Skip to main content
Top
Published in: Inflammation 4/2023

23-05-2023 | RESEARCH

Phillygenin Ameliorates Carbon Tetrachloride-Induced Liver Fibrosis: Suppression of Inflammation and Wnt/β-Catenin Signaling Pathway

Authors: Cheng Wang, Yanfang Liu, Lihong Gong, Xinyan Xue, Ke Fu, Cheng Ma, Yunxia Li

Published in: Inflammation | Issue 4/2023

Login to get access

Abstract

Liver fibrosis (LF) is caused by the chronic wound healing response to liver injury from various origins. Among the causes, inflammatory response is the central trigger of LF. Phillygenin (PHI) is a lignan derived from Forsythia suspensa, which has significant anti-inflammatory properties. However, the effect of PHI on improving LF and the underlying mechanism have rarely been studied. In this study, we used carbon tetrachloride (CCl4) to establish a mouse model of LF. Through histological analysis of liver tissue, and measurement of the levels of hepatocyte damage markers (ALT, AST, TBIL, TBA) and four indicators of LF (Col IV, HA, LN, PC-III) in serum, it was shown that PHI improved liver function and reduced the progress of LF. Subsequently, the detection of fibrogenic biomarkers in liver tissue showed that PHI inhibited the activation of hepatic stellate cells (HSCs). Next, the expression of inflammatory markers in liver tissue/serum was detected by immunohistochemistry, RT-qPCR, and ELISA, suggesting that PHI inhibited inflammation during LF. Similarly, in vitro experiments also confirmed that PHI could inhibit lipopolysaccharide-induced inflammatory responses in RAW264.7 cells, which showed strong anti-inflammatory effects. In addition, the results of network pharmacology, molecular docking, RT-qPCR and western blot confirmed that PHI could alleviate CCl4-induced LF by inhibiting the Wnt/β-catenin pathway. In conclusion, our research showed that PHI curbed LF through inhibition of HSC activation and collagen accumulation via inhibiting multiple profibrogenic factors, modulating a variety of inflammatory factors, and suppressing the Wnt/β-catenin pathway.
Literature
1.
go back to reference Tacke, F., and C. Trautwein. 2015. Mechanisms of liver fibrosis resolution. Journal of hepatology 63 (4): 1038–1039.PubMedCrossRef Tacke, F., and C. Trautwein. 2015. Mechanisms of liver fibrosis resolution. Journal of hepatology 63 (4): 1038–1039.PubMedCrossRef
2.
go back to reference Kisseleva, T., and D. Brenner. 2021. Molecular and cellular mechanisms of liver fibrosis and its regression. Nature reviews Gastroenterology & hepatology 18 (3): 151–166.CrossRef Kisseleva, T., and D. Brenner. 2021. Molecular and cellular mechanisms of liver fibrosis and its regression. Nature reviews Gastroenterology & hepatology 18 (3): 151–166.CrossRef
3.
go back to reference Aydın, M., and K. Akçalı. 2018. Liver fibrosis. The Turkish journal of gastroenterology : The official journal of Turkish Society of Gastroenterology 29 (1): 14–21.PubMedCrossRef Aydın, M., and K. Akçalı. 2018. Liver fibrosis. The Turkish journal of gastroenterology : The official journal of Turkish Society of Gastroenterology 29 (1): 14–21.PubMedCrossRef
4.
5.
go back to reference Sun, M., and T. Kisseleva. 2015. Reversibility of liver fibrosis. Clinics and Research in Hepatology and Gastroenterology 39 Suppl 1(0 1):S60–63. Sun, M., and T. Kisseleva. 2015. Reversibility of liver fibrosis. Clinics and Research in Hepatology and Gastroenterology 39 Suppl 1(0 1):S60–63.
6.
go back to reference Parola, M., and M. Pinzani. 2019. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Molecular Aspects of Medicine 65: 37–55.PubMedCrossRef Parola, M., and M. Pinzani. 2019. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Molecular Aspects of Medicine 65: 37–55.PubMedCrossRef
7.
go back to reference Llovet, J.M., J. Zucman-Rossi, E. Pikarsky, B. Sangro, M. Schwartz, M. Sherman, G. Gores. 2016. Hepatocellular carcinoma. Nat Rev Dis Primers 2: 16018 Llovet, J.M., J. Zucman-Rossi, E. Pikarsky, B. Sangro, M. Schwartz, M. Sherman, G. Gores. 2016. Hepatocellular carcinoma. Nat Rev Dis Primers 2: 16018
9.
go back to reference Du, B., L. Zhang, Y. Sun, G. Zhang, J. Yao, M. Jiang, L. Pan, and C. Sun. 2019. Phillygenin exhibits anti-inflammatory activity through modulating multiple cellular behaviors of mouse lymphocytes. Immunopharmacology and Immunotoxicology 41 (1): 76–85.PubMedCrossRef Du, B., L. Zhang, Y. Sun, G. Zhang, J. Yao, M. Jiang, L. Pan, and C. Sun. 2019. Phillygenin exhibits anti-inflammatory activity through modulating multiple cellular behaviors of mouse lymphocytes. Immunopharmacology and Immunotoxicology 41 (1): 76–85.PubMedCrossRef
10.
go back to reference Hu, N., C. Wang, X. Dai, M. Zhou, L. Gong, L. Yu, C. Peng, and Y. Li. 2020. Phillygenin inhibits LPS-induced activation and inflammation of LX2 cells by TLR4/MyD88/NF-κB signaling pathway. Journal of Ethnopharmacology 248: 112361.PubMedCrossRef Hu, N., C. Wang, X. Dai, M. Zhou, L. Gong, L. Yu, C. Peng, and Y. Li. 2020. Phillygenin inhibits LPS-induced activation and inflammation of LX2 cells by TLR4/MyD88/NF-κB signaling pathway. Journal of Ethnopharmacology 248: 112361.PubMedCrossRef
11.
go back to reference Katoh, M. 2018. Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (Review). International Journal of Molecular Medicine 42 (2): 713–725.PubMedPubMedCentral Katoh, M. 2018. Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (Review). International Journal of Molecular Medicine 42 (2): 713–725.PubMedPubMedCentral
12.
go back to reference Schunk, S.J., J. Floege, D. Fliser, and T. Speer. 2021. WNT-β-catenin signalling - a versatile player in kidney injury and repair. Nature Reviews. Nephrology 17 (3): 172–184.PubMedCrossRef Schunk, S.J., J. Floege, D. Fliser, and T. Speer. 2021. WNT-β-catenin signalling - a versatile player in kidney injury and repair. Nature Reviews. Nephrology 17 (3): 172–184.PubMedCrossRef
13.
go back to reference Guo, Y., L. Xiao, L. Sun, and F. Liu. 2012. Wnt/beta-catenin signaling: A promising new target for fibrosis diseases. Physiological Research 61 (4): 337–346.PubMedCrossRef Guo, Y., L. Xiao, L. Sun, and F. Liu. 2012. Wnt/beta-catenin signaling: A promising new target for fibrosis diseases. Physiological Research 61 (4): 337–346.PubMedCrossRef
14.
go back to reference Li, W., C. Zhu, Y. Li, Q. Wu, and R. Gao. 2014. Mest attenuates CCl4-induced liver fibrosis in rats by inhibiting the Wnt/β-catenin signaling pathway. Gut Liver 8 (3): 282–291.PubMedCrossRef Li, W., C. Zhu, Y. Li, Q. Wu, and R. Gao. 2014. Mest attenuates CCl4-induced liver fibrosis in rats by inhibiting the Wnt/β-catenin signaling pathway. Gut Liver 8 (3): 282–291.PubMedCrossRef
15.
go back to reference Rong, X., J. Liu, X. Yao, T. Jiang, Y. Wang, and F. Xie. 2019. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Research & Therapy 10 (1): 98.CrossRef Rong, X., J. Liu, X. Yao, T. Jiang, Y. Wang, and F. Xie. 2019. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Research & Therapy 10 (1): 98.CrossRef
16.
go back to reference Liu, Q.W., Y.M. Ying, J.X. Zhou, W.J. Zhang, Z.X. Liu, B.B. Jia, H.C. Gu, C.Y. Zhao, X.H. Guan, K.Y. Deng, et al. 2022. Human amniotic mesenchymal stem cells-derived IGFBP-3, DKK-3, and DKK-1 attenuate liver fibrosis through inhibiting hepatic stellate cell activation by blocking Wnt/β-catenin signaling pathway in mice. Stem Cell Research & Therapy 13 (1): 224.CrossRef Liu, Q.W., Y.M. Ying, J.X. Zhou, W.J. Zhang, Z.X. Liu, B.B. Jia, H.C. Gu, C.Y. Zhao, X.H. Guan, K.Y. Deng, et al. 2022. Human amniotic mesenchymal stem cells-derived IGFBP-3, DKK-3, and DKK-1 attenuate liver fibrosis through inhibiting hepatic stellate cell activation by blocking Wnt/β-catenin signaling pathway in mice. Stem Cell Research & Therapy 13 (1): 224.CrossRef
17.
go back to reference Miao, C., Y. Yang, X. He, C. Huang, Y. Huang, L. Zhang, X. Lv, Y. Jin, and J. Li. 2013. Wnt signaling in liver fibrosis: Progress, challenges and potential directions. Biochimie 95 (12): 2326–2335.PubMedCrossRef Miao, C., Y. Yang, X. He, C. Huang, Y. Huang, L. Zhang, X. Lv, Y. Jin, and J. Li. 2013. Wnt signaling in liver fibrosis: Progress, challenges and potential directions. Biochimie 95 (12): 2326–2335.PubMedCrossRef
18.
go back to reference Nishikawa, K., Y. Osawa, K. Kimura. 2018. Wnt/β-catenin signaling as a potential target for the treatment of liver cirrhosis using antifibrotic drugs. International Journal of Molecular Sciences 19(10) Nishikawa, K., Y. Osawa, K. Kimura. 2018. Wnt/β-catenin signaling as a potential target for the treatment of liver cirrhosis using antifibrotic drugs. International Journal of Molecular Sciences 19(10)
19.
go back to reference Wang, J., L. Li, L. Li, Q. Yan, J. Li, and T. Xu. 2018. Emerging role and therapeutic implication of Wnt signaling pathways in liver fibrosis. Gene 674: 57–69.PubMedCrossRef Wang, J., L. Li, L. Li, Q. Yan, J. Li, and T. Xu. 2018. Emerging role and therapeutic implication of Wnt signaling pathways in liver fibrosis. Gene 674: 57–69.PubMedCrossRef
20.
go back to reference Seki, E., and D. Brenner. 2015. Recent advancement of molecular mechanisms of liver fibrosis. Journal of hepato-biliary-pancreatic sciences 22 (7): 512–518.PubMedPubMedCentralCrossRef Seki, E., and D. Brenner. 2015. Recent advancement of molecular mechanisms of liver fibrosis. Journal of hepato-biliary-pancreatic sciences 22 (7): 512–518.PubMedPubMedCentralCrossRef
21.
go back to reference Sun, M., T. Kisseleva. 2015. Reversibility of liver fibrosis. Clinics and Research in Hepatology and Gastroenterology S60–63 Sun, M., T. Kisseleva. 2015. Reversibility of liver fibrosis. Clinics and Research in Hepatology and Gastroenterology S60–63
22.
23.
go back to reference Dhar, D., J. Baglieri, T. Kisseleva, and D. Brenner. 2020. Mechanisms of liver fibrosis and its role in liver cancer. Experimental biology and medicine (Maywood, NJ) 245 (2): 96–108.CrossRef Dhar, D., J. Baglieri, T. Kisseleva, and D. Brenner. 2020. Mechanisms of liver fibrosis and its role in liver cancer. Experimental biology and medicine (Maywood, NJ) 245 (2): 96–108.CrossRef
24.
go back to reference Campana, L., and J. Iredale. 2017. Regression of liver fibrosis. Seminars in liver disease 37 (1): 1–10.PubMedCrossRef Campana, L., and J. Iredale. 2017. Regression of liver fibrosis. Seminars in liver disease 37 (1): 1–10.PubMedCrossRef
25.
go back to reference Yanguas, S., B. Cogliati, J. Willebrords, M. Maes, I. Colle, B. van den Bossche, C. de Oliveira, W. Andraus, V. Alves, I. Leclercq, et al. 2016. Experimental models of liver fibrosis. Archives of toxicology 90 (5): 1025–1048.PubMedCrossRef Yanguas, S., B. Cogliati, J. Willebrords, M. Maes, I. Colle, B. van den Bossche, C. de Oliveira, W. Andraus, V. Alves, I. Leclercq, et al. 2016. Experimental models of liver fibrosis. Archives of toxicology 90 (5): 1025–1048.PubMedCrossRef
26.
go back to reference Bao, Y., L. Wang, H. Pan, T. Zhang, Y. Chen, S. Xu, X. Mao, and S. Li. 2021. Animal and organoid models of liver fibrosis. Frontiers in physiology 12: 666138.PubMedPubMedCentralCrossRef Bao, Y., L. Wang, H. Pan, T. Zhang, Y. Chen, S. Xu, X. Mao, and S. Li. 2021. Animal and organoid models of liver fibrosis. Frontiers in physiology 12: 666138.PubMedPubMedCentralCrossRef
27.
go back to reference Scholten, D., J. Trebicka, C. Liedtke, and R. Weiskirchen. 2015. The carbon tetrachloride model in mice. Laboratory animals 49: 4–11.PubMedCrossRef Scholten, D., J. Trebicka, C. Liedtke, and R. Weiskirchen. 2015. The carbon tetrachloride model in mice. Laboratory animals 49: 4–11.PubMedCrossRef
28.
go back to reference Chang, M.J., T.M. Hung, B.S. Min, J.C. Kim, M.H. Woo, J.S. Choi, H.K. Lee, K. Bae. 2008. Lignans from the fruits of Forsythia suspensa (Thunb.) Vahl protect high-density lipoprotein during oxidative stress. Bioscience, Biotechnology and Biochemistry 72(10): 2750–2755 Chang, M.J., T.M. Hung, B.S. Min, J.C. Kim, M.H. Woo, J.S. Choi, H.K. Lee, K. Bae. 2008. Lignans from the fruits of Forsythia suspensa (Thunb.) Vahl protect high-density lipoprotein during oxidative stress. Bioscience, Biotechnology and Biochemistry 72(10): 2750–2755
29.
go back to reference Li, R.J., C. Qin, G.R. Huang, L.J. Liao, X.Q. Mo, and Y.Q. Huang. 2022. Phillygenin inhibits helicobacter pylori by preventing biofilm formation and inducing ATP Leakage. Frontiers in Microbiology 13: 863624.PubMedPubMedCentralCrossRef Li, R.J., C. Qin, G.R. Huang, L.J. Liao, X.Q. Mo, and Y.Q. Huang. 2022. Phillygenin inhibits helicobacter pylori by preventing biofilm formation and inducing ATP Leakage. Frontiers in Microbiology 13: 863624.PubMedPubMedCentralCrossRef
30.
go back to reference Feng, H., J. Zhang, K. Zhang, X. Wang, K. Zhang, Z. Guo, S. Han, L. Wang, Z. Qiu, G. Wang, et al. 2022. Phillygenin activates PKR/eIF2α pathway and induces stress granule to exert anti-avian infectious bronchitis virus. International Immunopharmacology 108: 108764.PubMedCrossRef Feng, H., J. Zhang, K. Zhang, X. Wang, K. Zhang, Z. Guo, S. Han, L. Wang, Z. Qiu, G. Wang, et al. 2022. Phillygenin activates PKR/eIF2α pathway and induces stress granule to exert anti-avian infectious bronchitis virus. International Immunopharmacology 108: 108764.PubMedCrossRef
31.
go back to reference Song, W., J. Wu, L. Yu, and Z. Peng. 2018. Evaluation of the pharmacokinetics and hepatoprotective effects of phillygenin in mouse. BioMed Research International 2018: 7964318.PubMedPubMedCentralCrossRef Song, W., J. Wu, L. Yu, and Z. Peng. 2018. Evaluation of the pharmacokinetics and hepatoprotective effects of phillygenin in mouse. BioMed Research International 2018: 7964318.PubMedPubMedCentralCrossRef
32.
go back to reference Wang, C., C. Ma, K. Fu, Y. Liu, L. Gong, C. Peng, and Y. Li. 2022. Hepatoprotective effect of phillygenin on carbon tetrachloride-induced liver fibrosis and its effects on short chain fatty acid and bile acid metabolism. Journal of Ethnopharmacology 296: 115478.PubMedCrossRef Wang, C., C. Ma, K. Fu, Y. Liu, L. Gong, C. Peng, and Y. Li. 2022. Hepatoprotective effect of phillygenin on carbon tetrachloride-induced liver fibrosis and its effects on short chain fatty acid and bile acid metabolism. Journal of Ethnopharmacology 296: 115478.PubMedCrossRef
33.
go back to reference Ma, C., C. Wang, Y. Zhang, Y. Li, K. Fu, L. Gong, H. Zhou, and Y. Li. 2023. Phillygenin inhibited M1 macrophage polarization and reduced hepatic stellate cell activation by inhibiting macrophage exosomal miR-125b-5p. Biomedicine & Pharmacotherapy 159: 114264.CrossRef Ma, C., C. Wang, Y. Zhang, Y. Li, K. Fu, L. Gong, H. Zhou, and Y. Li. 2023. Phillygenin inhibited M1 macrophage polarization and reduced hepatic stellate cell activation by inhibiting macrophage exosomal miR-125b-5p. Biomedicine & Pharmacotherapy 159: 114264.CrossRef
34.
go back to reference Li, X., L. Wang, and C. Chen. 2017. Effects of exogenous thymosin β4 on carbon tetrachloride-induced liver injury and fibrosis. Scientific reports 7 (1): 5872.PubMedPubMedCentralCrossRef Li, X., L. Wang, and C. Chen. 2017. Effects of exogenous thymosin β4 on carbon tetrachloride-induced liver injury and fibrosis. Scientific reports 7 (1): 5872.PubMedPubMedCentralCrossRef
36.
go back to reference Krenkel, O., and F. Tacke. 2017. Liver macrophages in tissue homeostasis and disease. Nature reviews Immunology 17 (5): 306–321.PubMedCrossRef Krenkel, O., and F. Tacke. 2017. Liver macrophages in tissue homeostasis and disease. Nature reviews Immunology 17 (5): 306–321.PubMedCrossRef
37.
go back to reference Li, X., Q. Jin, Q. Yao, B. Xu, L. Li, S. Zhang, and C. Tu. 2018. The flavonoid quercetin ameliorates liver inflammation and fibrosis by regulating hepatic macrophages activation and polarization in mice. Frontiers in pharmacology 9: 72.PubMedPubMedCentralCrossRef Li, X., Q. Jin, Q. Yao, B. Xu, L. Li, S. Zhang, and C. Tu. 2018. The flavonoid quercetin ameliorates liver inflammation and fibrosis by regulating hepatic macrophages activation and polarization in mice. Frontiers in pharmacology 9: 72.PubMedPubMedCentralCrossRef
38.
go back to reference Yan, Z., D. Wang, C. An, H. Xu, Q. Zhao, Y. Shi, N. Song, B. Deng, X. Guo, J. Rao, et al. 2021. viaThe antimicrobial peptide YD attenuates inflammation miR-155 targeting CASP12 during liver fibrosis. Acta pharmaceutica Sinica B 11 (1): 100–111.PubMedCrossRef Yan, Z., D. Wang, C. An, H. Xu, Q. Zhao, Y. Shi, N. Song, B. Deng, X. Guo, J. Rao, et al. 2021. viaThe antimicrobial peptide YD attenuates inflammation miR-155 targeting CASP12 during liver fibrosis. Acta pharmaceutica Sinica B 11 (1): 100–111.PubMedCrossRef
39.
go back to reference Nusse, R., and H. Clevers. 2017. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169 (6): 985–999.PubMedCrossRef Nusse, R., and H. Clevers. 2017. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169 (6): 985–999.PubMedCrossRef
40.
go back to reference Tokunaga, Y., Y. Osawa, T. Ohtsuki, Y. Hayashi, K. Yamaji, D. Yamane, M. Hara, K. Munekata, K. Tsukiyama-Kohara, T. Hishima, et al. 2017. Selective inhibitor of Wnt/β-catenin/CBP signaling ameliorates hepatitis C virus-induced liver fibrosis in mouse model. Science and Reports 7 (1): 325.CrossRef Tokunaga, Y., Y. Osawa, T. Ohtsuki, Y. Hayashi, K. Yamaji, D. Yamane, M. Hara, K. Munekata, K. Tsukiyama-Kohara, T. Hishima, et al. 2017. Selective inhibitor of Wnt/β-catenin/CBP signaling ameliorates hepatitis C virus-induced liver fibrosis in mouse model. Science and Reports 7 (1): 325.CrossRef
41.
go back to reference Jiang, M.Q., L. Wang, A.L. Cao, J. Zhao, X. Chen, Y.M. Wang, H. Wang, and W. Peng. 2015. HuangQi decoction improves renal tubulointerstitial fibrosis in mice by inhibiting the up-regulation of Wnt/β-catenin signaling pathway. Cellular Physiology and Biochemistry 36 (2): 655–669.PubMedCrossRef Jiang, M.Q., L. Wang, A.L. Cao, J. Zhao, X. Chen, Y.M. Wang, H. Wang, and W. Peng. 2015. HuangQi decoction improves renal tubulointerstitial fibrosis in mice by inhibiting the up-regulation of Wnt/β-catenin signaling pathway. Cellular Physiology and Biochemistry 36 (2): 655–669.PubMedCrossRef
42.
go back to reference Guan, S., and J. Zhou. 2017. Frizzled-7 mediates TGF-β-induced pulmonary fibrosis by transmitting non-canonical Wnt signaling. Experimental Cell Research 359 (1): 226–234.PubMedCrossRef Guan, S., and J. Zhou. 2017. Frizzled-7 mediates TGF-β-induced pulmonary fibrosis by transmitting non-canonical Wnt signaling. Experimental Cell Research 359 (1): 226–234.PubMedCrossRef
43.
go back to reference Nishikawa, K., Y. Osawa, K. Kimura. 2018. Wnt/β-catenin signaling as a potential target for the treatment of liver cirrhosis using antifibrotic drugs. International Journal of Molecular Sciences 19(10) Nishikawa, K., Y. Osawa, K. Kimura. 2018. Wnt/β-catenin signaling as a potential target for the treatment of liver cirrhosis using antifibrotic drugs. International Journal of Molecular Sciences 19(10)
44.
go back to reference Jiang, F., C.J. Parsons, and B. Stefanovic. 2006. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. Journal of Hepatology 45 (3): 401–409.PubMedCrossRef Jiang, F., C.J. Parsons, and B. Stefanovic. 2006. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. Journal of Hepatology 45 (3): 401–409.PubMedCrossRef
45.
go back to reference Koehler, A., J. Schlupf, M. Schneider, B. Kraft, C. Winter, and J. Kashef. 2013. Loss of Xenopus cadherin-11 leads to increased Wnt/β-catenin signaling and up-regulation of target genes c-myc and cyclin D1 in neural crest. Developmental Biology 383 (1): 132–145.PubMedCrossRef Koehler, A., J. Schlupf, M. Schneider, B. Kraft, C. Winter, and J. Kashef. 2013. Loss of Xenopus cadherin-11 leads to increased Wnt/β-catenin signaling and up-regulation of target genes c-myc and cyclin D1 in neural crest. Developmental Biology 383 (1): 132–145.PubMedCrossRef
46.
go back to reference Huang, G.R., S.J. Wei, Y.Q. Huang, W. Xing, L.Y. Wang, and L.L. Liang. 2018. Mechanism of combined use of vitamin D and puerarin in anti-hepatic fibrosis by regulating the Wnt/β-catenin signalling pathway. World Journal of Gastroenterology 24 (36): 4178–4185.PubMedPubMedCentralCrossRef Huang, G.R., S.J. Wei, Y.Q. Huang, W. Xing, L.Y. Wang, and L.L. Liang. 2018. Mechanism of combined use of vitamin D and puerarin in anti-hepatic fibrosis by regulating the Wnt/β-catenin signalling pathway. World Journal of Gastroenterology 24 (36): 4178–4185.PubMedPubMedCentralCrossRef
47.
go back to reference Zhang, C., X.Q. Liu, H.N. Sun, X.M. Meng, Y.W. Bao, H.P. Zhang, F.M. Pan, and C. Zhang. 2018. Octreotide attenuates hepatic fibrosis and hepatic stellate cells proliferation and activation by inhibiting Wnt/β-catenin signaling pathway, c-Myc and cyclin D1. International Immunopharmacology 63: 183–190.PubMedCrossRef Zhang, C., X.Q. Liu, H.N. Sun, X.M. Meng, Y.W. Bao, H.P. Zhang, F.M. Pan, and C. Zhang. 2018. Octreotide attenuates hepatic fibrosis and hepatic stellate cells proliferation and activation by inhibiting Wnt/β-catenin signaling pathway, c-Myc and cyclin D1. International Immunopharmacology 63: 183–190.PubMedCrossRef
Metadata
Title
Phillygenin Ameliorates Carbon Tetrachloride-Induced Liver Fibrosis: Suppression of Inflammation and Wnt/β-Catenin Signaling Pathway
Authors
Cheng Wang
Yanfang Liu
Lihong Gong
Xinyan Xue
Ke Fu
Cheng Ma
Yunxia Li
Publication date
23-05-2023
Publisher
Springer US
Published in
Inflammation / Issue 4/2023
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01826-1

Other articles of this Issue 4/2023

Inflammation 4/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine