al. (2010). Mechanistic links between Na+ channel (SCN5A) mutations and impaired cardiac pacemaking in sick sinus syndrome. Circulation Research, 107(1), 126–137.PubMedCentralPubMed Butters, T. D., Aslanidi, O. V., Inada, S., Boyett, M. R., Hancox, J. C., Lei, M., et al. (2010). Mechanistic links between Na+ channel (SCN5A) mutations and impaired cardiac pacemaking in sick sinus syndrome. Circulation Research, 107(1), 126–137.PubMedCentralPubMed
58.
go back to reference Baruscotti, M., Westenbroek, R., Catterall, W. A., DiFrancesco, D., & Robinson, R. B. (1997). The newborn rabbit sino-atrial node expresses a neuronal type I-like Na+ channel. The Journal of Physiology, 498(Pt 3), 641–648.PubMedCentralPubMed Baruscotti, M., Westenbroek, R., Catterall, W. A., DiFrancesco, D., & Robinson, R. B. (1997). The newborn rabbit sino-atrial node expresses a neuronal type I-like Na+ channel. The Journal of Physiology, 498(Pt 3), 641–648.PubMedCentralPubMed
59.
go back to reference Baruscotti, M., DiFrancesco, D., & Robinson, R. B. (2000). Na(+) current contribution to the diastolic depolarization in newborn rabbit SA node cells. American Journal of Physiology - Heart and Circulatory Physiology, 279(5), H2303–2309.PubMed Baruscotti, M., DiFrancesco, D., & Robinson, R. B. (2000). Na(+) current contribution to the diastolic depolarization in newborn rabbit SA node cells. American Journal of Physiology - Heart and Circulatory Physiology, 279(5), H2303–2309.PubMed
60.
go back to reference Haufe, V., Cordeiro, J. M., Zimmer, T., Wu, Y. S., Schiccitano, S., Benndorf, K., et al. (2005). Contribution of neuronal sodium channels to the cardiac fast sodium current INa is greater in dog heart Purkinje fibers than in ventricles. Cardiovascular Research, 65(1), 117–127.PubMed Haufe, V., Cordeiro, J. M., Zimmer, T., Wu, Y. S., Schiccitano, S., Benndorf, K., et al. (2005). Contribution of neuronal sodium channels to the cardiac fast sodium current INa is greater in dog heart Purkinje fibers than in ventricles. Cardiovascular Research, 65(1), 117–127.PubMed
61.
go back to reference Du, Y., Huang, X., Wang, T., Han, K., Zhang, J., Xi, Y., et al. (2007). Downregulation of neuronal sodium channel subunits Nav1.1 and Nav1.6 in the sinoatrial node from volume-overloaded heart failure rat. Pflügers Archiv, 454(3), 451–459.PubMed Du, Y., Huang, X., Wang, T., Han, K., Zhang, J., Xi, Y., et al. (2007). Downregulation of neuronal sodium channel subunits Nav1.1 and Nav1.6 in the sinoatrial node from volume-overloaded heart failure rat. Pflügers Archiv, 454(3), 451–459.PubMed
62.
go back to reference Marionneau, C., Couette, B., Liu, J., Li, H., Mangoni, M. E., Nargeot, J., et al. (2005). Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. The Journal of Physiology, 562(Pt 1), 223–234.PubMedCentralPubMed Marionneau, C., Couette, B., Liu, J., Li, H., Mangoni, M. E., Nargeot, J., et al. (2005). Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. The Journal of Physiology, 562(Pt 1), 223–234.PubMedCentralPubMed
63.
go back to reference Greener, I. D., Monfredi, O., Inada, S., Chandler, N. J., Tellez, J. O., Atkinson, A., et al. (2011). Molecular architecture of the human specialised atrioventricular conduction axis. Journal of Molecular and Cellular Cardiology, 50(4), 642–651.PubMed Greener, I. D., Monfredi, O., Inada, S., Chandler, N. J., Tellez, J. O., Atkinson, A., et al. (2011). Molecular architecture of the human specialised atrioventricular conduction axis. Journal of Molecular and Cellular Cardiology, 50(4), 642–651.PubMed
64.
go back to reference Kalume, F., Westenbroek, R. E., Cheah, C. S., Yu, F. H., Oakley, J. C., Scheuer, T., et al. (2013). Sudden unexpected death in a mouse model of Dravet syndrome. The Journal of Clinical Investigation, 123(4), 1798–1808.PubMedCentralPubMed Kalume, F., Westenbroek, R. E., Cheah, C. S., Yu, F. H., Oakley, J. C., Scheuer, T., et al. (2013). Sudden unexpected death in a mouse model of Dravet syndrome. The Journal of Clinical Investigation, 123(4), 1798–1808.PubMedCentralPubMed
65.
go back to reference Sanders, P., Kistler, P. M., Morton, J. B., Spence, S. J., & Kalman, J. M. (2004). Remodeling of sinus node function in patients with congestive heart failure: reduction in sinus node reserve. Circulation, 110(8), 897–903.PubMed Sanders, P., Kistler, P. M., Morton, J. B., Spence, S. J., & Kalman, J. M. (2004). Remodeling of sinus node function in patients with congestive heart failure: reduction in sinus node reserve. Circulation, 110(8), 897–903.PubMed
66.
go back to reference Watanabe, H., Koopmann, T. T., Le Scouarnec, S., Yang, T., Ingram, C. R., Schott, J. J., et al. (2008). Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. The Journal of Clinical Investigation, 118(6), 2260–2268.PubMedCentralPubMed Watanabe, H., Koopmann, T. T., Le Scouarnec, S., Yang, T., Ingram, C. R., Schott, J. J., et al. (2008). Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. The Journal of Clinical Investigation, 118(6), 2260–2268.PubMedCentralPubMed
67.
go back to reference Lopez-Santiago, L. F., Meadows, L. S., Ernst, S. J., Chen, C., Malhotra, J. D., McEwen, D. P., et al. (2007). Sodium channel Scn1b null mice exhibit prolonged QT and RR intervals. Journal of Molecular and Cellular Cardiology, 43(5), 636–647.PubMedCentralPubMed Lopez-Santiago, L. F., Meadows, L. S., Ernst, S. J., Chen, C., Malhotra, J. D., McEwen, D. P., et al. (2007). Sodium channel Scn1b null mice exhibit prolonged QT and RR intervals. Journal of Molecular and Cellular Cardiology, 43(5), 636–647.PubMedCentralPubMed
68.
go back to reference Verkerk, A. O., Wilders, R., van Borren, M. M., Peters, R. J., Broekhuis, E., Lam, K., et al. (2007). Pacemaker current (I(f)) in the human sinoatrial node. European Heart Journal, 28(20), 2472–2478.PubMed Verkerk, A. O., Wilders, R., van Borren, M. M., Peters, R. J., Broekhuis, E., Lam, K., et al. (2007). Pacemaker current (I(f)) in the human sinoatrial node. European Heart Journal, 28(20), 2472–2478.PubMed
69.
go back to reference Milano, A., Vermeer, A. M., Lodder, E. M., Barc, J., Verkerk, A. O., Postma, A. V., et al. (2014). HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. Journal of the American College of Cardiology, 64(8), 745–756.PubMed Milano, A., Vermeer, A. M., Lodder, E. M., Barc, J., Verkerk, A. O., Postma, A. V., et al. (2014). HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. Journal of the American College of Cardiology, 64(8), 745–756.PubMed
70.
go back to reference Nof, E., Luria, D., Brass, D., Marek, D., Lahat, H., Reznik-Wolf, H., et al. (2007). Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia. Circulation, 116(5), 463–470.PubMed Nof, E., Luria, D., Brass, D., Marek, D., Lahat, H., Reznik-Wolf, H., et al. (2007). Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia. Circulation, 116(5), 463–470.PubMed
71.
go back to reference Schweizer, P. A., Schroter, J., Greiner, S., Haas, J., Yampolsky, P., Mereles, D., et al. (2014). The symptom complex of familial sinus node dysfunction and myocardial noncompaction is associated with mutations in the HCN4 channel. Journal of the American College of Cardiology, 64(8), 757–767.PubMed Schweizer, P. A., Schroter, J., Greiner, S., Haas, J., Yampolsky, P., Mereles, D., et al. (2014). The symptom complex of familial sinus node dysfunction and myocardial noncompaction is associated with mutations in the HCN4 channel. Journal of the American College of Cardiology, 64(8), 757–767.PubMed
72.
go back to reference Laish-Farkash, A., Glikson, M., Brass, D., Marek-Yagel, D., Pras, E., Dascal, N., et al. (2010). A novel mutation in the HCN4 gene causes symptomatic sinus bradycardia in Moroccan Jews. Journal of Cardiovascular Electrophysiology, 21(12), 1365–1372.PubMedCentralPubMed Laish-Farkash, A., Glikson, M., Brass, D., Marek-Yagel, D., Pras, E., Dascal, N., et al. (2010). A novel mutation in the HCN4 gene causes symptomatic sinus bradycardia in Moroccan Jews. Journal of Cardiovascular Electrophysiology, 21(12), 1365–1372.PubMedCentralPubMed
73.
go back to reference Duhme, N., Schweizer, P. A., Thomas, D., Becker, R., Schroter, J., Barends, T. R., et al. (2013). Altered HCN4 channel C-linker interaction is associated with familial tachycardia-bradycardia syndrome and atrial fibrillation. European Heart Journal, 34(35), 2768–2775.PubMed Duhme, N., Schweizer, P. A., Thomas, D., Becker, R., Schroter, J., Barends, T. R., et al. (2013). Altered HCN4 channel C-linker interaction is associated with familial tachycardia-bradycardia syndrome and atrial fibrillation. European Heart Journal, 34(35), 2768–2775.PubMed
74.
go back to reference Ueda, K., Nakamura, K., Hayashi, T., Inagaki, N., Takahashi, M., Arimura, T., et al. (2004). Functional characterization of a trafficking-defective HCN4 mutation, D553N, associated with cardiac arrhythmia. The Journal of Biological Chemistry, 279(26), 27194–27198.PubMed Ueda, K., Nakamura, K., Hayashi, T., Inagaki, N., Takahashi, M., Arimura, T., et al. (2004). Functional characterization of a trafficking-defective HCN4 mutation, D553N, associated with cardiac arrhythmia. The Journal of Biological Chemistry, 279(26), 27194–27198.PubMed
75.
go back to reference Schulze-Bahr, E., Neu, A., Friederich, P., Kaupp, U. B., Breithardt, G., Pongs, O., et al. (2003). Pacemaker channel dysfunction in a patient with sinus node disease. The Journal of Clinical Investigation, 111(10), 1537–1545.PubMedCentralPubMed Schulze-Bahr, E., Neu, A., Friederich, P., Kaupp, U. B., Breithardt, G., Pongs, O., et al. (2003). Pacemaker channel dysfunction in a patient with sinus node disease. The Journal of Clinical Investigation, 111(10), 1537–1545.PubMedCentralPubMed
76.
go back to reference Milanesi, R., Baruscotti, M., Gnecchi-Ruscone, T., & DiFrancesco, D. (2006). Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. The New England Journal of Medicine, 354(2), 151–157.PubMed Milanesi, R., Baruscotti, M., Gnecchi-Ruscone, T., & DiFrancesco, D. (2006). Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. The New England Journal of Medicine, 354(2), 151–157.PubMed
77.
go back to reference Schweizer, P. A., Duhme, N., Thomas, D., Becker, R., Zehelein, J., Draguhn, A., et al. (2010). cAMP sensitivity of HCN pacemaker channels determines basal heart rate but is not critical for autonomic rate control. Circulation. Arrhythmia and Electrophysiology, 3(5), 542–552.PubMed Schweizer, P. A., Duhme, N., Thomas, D., Becker, R., Zehelein, J., Draguhn, A., et al. (2010). cAMP sensitivity of HCN pacemaker channels determines basal heart rate but is not critical for autonomic rate control. Circulation. Arrhythmia and Electrophysiology, 3(5), 542–552.PubMed
78.
go back to reference Baruscotti, M., Bucchi, A., Viscomi, C., Mandelli, G., Consalez, G., Gnecchi-Rusconi, T., et al. (2011). Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene Hcn4. Proceedings of the National Academy of Sciences of the United States of America, 108(4), 1705–1710.PubMedCentralPubMed Baruscotti, M., Bucchi, A., Viscomi, C., Mandelli, G., Consalez, G., Gnecchi-Rusconi, T., et al. (2011). Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene Hcn4. Proceedings of the National Academy of Sciences of the United States of America, 108(4), 1705–1710.PubMedCentralPubMed
79.
go back to reference Perez-Lugones, A., McMahon, J. T., Ratliff, N. B., Saliba, W. I., Schweikert, R. A., Marrouche, N. F., et al. (2003). Evidence of specialized conduction cells in human pulmonary veins of patients with atrial fibrillation. Journal of Cardiovascular Electrophysiology, 14(8), 803–809.PubMed Perez-Lugones, A., McMahon, J. T., Ratliff, N. B., Saliba, W. I., Schweikert, R. A., Marrouche, N. F., et al. (2003). Evidence of specialized conduction cells in human pulmonary veins of patients with atrial fibrillation. Journal of Cardiovascular Electrophysiology, 14(8), 803–809.PubMed
80.
go back to reference Suenari, K., Cheng, C. C., Chen, Y. C., Lin, Y. K., Nakano, Y., Kihara, Y., et al. (2012). Effects of ivabradine on the pulmonary vein electrical activity and modulation of pacemaker currents and calcium homeostasis. Journal of Cardiovascular Electrophysiology, 23(2), 200–206.PubMed Suenari, K., Cheng, C. C., Chen, Y. C., Lin, Y. K., Nakano, Y., Kihara, Y., et al. (2012). Effects of ivabradine on the pulmonary vein electrical activity and modulation of pacemaker currents and calcium homeostasis. Journal of Cardiovascular Electrophysiology, 23(2), 200–206.PubMed
81.
go back to reference Mangoni, M. E., & Nargeot, J. (2008). Genesis and regulation of the heart automaticity. Physiological Reviews, 88(3), 919–982.PubMed Mangoni, M. E., & Nargeot, J. (2008). Genesis and regulation of the heart automaticity. Physiological Reviews, 88(3), 919–982.PubMed
82.
go back to reference Christel, C. J., Cardona, N., Mesirca, P., Herrmann, S., Hofmann, F., Striessnig, J., et al. (2012). Distinct localization and modulation of Cav1.2 and Cav1.3 L-type Ca2+ channels in mouse sinoatrial node. The Journal of Physiology, 590(Pt 24), 6327–6342.PubMedCentralPubMed Christel, C. J., Cardona, N., Mesirca, P., Herrmann, S., Hofmann, F., Striessnig, J., et al. (2012). Distinct localization and modulation of Cav1.2 and Cav1.3 L-type Ca2+ channels in mouse sinoatrial node. The Journal of Physiology, 590(Pt 24), 6327–6342.PubMedCentralPubMed
83.
go back to reference Mangoni, M. E., Traboulsie, A., Leoni, A. L., Couette, B., Marger, L., Le Quang, K., et al. (2006). Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circulation Research, 98(11), 1422–1430.PubMed Mangoni, M. E., Traboulsie, A., Leoni, A. L., Couette, B., Marger, L., Le Quang, K., et al. (2006). Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circulation Research, 98(11), 1422–1430.PubMed
84.
go back to reference Strandberg, L. S., Cui, X., Rath, A., Liu, J., Silverman, E. D., Liu, X., et al. (2013). Congenital heart block maternal sera autoantibodies target an extracellular epitope on the alpha1G T-type calcium channel in human fetal hearts. PLoS One, 8(9), e72668.PubMedCentralPubMed Strandberg, L. S., Cui, X., Rath, A., Liu, J., Silverman, E. D., Liu, X., et al. (2013). Congenital heart block maternal sera autoantibodies target an extracellular epitope on the alpha1G T-type calcium channel in human fetal hearts. PLoS One, 8(9), e72668.PubMedCentralPubMed
85.
go back to reference Hu, K., Qu, Y., Yue, Y., & Boutjdir, M. (2004). Functional basis of sinus bradycardia in congenital heart block. Circulation Research, 94(4), e32–38.PubMed Hu, K., Qu, Y., Yue, Y., & Boutjdir, M. (2004). Functional basis of sinus bradycardia in congenital heart block. Circulation Research, 94(4), e32–38.PubMed
86.
go back to reference Baig, S. M., Koschak, A., Lieb, A., Gebhart, M., Dafinger, C., Nurnberg, G., et al. (2011). Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nature Neuroscience, 14(1), 77–84.PubMed Baig, S. M., Koschak, A., Lieb, A., Gebhart, M., Dafinger, C., Nurnberg, G., et al. (2011). Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nature Neuroscience, 14(1), 77–84.PubMed
87.
go back to reference Platzer, J., Engel, J., Schrott-Fischer, A., Stephan, K., Bova, S., Chen, H., et al. (2000). Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell, 102(1), 89–97.PubMed Platzer, J., Engel, J., Schrott-Fischer, A., Stephan, K., Bova, S., Chen, H., et al. (2000). Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell, 102(1), 89–97.PubMed
88.
go back to reference Mangoni, M. E., Couette, B., Bourinet, E., Platzer, J., Reimer, D., Striessnig, J., et al. (2003). Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5543–5548.PubMedCentralPubMed Mangoni, M. E., Couette, B., Bourinet, E., Platzer, J., Reimer, D., Striessnig, J., et al. (2003). Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5543–5548.PubMedCentralPubMed
89.
go back to reference Lahat, H., Eldar, M., Levy-Nissenbaum, E., Bahan, T., Friedman, E., Khoury, A., et al. (2001). Autosomal recessive catecholamine- or exercise-induced polymorphic ventricular tachycardia: clinical features and assignment of the disease gene to chromosome 1p13-21. Circulation, 103(23), 2822–2827.PubMed Lahat, H., Eldar, M., Levy-Nissenbaum, E., Bahan, T., Friedman, E., Khoury, A., et al. (2001). Autosomal recessive catecholamine- or exercise-induced polymorphic ventricular tachycardia: clinical features and assignment of the disease gene to chromosome 1p13-21. Circulation, 103(23), 2822–2827.PubMed
90.
go back to reference Sumitomo, N., Sakurada, H., Taniguchi, K., Matsumura, M., Abe, O., Miyashita, M., et al. (2007). Association of atrial arrhythmia and sinus node dysfunction in patients with catecholaminergic polymorphic ventricular tachycardia. Circulation Journal, 71(10), 1606–1609.PubMed Sumitomo, N., Sakurada, H., Taniguchi, K., Matsumura, M., Abe, O., Miyashita, M., et al. (2007). Association of atrial arrhythmia and sinus node dysfunction in patients with catecholaminergic polymorphic ventricular tachycardia. Circulation Journal, 71(10), 1606–1609.PubMed
91.
go back to reference Gao, Z., Rasmussen, T. P., Li, Y., Kutschke, W., Koval, O. M., Wu, Y., et al. (2013). Genetic inhibition of Na+–Ca2+ exchanger current disables fight or flight sinoatrial node activity without affecting resting heart rate. Circulation Research, 112(2), 309–317.PubMedCentralPubMed Gao, Z., Rasmussen, T. P., Li, Y., Kutschke, W., Koval, O. M., Wu, Y., et al. (2013). Genetic inhibition of Na+–Ca2+ exchanger current disables fight or flight sinoatrial node activity without affecting resting heart rate. Circulation Research, 112(2), 309–317.PubMedCentralPubMed
92.
go back to reference Groenke, S., Larson, E. D., Alber, S., Zhang, R., Lamp, S. T., Ren, X., et al. (2013). Complete atrial-specific knockout of sodium-calcium exchange eliminates sinoatrial node pacemaker activity. PLoS One, 8(11), e81633.PubMedCentralPubMed Groenke, S., Larson, E. D., Alber, S., Zhang, R., Lamp, S. T., Ren, X., et al. (2013). Complete atrial-specific knockout of sodium-calcium exchange eliminates sinoatrial node pacemaker activity. PLoS One, 8(11), e81633.PubMedCentralPubMed
93.
go back to reference Simrick, S., Schindler, R. F., Poon, K. L., & Brand, T. (2013). Popeye domain-containing proteins and stress-mediated modulation of cardiac pacemaking. Trends in Cardiovascular Medicine, 23(7), 257–263.PubMed Simrick, S., Schindler, R. F., Poon, K. L., & Brand, T. (2013). Popeye domain-containing proteins and stress-mediated modulation of cardiac pacemaking. Trends in Cardiovascular Medicine, 23(7), 257–263.PubMed
94.
go back to reference Froese, A., Breher, S. S., Waldeyer, C., Schindler, R. F., Nikolaev, V. O., Rinne, S., et al. (2012). Popeye domain containing proteins are essential for stress-mediated modulation of cardiac pacemaking in mice. The Journal of Clinical Investigation, 122(3), 1119–1130.PubMedCentralPubMed Froese, A., Breher, S. S., Waldeyer, C., Schindler, R. F., Nikolaev, V. O., Rinne, S., et al. (2012). Popeye domain containing proteins are essential for stress-mediated modulation of cardiac pacemaking in mice. The Journal of Clinical Investigation, 122(3), 1119–1130.PubMedCentralPubMed
95.
go back to reference Kirchmaier, B. C., Poon, K. L., Schwerte, T., Huisken, J., Winkler, C., Jungblut, B., et al. (2012). The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and skeletal muscle development. Developmental Biology, 363(2), 438–450.PubMedCentralPubMed Kirchmaier, B. C., Poon, K. L., Schwerte, T., Huisken, J., Winkler, C., Jungblut, B., et al. (2012). The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and skeletal muscle development. Developmental Biology, 363(2), 438–450.PubMedCentralPubMed
96.
go back to reference Szûts, V., Ötvös, F., Dézsi, L., Vágvölgyi, C., Szalontai, B., Dobrzynski, H., et al. (2012). What have we learned from two-pore potassium channels? Their molecular configuration and function in the human heart. Acta Biologica Szegediensis, 56(2), 93–107. Szûts, V., Ötvös, F., Dézsi, L., Vágvölgyi, C., Szalontai, B., Dobrzynski, H., et al. (2012). What have we learned from two-pore potassium channels? Their molecular configuration and function in the human heart. Acta Biologica Szegediensis, 56(2), 93–107.
97.
go back to reference Yanni, J., Tellez, J. O., Maczewski, M., Mackiewicz, U., Beresewicz, A., Billeter, R., et al. (2011). Changes in ion channel gene expression underlying heart failure-induced sinoatrial node dysfunction. Circulation. Heart Failure, 4(4), 496–508.PubMed Yanni, J., Tellez, J. O., Maczewski, M., Mackiewicz, U., Beresewicz, A., Billeter, R., et al. (2011). Changes in ion channel gene expression underlying heart failure-induced sinoatrial node dysfunction. Circulation. Heart Failure, 4(4), 496–508.PubMed
98.
go back to reference Lalevee, N., Monier, B., Senatore, S., Perrin, L., & Semeriva, M. (2006). Control of cardiac rhythm by ORK1, a Drosophila two-pore domain potassium channel. Current Biology, 16(15), 1502–1508.PubMed Lalevee, N., Monier, B., Senatore, S., Perrin, L., & Semeriva, M. (2006). Control of cardiac rhythm by ORK1, a Drosophila two-pore domain potassium channel. Current Biology, 16(15), 1502–1508.PubMed
99.
go back to reference Schindler, R. F., Poon, K. L., Simrick, S., & Brand, T. (2012). The Popeye domain containing genes: essential elements in heart rate control. Cardiovasc Diagn Ther, 2(4), 308–319.PubMedCentralPubMed Schindler, R. F., Poon, K. L., Simrick, S., & Brand, T. (2012). The Popeye domain containing genes: essential elements in heart rate control. Cardiovasc Diagn Ther, 2(4), 308–319.PubMedCentralPubMed
100.
go back to reference Brand, T., Simrick, S. L., Poon, K. L., & Schindler, R. F. (2014). The cAMP-binding Popdc proteins have a redundant function in the heart. Biochemical Society Transactions, 42(2), 295–301.PubMedCentralPubMed Brand, T., Simrick, S. L., Poon, K. L., & Schindler, R. F. (2014). The cAMP-binding Popdc proteins have a redundant function in the heart. Biochemical Society Transactions, 42(2), 295–301.PubMedCentralPubMed
101.
go back to reference Camozzi, D., Capanni, C., Cenni, V., Mattioli, E., Columbaro, M., Squarzoni, S., et al. (2014). Diverse lamin-dependent mechanisms interact to control chromatin dynamics: focus on laminopathies. Nucleus, 5(5). Camozzi, D., Capanni, C., Cenni, V., Mattioli, E., Columbaro, M., Squarzoni, S., et al. (2014). Diverse lamin-dependent mechanisms interact to control chromatin dynamics: focus on laminopathies. Nucleus, 5(5).
102.
go back to reference Mohler, P. J., & Bennett, V. (2005). Ankyrin-based cardiac arrhythmias: a new class of channelopathies due to loss of cellular targeting. Current Opinion in Cardiology, 20(3), 189–193.PubMed Mohler, P. J., & Bennett, V. (2005). Ankyrin-based cardiac arrhythmias: a new class of channelopathies due to loss of cellular targeting. Current Opinion in Cardiology, 20(3), 189–193.PubMed
103.
go back to reference Robaei, D., Ford, T., & Ooi, S. Y. (2014). Ankyrin-b syndrome: a case of sinus node dysfunction, atrial fibrillation and prolonged QT in a young adult. Heart Lung Circulatory Robaei, D., Ford, T., & Ooi, S. Y. (2014). Ankyrin-b syndrome: a case of sinus node dysfunction, atrial fibrillation and prolonged QT in a young adult. Heart Lung Circulatory
104.
go back to reference Mohler, P. J., Le Scouarnec, S., Denjoy, I., Lowe, J. S., Guicheney, P., Caron, L., et al. (2007). Defining the cellular phenotype of “ankyrin-B syndrome” variants: human ANK2 variants associated with clinical phenotypes display a spectrum of activities in cardiomyocytes. Circulation, 115(4), 432–441.PubMed Mohler, P. J., Le Scouarnec, S., Denjoy, I., Lowe, J. S., Guicheney, P., Caron, L., et al. (2007). Defining the cellular phenotype of “ankyrin-B syndrome” variants: human ANK2 variants associated with clinical phenotypes display a spectrum of activities in cardiomyocytes. Circulation, 115(4), 432–441.PubMed
105.
go back to reference Ackerman, M. J., & Mohler, P. J. (2010). Defining a new paradigm for human arrhythmia syndromes: phenotypic manifestations of gene mutations in ion channel- and transporter-associated proteins. Circulation Research, 107(4), 457–465.PubMedCentralPubMed Ackerman, M. J., & Mohler, P. J. (2010). Defining a new paradigm for human arrhythmia syndromes: phenotypic manifestations of gene mutations in ion channel- and transporter-associated proteins. Circulation Research, 107(4), 457–465.PubMedCentralPubMed
106.
go back to reference Barbuti, A., Terragni, B., Brioschi, C., & DiFrancesco, D. (2007). Localization of f-channels to caveolae mediates specific beta2-adrenergic receptor modulation of rate in sinoatrial myocytes. Journal of Molecular and Cellular Cardiology, 42(1), 71–78.PubMed Barbuti, A., Terragni, B., Brioschi, C., & DiFrancesco, D. (2007). Localization of f-channels to caveolae mediates specific beta2-adrenergic receptor modulation of rate in sinoatrial myocytes. Journal of Molecular and Cellular Cardiology, 42(1), 71–78.PubMed
107.
go back to reference Vatta, M., Ackerman, M. J., Ye, B., Makielski, J. C., Ughanze, E. E., Taylor, E. W., et al. (2006). Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation, 114(20), 2104–2112.PubMed Vatta, M., Ackerman, M. J., Ye, B., Makielski, J. C., Ughanze, E. E., Taylor, E. W., et al. (2006). Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation, 114(20), 2104–2112.PubMed
108.
go back to reference Cronk, L. B., Ye, B., Kaku, T., Tester, D. J., Vatta, M., Makielski, J. C., et al. (2007). Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm, 4(2), 161–166.PubMedCentralPubMed Cronk, L. B., Ye, B., Kaku, T., Tester, D. J., Vatta, M., Makielski, J. C., et al. (2007). Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm, 4(2), 161–166.PubMedCentralPubMed
109.
go back to reference Barbuti, A., Scavone, A., Mazzocchi, N., Terragni, B., Baruscotti, M., & Difrancesco, D. (2012). A caveolin-binding domain in the HCN4 channels mediates functional interaction with caveolin proteins. Journal of Molecular and Cellular Cardiology, 53(2), 187–195.PubMed Barbuti, A., Scavone, A., Mazzocchi, N., Terragni, B., Baruscotti, M., & Difrancesco, D. (2012). A caveolin-binding domain in the HCN4 channels mediates functional interaction with caveolin proteins. Journal of Molecular and Cellular Cardiology, 53(2), 187–195.PubMed
110.
go back to reference Liu, Y., Bai, R., Wang, L., Zhang, C., Zhao, R., Wan, D., et al. (2013). Identification of a novel de novo mutation associated with PRKAG2 cardiac syndrome and early onset of heart failure. PLoS One, 8(5), e64603.PubMedCentralPubMed Liu, Y., Bai, R., Wang, L., Zhang, C., Zhao, R., Wan, D., et al. (2013). Identification of a novel de novo mutation associated with PRKAG2 cardiac syndrome and early onset of heart failure. PLoS One, 8(5), e64603.PubMedCentralPubMed
Metadata
Title
The genetic basis for inherited forms of sinoatrial dysfunction and atrioventricular node dysfunction
Authors
Raffaella Milanesi
Annalisa Bucchi
Mirko Baruscotti
Publication date
01-08-2015
Publisher
Springer US
Published in
Journal of Interventional Cardiac Electrophysiology / Issue 2/2015
Print ISSN: 1383-875X
Electronic ISSN: 1572-8595
DOI
https://doi.org/10.1007/s10840-015-9998-z

Other articles of this Issue 2/2015

Journal of Interventional Cardiac Electrophysiology 2/2015 Go to the issue