Skip to main content
Top
Published in: Journal of Interventional Cardiac Electrophysiology 2/2015

01-08-2015

Effects of low-level carotid baroreflex stimulation on atrial electrophysiology

Authors: Mingyan Dai, Mingwei Bao, Jiafen Liao, Lilei Yu, Yanhong Tang, He Huang, Xi Wang, Congxin Huang

Published in: Journal of Interventional Cardiac Electrophysiology | Issue 2/2015

Login to get access

Abstract

Purpose

This study aimed to investigate the effects of low-level carotid baroreflex stimulation (LL-CBS) on atrial electrophysiology.

Methods

In protocol 1 (LL-CBS on physiological state), anesthetized rabbits were subjected to LL-CBS (n = 10) or surgical exposure (n = 6) for 1 h. In protocol 2 (LL-CBS on acute rapid atrial pacing), anesthetized rabbits underwent 3 h of rapid atrial pacing (RAP) with concomitant LL-CBS in the third hour (n = 7) or 3h-RAP without LL-CBS (n = 6). Carotid baroreceptor surrounded by electrodes allowed LL-CBS at 20 % below the voltage required to reduce systolic blood pressure or heart rate. Effective refractory period (ERP) and monophasic action potential duration (MAPD) were determined, and power spectral of heart rate variability (HRV) was analyzed at baseline as well as after interventions in all groups, respectively.

Results

In protocol 1, LL-CBS significantly prolonged the ERPs, MAPD90, and MAPD50 and increased high-frequency (HF) HRV component but it decreased low-frequency (LF) HRV component and LF/HF ratio. In protocol 2, 3h-RAP significantly shortened ERPs, MAPD90, and MAPD50 and decreased HF but it increased LF and LF/HF ratio. However, LL-CBS reversed the variations caused by RAP.

Conclusions

LL-CBS prolongs ERPs and MAPD of the left atrium and attenuates RAP-induced atrial electrical remodeling including the shortening of ERPs and MAPD, probably by modulating the autonomic nervous system.
Literature
1.
go back to reference Illig, K. A., Levy, M., Sanchez, L., Trachiotis, G. D., Shanley, C., Irwin, E., et al. (2006). An implantable carotid sinus stimulator for drug-resistant hypertension: surgical technique and short-term outcome from the multicenter phase II Rheos feasibility trial. Journal of Vascular Surgery, 44(6), 1213–1218.PubMedCrossRef Illig, K. A., Levy, M., Sanchez, L., Trachiotis, G. D., Shanley, C., Irwin, E., et al. (2006). An implantable carotid sinus stimulator for drug-resistant hypertension: surgical technique and short-term outcome from the multicenter phase II Rheos feasibility trial. Journal of Vascular Surgery, 44(6), 1213–1218.PubMedCrossRef
2.
go back to reference Scheffers, I. J., Kroon, A. A., Tordoir, J. H., & de Leeuw, P. W. (2008). Rheos baroreflex hypertension therapy system to treat resistant hypertension. Expert Review of Medical Devices, 5(1), 33–39.PubMedCrossRef Scheffers, I. J., Kroon, A. A., Tordoir, J. H., & de Leeuw, P. W. (2008). Rheos baroreflex hypertension therapy system to treat resistant hypertension. Expert Review of Medical Devices, 5(1), 33–39.PubMedCrossRef
3.
go back to reference Joshi, N., Taylor, J., & Bisognano, J. D. (2009). Implantable device therapy for the treatment of resistant hypertension. Journal of Cardiovascular Translational Research, 2(2), 150–153.PubMedCrossRef Joshi, N., Taylor, J., & Bisognano, J. D. (2009). Implantable device therapy for the treatment of resistant hypertension. Journal of Cardiovascular Translational Research, 2(2), 150–153.PubMedCrossRef
4.
go back to reference Scheffers, I. J., Kroon, A. A., & Schmidli, J. (2010). Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. Journal of the American College of Cardiology, 56(15), 1254–1258.PubMedCrossRef Scheffers, I. J., Kroon, A. A., & Schmidli, J. (2010). Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. Journal of the American College of Cardiology, 56(15), 1254–1258.PubMedCrossRef
5.
go back to reference Bisognano, J. D., Kaufman, C. L., Bach, D. S., Lovett, E. G., de Leeuw, P., & DEBuT-HT and Rheos Feasibility Trial Investigators. (2011). Improved cardiac structure and function with chronic treatment using an implantable device in resistant hypertension: results from European and United States trials of the Rheos system. Journal of the American College of Cardiology, 57(17), 1787–1788.PubMedCrossRef Bisognano, J. D., Kaufman, C. L., Bach, D. S., Lovett, E. G., de Leeuw, P., & DEBuT-HT and Rheos Feasibility Trial Investigators. (2011). Improved cardiac structure and function with chronic treatment using an implantable device in resistant hypertension: results from European and United States trials of the Rheos system. Journal of the American College of Cardiology, 57(17), 1787–1788.PubMedCrossRef
6.
go back to reference Lohmeier, T. E., & Iliescu, R. (2011). Chronic lowering of blood pressure by carotid baroreflex activation: mechanisms and potential for hypertension therapy. Hypertension, 57(5), 880–886.PubMedCentralPubMedCrossRef Lohmeier, T. E., & Iliescu, R. (2011). Chronic lowering of blood pressure by carotid baroreflex activation: mechanisms and potential for hypertension therapy. Hypertension, 57(5), 880–886.PubMedCentralPubMedCrossRef
7.
go back to reference Hoff, H. E., & Geddes, L. A. (1955). Cholinergic factor in auricular fibrillation. Journal of Applied Physiology, 8(2), 177–192.PubMed Hoff, H. E., & Geddes, L. A. (1955). Cholinergic factor in auricular fibrillation. Journal of Applied Physiology, 8(2), 177–192.PubMed
8.
go back to reference Nattel, S., Burstein, B., & Dobrev, D. (2008). Atrial remodeling and atrial fibrillation: mechanisms and implications. Circulation. Arrhythmia and Electrophysiology, 1, 62–73.PubMedCrossRef Nattel, S., Burstein, B., & Dobrev, D. (2008). Atrial remodeling and atrial fibrillation: mechanisms and implications. Circulation. Arrhythmia and Electrophysiology, 1, 62–73.PubMedCrossRef
9.
go back to reference Shen, M. J., Shinohara, T., Park, H. W., Frick, K., Ice, D. S., Choi, E. K., et al. (2011). Continuous low-level vagus nerve stimulation reduces stellate ganglion nerve activity and paroxysmal atrial tachyarrhythmias in ambulatory canines. Circulation, 123(20), 2204–2212.PubMedCentralPubMedCrossRef Shen, M. J., Shinohara, T., Park, H. W., Frick, K., Ice, D. S., Choi, E. K., et al. (2011). Continuous low-level vagus nerve stimulation reduces stellate ganglion nerve activity and paroxysmal atrial tachyarrhythmias in ambulatory canines. Circulation, 123(20), 2204–2212.PubMedCentralPubMedCrossRef
10.
go back to reference Zipes, D. P., Mihalick, M. J., & Robbins, G. T. (1974). Effects of selective vagal and stellate ganglion stimulation of atrial refractoriness. Cardiovascular Research, 8(5), 647–655.PubMedCrossRef Zipes, D. P., Mihalick, M. J., & Robbins, G. T. (1974). Effects of selective vagal and stellate ganglion stimulation of atrial refractoriness. Cardiovascular Research, 8(5), 647–655.PubMedCrossRef
11.
go back to reference Sheng, X., Scherlag, B. J., Yu, L., Li, S., Ali, R., Zhang, Y., et al. (2011). Prevention and reversal of atrial fibrillation inducibility and autonomic remodeling by low-level vagosympathetic nerve stimulation. Journal of the American College of Cardiology, 57(5), 563–571.PubMedCrossRef Sheng, X., Scherlag, B. J., Yu, L., Li, S., Ali, R., Zhang, Y., et al. (2011). Prevention and reversal of atrial fibrillation inducibility and autonomic remodeling by low-level vagosympathetic nerve stimulation. Journal of the American College of Cardiology, 57(5), 563–571.PubMedCrossRef
12.
go back to reference Linz, D., Mahfoud, F., Schotten, U., Ukena, C., Neuberger, H. R., Wirth, K., et al. (2013). Effects of electrical stimulation of carotid baroreflex and renal denervation on atrial electrophysiology. Journal of Cardiovascular Electrophysiology, 24(9), 1028–1033.PubMedCrossRef Linz, D., Mahfoud, F., Schotten, U., Ukena, C., Neuberger, H. R., Wirth, K., et al. (2013). Effects of electrical stimulation of carotid baroreflex and renal denervation on atrial electrophysiology. Journal of Cardiovascular Electrophysiology, 24(9), 1028–1033.PubMedCrossRef
13.
go back to reference Lu, Z., Cui, B., He, B., Hu, X., Wu, W., Wu, L., et al. (2011). Distinct restitution properties in vagally mediated atrial fibrillation and six-hour rapid pacing-induced atrial fibrillation. Cardiovascular Research, 89(4), 834–842.PubMedCrossRef Lu, Z., Cui, B., He, B., Hu, X., Wu, W., Wu, L., et al. (2011). Distinct restitution properties in vagally mediated atrial fibrillation and six-hour rapid pacing-induced atrial fibrillation. Cardiovascular Research, 89(4), 834–842.PubMedCrossRef
14.
go back to reference Yu, L., Scherlag, B. J., Sha, Y., Li, S., Sharma, T., Nakagawa, H., et al. (2012). Interactions between atrial electrical remodeling and autonomic remodeling: how to break the vicious cycle. Heart Rhythm, 9(5), 804–809.PubMedCrossRef Yu, L., Scherlag, B. J., Sha, Y., Li, S., Sharma, T., Nakagawa, H., et al. (2012). Interactions between atrial electrical remodeling and autonomic remodeling: how to break the vicious cycle. Heart Rhythm, 9(5), 804–809.PubMedCrossRef
15.
go back to reference Berkowitz, W. D., Scherlag, B. J., Stein, E., & Damato, A. N. (1969). Relative roles of sympathetic and parasympathetic nervous systems in the carotid sinus reflex in dogs. Circulation Research, 24(3), 447–455.PubMedCrossRef Berkowitz, W. D., Scherlag, B. J., Stein, E., & Damato, A. N. (1969). Relative roles of sympathetic and parasympathetic nervous systems in the carotid sinus reflex in dogs. Circulation Research, 24(3), 447–455.PubMedCrossRef
16.
go back to reference Alnima, T., de Leeuw, P. W., & Kroon, A. A. (2012). Baroreflex activation therapy for the treatment of drug-resistant hypertension: new developments. Cardiology Research and Practice, 2012, 587194.PubMedCentralPubMedCrossRef Alnima, T., de Leeuw, P. W., & Kroon, A. A. (2012). Baroreflex activation therapy for the treatment of drug-resistant hypertension: new developments. Cardiology Research and Practice, 2012, 587194.PubMedCentralPubMedCrossRef
17.
go back to reference Tordoir, J. H., Scheffers, I., Schmidli, J., Savolainen, H., Liebeskind, U., Hansky, B., et al. (2007). An implantable carotid sinus baroreflex activating system: surgical technique and short-term outcome from a multi-center feasibility trial for the treatment of resistant hypertension. European Journal of Vascular and Endovascular Surgery, 33(4), 414–421.PubMedCrossRef Tordoir, J. H., Scheffers, I., Schmidli, J., Savolainen, H., Liebeskind, U., Hansky, B., et al. (2007). An implantable carotid sinus baroreflex activating system: surgical technique and short-term outcome from a multi-center feasibility trial for the treatment of resistant hypertension. European Journal of Vascular and Endovascular Surgery, 33(4), 414–421.PubMedCrossRef
18.
go back to reference Toorop, R. J., Ousrout, R., Scheltinga, M. R., Moll, F. L., & Bleys, R. L. (2013). Carotid baroreceptors are mainly localized in the medial portions of the proximal internal carotid artery. Annals of Anatomy, 195(3), 248–252.PubMedCrossRef Toorop, R. J., Ousrout, R., Scheltinga, M. R., Moll, F. L., & Bleys, R. L. (2013). Carotid baroreceptors are mainly localized in the medial portions of the proximal internal carotid artery. Annals of Anatomy, 195(3), 248–252.PubMedCrossRef
19.
go back to reference Li, S., Scherlag, B. J., Yu, L., Sheng, X., Zhang, Y., Ali, R., et al. (2009). Low-level vagosympathetic stimulation: a paradox and potential new modality for the treatment of focal atrial fibrillation. Circulation. Arrhythmia and Electrophysiology, 2(6), 645–651.PubMedCrossRef Li, S., Scherlag, B. J., Yu, L., Sheng, X., Zhang, Y., Ali, R., et al. (2009). Low-level vagosympathetic stimulation: a paradox and potential new modality for the treatment of focal atrial fibrillation. Circulation. Arrhythmia and Electrophysiology, 2(6), 645–651.PubMedCrossRef
20.
go back to reference Yu, J., Li, W., Li, Y., Zhao, J., Wang, L., Dong, D., et al. (2011). Activation of β(3)-adrenoceptor promotes rapid pacing-induced atrial electrical remodeling in rabbits. Cellular Physiology and Biochemistry, 28(1), 87–96.PubMedCrossRef Yu, J., Li, W., Li, Y., Zhao, J., Wang, L., Dong, D., et al. (2011). Activation of β(3)-adrenoceptor promotes rapid pacing-induced atrial electrical remodeling in rabbits. Cellular Physiology and Biochemistry, 28(1), 87–96.PubMedCrossRef
21.
go back to reference Scherlag, B. J., Hou, Y. L., Lin, J., Lu, Z., Zacharias, S., Dasari, T., et al. (2008). An acute model for atrial fibrillation arising from a peripheral atrial site: evidence for primary and secondary triggers. Journal of Cardiovascular Electrophysiology, 19(5), 519–527.PubMedCrossRef Scherlag, B. J., Hou, Y. L., Lin, J., Lu, Z., Zacharias, S., Dasari, T., et al. (2008). An acute model for atrial fibrillation arising from a peripheral atrial site: evidence for primary and secondary triggers. Journal of Cardiovascular Electrophysiology, 19(5), 519–527.PubMedCrossRef
22.
go back to reference Franz, M. R. (1999). Current status of monophasic action potential recording: theories, measurements and interpretations. Cardiovascular Research, 41(1), 25–40.PubMedCrossRef Franz, M. R. (1999). Current status of monophasic action potential recording: theories, measurements and interpretations. Cardiovascular Research, 41(1), 25–40.PubMedCrossRef
23.
go back to reference Franz, M. R. (1983). Long-term recording of monophasic action potentials from human endocardium. American Journal of Cardiology, 51(10), 1629–1634.PubMedCrossRef Franz, M. R. (1983). Long-term recording of monophasic action potentials from human endocardium. American Journal of Cardiology, 51(10), 1629–1634.PubMedCrossRef
24.
go back to reference Banville, I., Chattipakorn, N., & Gray, R. A. (2004). Restitution dynamics during pacing and arrhythmias in isolated pig hearts. Journal of Cardiovascular Electrophysiology, 15(4), 455–463.PubMedCrossRef Banville, I., Chattipakorn, N., & Gray, R. A. (2004). Restitution dynamics during pacing and arrhythmias in isolated pig hearts. Journal of Cardiovascular Electrophysiology, 15(4), 455–463.PubMedCrossRef
25.
go back to reference Heart rate variability: standards of measurement, physiological interpretation and clinical use. (1996). Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation, 93(5), 1043–1065. Heart rate variability: standards of measurement, physiological interpretation and clinical use. (1996). Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation, 93(5), 1043–1065.
26.
go back to reference Lohmeier, T. E., Iliescu, R., Dwyer, T. M., Irwin, E. D., et al. (2010). Sustained suppression of sympathetic activity and arterial pressure during chronic activation of the carotid baroreflex. American Journal of Physiology - Heart and Circulatory Physiology, 299(2), H402–H409.PubMedCentralPubMedCrossRef Lohmeier, T. E., Iliescu, R., Dwyer, T. M., Irwin, E. D., et al. (2010). Sustained suppression of sympathetic activity and arterial pressure during chronic activation of the carotid baroreflex. American Journal of Physiology - Heart and Circulatory Physiology, 299(2), H402–H409.PubMedCentralPubMedCrossRef
27.
go back to reference Iliescu, R., Tudorancea, I., & Lohmeier, T. E. (2014). Baroreflex activation: from mechanisms to therapy for cardiovascular disease. Current Hypertension Reports, 16(8), 453.PubMedCentralPubMedCrossRef Iliescu, R., Tudorancea, I., & Lohmeier, T. E. (2014). Baroreflex activation: from mechanisms to therapy for cardiovascular disease. Current Hypertension Reports, 16(8), 453.PubMedCentralPubMedCrossRef
28.
go back to reference Lohmeier, T. E., Irwin, E. D., Rossing, M. A., Serdar, D. J., & Kieval, R. S. (2004). Prolonged activation of the baroreflex produces sustained hypotension. Hypertension, 43(2), 306–311.PubMedCrossRef Lohmeier, T. E., Irwin, E. D., Rossing, M. A., Serdar, D. J., & Kieval, R. S. (2004). Prolonged activation of the baroreflex produces sustained hypotension. Hypertension, 43(2), 306–311.PubMedCrossRef
29.
go back to reference Heusser, K., Tank, J., Engeli, S., Diedrich, A., Menne, J., Eckert, S., et al. (2010). Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension, 55(3), 619–626.PubMedCrossRef Heusser, K., Tank, J., Engeli, S., Diedrich, A., Menne, J., Eckert, S., et al. (2010). Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension, 55(3), 619–626.PubMedCrossRef
30.
go back to reference Iliescu, R., Tudorancea, I., Irwin, E. D., & Lohmeier, T. E. (2013). Chronic baroreflex activation restores spontaneous baroreflex control and variability of heart rate in obesity-induced hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 305(7), H1080–H1088.PubMedCentralPubMedCrossRef Iliescu, R., Tudorancea, I., Irwin, E. D., & Lohmeier, T. E. (2013). Chronic baroreflex activation restores spontaneous baroreflex control and variability of heart rate in obesity-induced hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 305(7), H1080–H1088.PubMedCentralPubMedCrossRef
31.
go back to reference Shen, M. J., Choi, E. K., Tan, A. Y., Lin, S. F., Fishbein, M. C., Chen, L. S., et al. (2012). Neural mechanisms of atrial arrhythmias. Current Opinion in Cardiology, 27(1), 24–28.PubMedCentralPubMedCrossRef Shen, M. J., Choi, E. K., Tan, A. Y., Lin, S. F., Fishbein, M. C., Chen, L. S., et al. (2012). Neural mechanisms of atrial arrhythmias. Current Opinion in Cardiology, 27(1), 24–28.PubMedCentralPubMedCrossRef
32.
go back to reference Chang, H. Y., Lo, L. W., Lin, Y. J., Lee, S. H., Chiou, C. W., & Chen, S. A. (2014). Relationship between intrinsic cardiac autonomic ganglionated plexi and the atrial fibrillation nest. Circulation Journal, 78(4), 922–928.PubMedCrossRef Chang, H. Y., Lo, L. W., Lin, Y. J., Lee, S. H., Chiou, C. W., & Chen, S. A. (2014). Relationship between intrinsic cardiac autonomic ganglionated plexi and the atrial fibrillation nest. Circulation Journal, 78(4), 922–928.PubMedCrossRef
33.
go back to reference Linz, D., Ukena, C., Mahfoud, F., Neuberger, H. R., & Bohm, M. (2014). Atrial autonomic innervation: a target for interventional antiarrhythmic therapy? Journal of the American College of Cardiology, 63(3), 215–224.PubMedCrossRef Linz, D., Ukena, C., Mahfoud, F., Neuberger, H. R., & Bohm, M. (2014). Atrial autonomic innervation: a target for interventional antiarrhythmic therapy? Journal of the American College of Cardiology, 63(3), 215–224.PubMedCrossRef
34.
go back to reference Allessie, M. A., Boyden, P. A., Camm, A. J., Kléber, A. G., Lab, M. J., Legato, M. J., et al. (2001). Pathophysiology and prevention of atrial fibrillation. Circulation, 103(5), 769–777.PubMedCrossRef Allessie, M. A., Boyden, P. A., Camm, A. J., Kléber, A. G., Lab, M. J., Legato, M. J., et al. (2001). Pathophysiology and prevention of atrial fibrillation. Circulation, 103(5), 769–777.PubMedCrossRef
35.
go back to reference Iwasaki, Y. K., Nishida, K., Kato, T., & Nattel, S. (2011). Atrial fibrillation pathophysiology: implications for management. Circulation, 124(20), 2264–2274.PubMedCrossRef Iwasaki, Y. K., Nishida, K., Kato, T., & Nattel, S. (2011). Atrial fibrillation pathophysiology: implications for management. Circulation, 124(20), 2264–2274.PubMedCrossRef
36.
go back to reference Iijima, K., Chinushi, M., Izumi, D., Ahara, S., Furushima, H., Komura, S., et al. (2010). Effect of bepridil in atrial fibrillation inducibility facilitated by vagal nerve stimulation. Prevention of vagal nerve activation-induced shortening of the atrial action potential duration. Circulation Journal, 74(5), 895–902.PubMedCrossRef Iijima, K., Chinushi, M., Izumi, D., Ahara, S., Furushima, H., Komura, S., et al. (2010). Effect of bepridil in atrial fibrillation inducibility facilitated by vagal nerve stimulation. Prevention of vagal nerve activation-induced shortening of the atrial action potential duration. Circulation Journal, 74(5), 895–902.PubMedCrossRef
37.
go back to reference Yu, L., Scherlag, B. J., Li, S., Sheng, X., Lu, Z., Nakagawa, H., et al. (2011). Low-level vagosympathetic nerve stimulation inhibits atrial fibrillation inducibility: direct evidence by neural recordings from intrinsic cardiac ganglia. Journal of Cardiovascular Electrophysiology, 22(4), 455–463.PubMedCrossRef Yu, L., Scherlag, B. J., Li, S., Sheng, X., Lu, Z., Nakagawa, H., et al. (2011). Low-level vagosympathetic nerve stimulation inhibits atrial fibrillation inducibility: direct evidence by neural recordings from intrinsic cardiac ganglia. Journal of Cardiovascular Electrophysiology, 22(4), 455–463.PubMedCrossRef
38.
go back to reference Yu, L., Scherlag, B. J., Li, S., Fan, Y., Dyer, J., Male, S., et al. (2013). Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: a noninvasive approach to treat the initial phase of atrial fibrillation. Heart Rhythm, 10(3), 428–435.PubMedCrossRef Yu, L., Scherlag, B. J., Li, S., Fan, Y., Dyer, J., Male, S., et al. (2013). Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: a noninvasive approach to treat the initial phase of atrial fibrillation. Heart Rhythm, 10(3), 428–435.PubMedCrossRef
39.
go back to reference Nakashima, H., Kumagai, K., Urata, H., Gondo, N., Ideishi, M., & Arakawa, K. (2000). Angiotensin II antagonist prevents electrical remodeling in atrial fibrillation. Circulation, 101(22), 2612–2617.PubMedCrossRef Nakashima, H., Kumagai, K., Urata, H., Gondo, N., Ideishi, M., & Arakawa, K. (2000). Angiotensin II antagonist prevents electrical remodeling in atrial fibrillation. Circulation, 101(22), 2612–2617.PubMedCrossRef
40.
go back to reference Workman, A. J., Kane, K. A., Russell, J. A., Norrie, J., & Rankin, A. C. (2003). Chronic beta-adrenoceptor blockade and human atrial cell electrophysiology: evidence of pharmacological remodelling. Cardiovascular Research, 58(3), 518–525.PubMedCrossRef Workman, A. J., Kane, K. A., Russell, J. A., Norrie, J., & Rankin, A. C. (2003). Chronic beta-adrenoceptor blockade and human atrial cell electrophysiology: evidence of pharmacological remodelling. Cardiovascular Research, 58(3), 518–525.PubMedCrossRef
41.
go back to reference Zhao, Q., Yu, S., Zou, M., Dai, Z., Wang, X., Xiao, J., et al. (2012). Effect of renal sympathetic denervation on the inducibility of atrial fibrillation during rapid atrial pacing. Journal of Interventional Cardiac Electrophysiology, 35(2), 119–125.PubMedCrossRef Zhao, Q., Yu, S., Zou, M., Dai, Z., Wang, X., Xiao, J., et al. (2012). Effect of renal sympathetic denervation on the inducibility of atrial fibrillation during rapid atrial pacing. Journal of Interventional Cardiac Electrophysiology, 35(2), 119–125.PubMedCrossRef
42.
go back to reference Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Barger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat to beat cardiovascular control. Science, 213, 220–222.PubMedCrossRef Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Barger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat to beat cardiovascular control. Science, 213, 220–222.PubMedCrossRef
43.
go back to reference Pomeranz, M., Macaulay, R. J. B., Caudill, M. A., Kutz, I., Adam, D., & Gordon, D. (1985). Assessment of autonomic function in humans by heart rate spectral analysis. American Journal of Physiology, 248, H151–H153.PubMed Pomeranz, M., Macaulay, R. J. B., Caudill, M. A., Kutz, I., Adam, D., & Gordon, D. (1985). Assessment of autonomic function in humans by heart rate spectral analysis. American Journal of Physiology, 248, H151–H153.PubMed
44.
go back to reference Malliani, A., Pagani, M., Lombardi, F., & Cerutti, S. (1991). Cardiovascular neural regulation explored in the frequency domain. Circulation, 84, 1482–1492.CrossRef Malliani, A., Pagani, M., Lombardi, F., & Cerutti, S. (1991). Cardiovascular neural regulation explored in the frequency domain. Circulation, 84, 1482–1492.CrossRef
45.
go back to reference Goldstein, D. S., Bentho, O., Park, M. Y., & Sharabi, Y. (2011). Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Experimental Physiology, 96(12), 1255–1261.PubMedCentralPubMedCrossRef Goldstein, D. S., Bentho, O., Park, M. Y., & Sharabi, Y. (2011). Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Experimental Physiology, 96(12), 1255–1261.PubMedCentralPubMedCrossRef
46.
go back to reference Piccirillo, G., Ogawa, M., Song, J., Chong, V. J., Joung, B., Han, S., et al. (2009). Power spectral analysis of heart rate variability and autonomic nervous system activity measured directly in healthy dogs and dogs with tachycardia-induced heart failure. Heart Rhythm, 6(4), 546–552.PubMedCentralPubMedCrossRef Piccirillo, G., Ogawa, M., Song, J., Chong, V. J., Joung, B., Han, S., et al. (2009). Power spectral analysis of heart rate variability and autonomic nervous system activity measured directly in healthy dogs and dogs with tachycardia-induced heart failure. Heart Rhythm, 6(4), 546–552.PubMedCentralPubMedCrossRef
47.
go back to reference Liao, K., Yu, L., Yang, K., Saren, G., Wang, S., Huang, B., & Jiang, H. (2014). Low-level carotid baroreceptor stimulation suppresses ventricular arrhythmias during acute ischemia. PLoS One, 9(10), e109313.PubMedCentralPubMedCrossRef Liao, K., Yu, L., Yang, K., Saren, G., Wang, S., Huang, B., & Jiang, H. (2014). Low-level carotid baroreceptor stimulation suppresses ventricular arrhythmias during acute ischemia. PLoS One, 9(10), e109313.PubMedCentralPubMedCrossRef
48.
go back to reference Stavrakis, S., Scherlag, B. J., Fan, Y., Liu, Y., Mao, J., Varma, V., et al. (2013). Inhibition of atrial fibrillation by low-level vagus nerve stimulation: the role of the nitric oxide signaling pathway. Journal of Interventional Cardiac Electrophysiology, 36(3), 199–208.PubMedCrossRef Stavrakis, S., Scherlag, B. J., Fan, Y., Liu, Y., Mao, J., Varma, V., et al. (2013). Inhibition of atrial fibrillation by low-level vagus nerve stimulation: the role of the nitric oxide signaling pathway. Journal of Interventional Cardiac Electrophysiology, 36(3), 199–208.PubMedCrossRef
49.
go back to reference Todoran, T. M., & Zile, M. R. (2013). Neuromodulation device therapy for treatment of hypertensive heart disease. Circulation Journal, 77(6), 1351–1363.PubMedCrossRef Todoran, T. M., & Zile, M. R. (2013). Neuromodulation device therapy for treatment of hypertensive heart disease. Circulation Journal, 77(6), 1351–1363.PubMedCrossRef
50.
go back to reference Hoppe, U. C., Brandt, M. C., Wachter, R., Beige, J., Rump, L. C., Kroon, A. A., et al. (2012). Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. Journal of the American Society of Hypertension, 6(4), 270–276.PubMedCrossRef Hoppe, U. C., Brandt, M. C., Wachter, R., Beige, J., Rump, L. C., Kroon, A. A., et al. (2012). Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. Journal of the American Society of Hypertension, 6(4), 270–276.PubMedCrossRef
51.
go back to reference Tai, C. T., Chiou, C. W., Wen, Z. C., Hsieh, M. H., Tsai, C. F., Lin, W. S., et al. (2000). Effect of phenylephrine on focal atrial fibrillation originating in the pulmonary veins and superior vena cava. Journal of the American College of Cardiology, 36(3), 788–793.PubMedCrossRef Tai, C. T., Chiou, C. W., Wen, Z. C., Hsieh, M. H., Tsai, C. F., Lin, W. S., et al. (2000). Effect of phenylephrine on focal atrial fibrillation originating in the pulmonary veins and superior vena cava. Journal of the American College of Cardiology, 36(3), 788–793.PubMedCrossRef
Metadata
Title
Effects of low-level carotid baroreflex stimulation on atrial electrophysiology
Authors
Mingyan Dai
Mingwei Bao
Jiafen Liao
Lilei Yu
Yanhong Tang
He Huang
Xi Wang
Congxin Huang
Publication date
01-08-2015
Publisher
Springer US
Published in
Journal of Interventional Cardiac Electrophysiology / Issue 2/2015
Print ISSN: 1383-875X
Electronic ISSN: 1572-8595
DOI
https://doi.org/10.1007/s10840-015-9976-5

Other articles of this Issue 2/2015

Journal of Interventional Cardiac Electrophysiology 2/2015 Go to the issue