Skip to main content
Top
Published in: Inflammation 4/2023

08-05-2023 | Cytokines | RESEARCH

TLR7 Agonists Modulate the Activation of Human Conjunctival Epithelial Cells Induced by IL-1β via the ERK1/2 Signaling Pathway

Authors: Ling Wang, Shixu Li, Kaihong Cai, Yu Xiao, Lin Ye

Published in: Inflammation | Issue 4/2023

Login to get access

Abstract

Conjunctival epithelia cells play an important role in the development of allergic reactions. TLR7 agonists have been shown in studies to increase the body’s immunological tolerance by controlling the proportion of Th1/Th2 cells, although it is still unknown what impact this has on conjunctival epithelial cells. In this study, we examined the effect of TLR7 agonists on the inflammatory-activation of conjunctival epithelial cells induced by IL-1β. Quantitative PCR and ELISA analysis confirmed that TLR7 agonists could impair the proinflammatory cytokines released by the epithelia cells, whereas pro-inflammatory cytokines led to subsequent reactive oxygen species and neutrophil chemotaxis. Phosphorylation analysis and nucleocytoplasmic separation further confirmed that TLR7 agonists inhibit IL-1β-induced epithelia cells activation and ATP depletion via modulating the cytoplasmic residence of ERK1/2. Our finding indicated that TLR7 of conjunctival epithelia cells could be as a potent anti-inflammatory target for the ocular surface. And TLR7 agonists may become potential new drug for the treatment of allergic conjunctivitis.
Literature
1.
go back to reference Hingorani, M., V.L. Calder, R.J. Buckley, and S.L. Lightman. 1998. The role of conjunctival epithelial cells in chronic ocular allergic disease. Experimental Eye Research 67 (5): 491–500.CrossRefPubMed Hingorani, M., V.L. Calder, R.J. Buckley, and S.L. Lightman. 1998. The role of conjunctival epithelial cells in chronic ocular allergic disease. Experimental Eye Research 67 (5): 491–500.CrossRefPubMed
2.
go back to reference Stahl, J.L., E.B. Cook, N.P. Barney, and F.M. Graziano. 2002. Pathophysiology of ocular allergy: the roles of conjunctival mast cells and epithelial cells. Current Allergy and Asthma Reports 2 (4): 332–339.CrossRefPubMed Stahl, J.L., E.B. Cook, N.P. Barney, and F.M. Graziano. 2002. Pathophysiology of ocular allergy: the roles of conjunctival mast cells and epithelial cells. Current Allergy and Asthma Reports 2 (4): 332–339.CrossRefPubMed
3.
go back to reference Labib, B.A., and D.I. Chigbu. 2022. Therapeutic targets in allergic conjunctivitis. Pharmaceuticals (Basel) 15 (5): 547.CrossRefPubMed Labib, B.A., and D.I. Chigbu. 2022. Therapeutic targets in allergic conjunctivitis. Pharmaceuticals (Basel) 15 (5): 547.CrossRefPubMed
4.
go back to reference Singh, N., Y. Diebold, S.K. Sahu, and A. Leonardi. 2022. Epithelial barrier dysfunction in ocular allergy. Allergy 77 (5): 1360–1372.CrossRefPubMed Singh, N., Y. Diebold, S.K. Sahu, and A. Leonardi. 2022. Epithelial barrier dysfunction in ocular allergy. Allergy 77 (5): 1360–1372.CrossRefPubMed
5.
go back to reference Gamache, D.A., S.D. Dimitrijevich, L.K. Weimer, L.S. Lang, J.M. Spellman, G. Graff, et al. 1997. Secretion of proinflammatory cytokines by human conjunctival epithelial cells. Ocular Immunology and Inflammation 5 (2): 117–128.CrossRefPubMed Gamache, D.A., S.D. Dimitrijevich, L.K. Weimer, L.S. Lang, J.M. Spellman, G. Graff, et al. 1997. Secretion of proinflammatory cytokines by human conjunctival epithelial cells. Ocular Immunology and Inflammation 5 (2): 117–128.CrossRefPubMed
6.
go back to reference Goldstein, M.H., K.L. Tubridy, J. Agahigian, E. Furfine, M. Magill, J. Kovalchin, et al. 2015. A phase 2 exploratory study of a novel interleukin-1 receptor inhibitor (EBI-005) in the treatment of moderate-to-severe allergic conjunctivitis. Eye & Contact Lens 41 (3): 145–155.CrossRef Goldstein, M.H., K.L. Tubridy, J. Agahigian, E. Furfine, M. Magill, J. Kovalchin, et al. 2015. A phase 2 exploratory study of a novel interleukin-1 receptor inhibitor (EBI-005) in the treatment of moderate-to-severe allergic conjunctivitis. Eye & Contact Lens 41 (3): 145–155.CrossRef
7.
go back to reference Kovalchin, J., B. King, A. Masci, E. Hopkins, J. Fry, J. Hou, et al. 2018. Preclinical development of EBI-005: An IL-1 receptor-1 inhibitor for the topical ocular treatment of ocular surface inflammatory diseases. Eye & Contact Lens 44 (3): 170–181.CrossRef Kovalchin, J., B. King, A. Masci, E. Hopkins, J. Fry, J. Hou, et al. 2018. Preclinical development of EBI-005: An IL-1 receptor-1 inhibitor for the topical ocular treatment of ocular surface inflammatory diseases. Eye & Contact Lens 44 (3): 170–181.CrossRef
8.
go back to reference Stahl, J.L., E.B. Cook, F.M. Graziano, and N.P. Barney. 2003. Differential and cooperative effects of TNFalpha, IL-1beta, and IFNgamma on human conjunctival epithelial cell receptor expression and chemokine release. Investigative Ophthalmology & Visual Science 44 (5): 2010–2015.CrossRef Stahl, J.L., E.B. Cook, F.M. Graziano, and N.P. Barney. 2003. Differential and cooperative effects of TNFalpha, IL-1beta, and IFNgamma on human conjunctival epithelial cell receptor expression and chemokine release. Investigative Ophthalmology & Visual Science 44 (5): 2010–2015.CrossRef
9.
go back to reference Leonardi, A., S.J. Curnow, H. Zhan, and V.L. Calder. 2006. Multiple cytokines in human tear specimens in seasonal and chronic allergic eye disease and in conjunctival fibroblast cultures. Clinical and Experimental Allergy 36 (6): 777–784.CrossRefPubMed Leonardi, A., S.J. Curnow, H. Zhan, and V.L. Calder. 2006. Multiple cytokines in human tear specimens in seasonal and chronic allergic eye disease and in conjunctival fibroblast cultures. Clinical and Experimental Allergy 36 (6): 777–784.CrossRefPubMed
10.
go back to reference Kanzler, H., F.J. Barrat, E.M. Hessel, and R.L. Coffman. 2007. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nature Medicine 13 (5): 552–559.CrossRefPubMed Kanzler, H., F.J. Barrat, E.M. Hessel, and R.L. Coffman. 2007. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nature Medicine 13 (5): 552–559.CrossRefPubMed
11.
go back to reference Kirtland, M.E., D.C. Tsitoura, S.R. Durham, and M.H. Shamji. 2020. Toll-like receptor agonists as adjuvants for allergen immunotherapy. Frontiers in Immunology 11: 599083.CrossRefPubMedPubMedCentral Kirtland, M.E., D.C. Tsitoura, S.R. Durham, and M.H. Shamji. 2020. Toll-like receptor agonists as adjuvants for allergen immunotherapy. Frontiers in Immunology 11: 599083.CrossRefPubMedPubMedCentral
12.
go back to reference Leaker, B.R., D. Singh, S. Lindgren, G. Almqvist, L. Eriksson, B. Young, et al. 2019. Effects of the Toll-like receptor 7 (TLR7) agonist, AZD8848, on allergen-induced responses in patients with mild asthma: a double-blind, randomised, parallel-group study. Respiratory Research 20 (1): 288.CrossRefPubMedPubMedCentral Leaker, B.R., D. Singh, S. Lindgren, G. Almqvist, L. Eriksson, B. Young, et al. 2019. Effects of the Toll-like receptor 7 (TLR7) agonist, AZD8848, on allergen-induced responses in patients with mild asthma: a double-blind, randomised, parallel-group study. Respiratory Research 20 (1): 288.CrossRefPubMedPubMedCentral
13.
go back to reference Wagner, T.L., C.L. Ahonen, A.M. Couture, S.J. Gibson, R.L. Miller, R.M. Smith, et al. 1999. Modulation of TH1 and TH2 cytokine production with the immune response modifiers, R-848 and imiquimod. Cellular Immunology 191 (1): 10–19.CrossRefPubMed Wagner, T.L., C.L. Ahonen, A.M. Couture, S.J. Gibson, R.L. Miller, R.M. Smith, et al. 1999. Modulation of TH1 and TH2 cytokine production with the immune response modifiers, R-848 and imiquimod. Cellular Immunology 191 (1): 10–19.CrossRefPubMed
14.
go back to reference Torii, Y., T. Ito, R. Amakawa, H. Sugimoto, H. Amuro, T. Tanijiri, et al. 2008. Imidazoquinoline acts as immune adjuvant for functional alteration of thymic stromal lymphopoietin-mediated allergic T cell response. The Journal of Immunology 181 (8): 5340–5349.CrossRefPubMed Torii, Y., T. Ito, R. Amakawa, H. Sugimoto, H. Amuro, T. Tanijiri, et al. 2008. Imidazoquinoline acts as immune adjuvant for functional alteration of thymic stromal lymphopoietin-mediated allergic T cell response. The Journal of Immunology 181 (8): 5340–5349.CrossRefPubMed
15.
go back to reference Ling, W., Y. Lin, W. Gaobin, C. Yu, Y. Lina, W. Xiaoting, et al. 2018. Conditional reprogrammed human limbal epithelial cells represent a novel in vitro cell model for drug responses. Biochemical and Biophysical Research Communications 499 (4): 735–742.CrossRef Ling, W., Y. Lin, W. Gaobin, C. Yu, Y. Lina, W. Xiaoting, et al. 2018. Conditional reprogrammed human limbal epithelial cells represent a novel in vitro cell model for drug responses. Biochemical and Biophysical Research Communications 499 (4): 735–742.CrossRef
16.
go back to reference Ling, W., Y. Li, L. Ning, W. Yuan, Y. Meina, P. Yun, et al. 2020. Bromhexine elevates REP2 expression to stimulate secretion from human primary conjunctiva fornix epithelial cells. FEBS letter 594 (1): 153–160.CrossRef Ling, W., Y. Li, L. Ning, W. Yuan, Y. Meina, P. Yun, et al. 2020. Bromhexine elevates REP2 expression to stimulate secretion from human primary conjunctiva fornix epithelial cells. FEBS letter 594 (1): 153–160.CrossRef
17.
go back to reference Leonardi, A., F. Borghesan, M. DePaoli, M. Plebani, and A.G. Secchi. 1998. Procollagens and inflammatory cytokine concentrations in tarsal and limbal vernal keratoconjunctivitis. Experimental Eye Research 67 (1): 105–112.CrossRefPubMed Leonardi, A., F. Borghesan, M. DePaoli, M. Plebani, and A.G. Secchi. 1998. Procollagens and inflammatory cytokine concentrations in tarsal and limbal vernal keratoconjunctivitis. Experimental Eye Research 67 (1): 105–112.CrossRefPubMed
18.
go back to reference Ebihara, N., A. Matsuda, T. Seto, K. Ohtomo, T. Funaki, T. Takai, et al. 2010. The epithelium takes center stage in allergic keratoconjunctivitis. Cornea 29 (Suppl 1): S41–S47.CrossRefPubMed Ebihara, N., A. Matsuda, T. Seto, K. Ohtomo, T. Funaki, T. Takai, et al. 2010. The epithelium takes center stage in allergic keratoconjunctivitis. Cornea 29 (Suppl 1): S41–S47.CrossRefPubMed
19.
go back to reference Kanno, A., N. Tanimura, M. Ishizaki, K. Ohko, Y. Motoi, M. Onji, et al. 2015. Targeting cell surface TLR7 for therapeutic intervention in autoimmune diseases. Nature Communications 6: 6119.CrossRefPubMed Kanno, A., N. Tanimura, M. Ishizaki, K. Ohko, Y. Motoi, M. Onji, et al. 2015. Targeting cell surface TLR7 for therapeutic intervention in autoimmune diseases. Nature Communications 6: 6119.CrossRefPubMed
20.
go back to reference Muri, J., and M. Kopf. 2022. The thioredoxin system: balancing redox responses in immune cells and tumors. European Journal of Immunology 53 (1): 2249948.CrossRefPubMedPubMedCentral Muri, J., and M. Kopf. 2022. The thioredoxin system: balancing redox responses in immune cells and tumors. European Journal of Immunology 53 (1): 2249948.CrossRefPubMedPubMedCentral
21.
go back to reference Raman, M., W. Chen, and M.H. Cobb. 2007. Differential regulation and properties of MAPKs. Oncogene 26 (22): 3100–3112.CrossRefPubMed Raman, M., W. Chen, and M.H. Cobb. 2007. Differential regulation and properties of MAPKs. Oncogene 26 (22): 3100–3112.CrossRefPubMed
22.
go back to reference Morita, W., S. Snelling, K. Wheway, B. Watkins, L. Appleton, A.J. Carr, et al. 2019. ERK1/2 drives IL-1β-induced expression of TGF-β1 and BMP-2 in torn tendons. Science and Reports 9 (1): 19005.CrossRef Morita, W., S. Snelling, K. Wheway, B. Watkins, L. Appleton, A.J. Carr, et al. 2019. ERK1/2 drives IL-1β-induced expression of TGF-β1 and BMP-2 in torn tendons. Science and Reports 9 (1): 19005.CrossRef
23.
go back to reference Heo, Y.J., S.E. Choi, J.Y. Jeon, S.J. Han, D.J. Kim, Y. Kang, et al. 2019. Visfatin induces inflammation and insulin resistance via the NF-κB and STAT3 signaling pathways in hepatocytes. Journal of Diabetes Research 2019: 4021623.CrossRefPubMedPubMedCentral Heo, Y.J., S.E. Choi, J.Y. Jeon, S.J. Han, D.J. Kim, Y. Kang, et al. 2019. Visfatin induces inflammation and insulin resistance via the NF-κB and STAT3 signaling pathways in hepatocytes. Journal of Diabetes Research 2019: 4021623.CrossRefPubMedPubMedCentral
24.
go back to reference Plotnikov, A., K. Flores, G. Maik-Rachline, E. Zehorai, E. Kapri-Pardes, D.A. Berti, et al. 2015. The nuclear translocation of ERK1/2 as an anticancer target. Nature Communications 6: 6685.CrossRefPubMed Plotnikov, A., K. Flores, G. Maik-Rachline, E. Zehorai, E. Kapri-Pardes, D.A. Berti, et al. 2015. The nuclear translocation of ERK1/2 as an anticancer target. Nature Communications 6: 6685.CrossRefPubMed
25.
go back to reference Nanda, A., S.S. Mustafa, M. Castillo, and J.A. Bernstein. 2022. Air pollution effects in allergies and asthma. Immunology and Allergy Clinics of North America 42 (4): 801–815.CrossRefPubMed Nanda, A., S.S. Mustafa, M. Castillo, and J.A. Bernstein. 2022. Air pollution effects in allergies and asthma. Immunology and Allergy Clinics of North America 42 (4): 801–815.CrossRefPubMed
26.
go back to reference Srisomboon, Y., K. Iijima, M. Colwell, P.J. Maniak, M. Macchietto, C. Faulk, et al. 2022. Allergen-induced DNA release by the airway epithelium amplifies type 2 immunity. Journal of Allergy and Clinical Immunology 151 (2): 494–508.CrossRefPubMed Srisomboon, Y., K. Iijima, M. Colwell, P.J. Maniak, M. Macchietto, C. Faulk, et al. 2022. Allergen-induced DNA release by the airway epithelium amplifies type 2 immunity. Journal of Allergy and Clinical Immunology 151 (2): 494–508.CrossRefPubMed
27.
go back to reference Bell, J., M. Dymond, M. Biffen, S. Delaney, D. Keeling, H. Zhang, et al. 2018. Temporal cytokine and lymphoid responses to an inhaled TLR7 antedrug agonist in the cynomolgus monkey demonstrates potential safety and tolerability of this approach. Toxicology and Applied Pharmacology 338: 9–19.CrossRefPubMed Bell, J., M. Dymond, M. Biffen, S. Delaney, D. Keeling, H. Zhang, et al. 2018. Temporal cytokine and lymphoid responses to an inhaled TLR7 antedrug agonist in the cynomolgus monkey demonstrates potential safety and tolerability of this approach. Toxicology and Applied Pharmacology 338: 9–19.CrossRefPubMed
28.
go back to reference An, S., I. Raju, B. Surenkhuu, J.E. Kwon, S. Gulati, M. Karaman, et al. 2019. Neutrophil extracellular traps (NETs) contribute to pathological changes of ocular graft-vs.-host disease (oGVHD) dry eye: Implications for novel biomarkers and therapeutic strategies. The Ocular Surface 17 (3): 589–614.CrossRefPubMedPubMedCentral An, S., I. Raju, B. Surenkhuu, J.E. Kwon, S. Gulati, M. Karaman, et al. 2019. Neutrophil extracellular traps (NETs) contribute to pathological changes of ocular graft-vs.-host disease (oGVHD) dry eye: Implications for novel biomarkers and therapeutic strategies. The Ocular Surface 17 (3): 589–614.CrossRefPubMedPubMedCentral
29.
go back to reference Chen, Y., X. Pan, J. Zhao, C. Li, Y. Lin, Y. Wang, et al. 2022. Icariin alleviates osteoarthritis through PI3K/Akt/mTOR/ULK1 signaling pathway. European Journal of Medical Research 27 (1): 204.CrossRefPubMedPubMedCentral Chen, Y., X. Pan, J. Zhao, C. Li, Y. Lin, Y. Wang, et al. 2022. Icariin alleviates osteoarthritis through PI3K/Akt/mTOR/ULK1 signaling pathway. European Journal of Medical Research 27 (1): 204.CrossRefPubMedPubMedCentral
30.
go back to reference Riegel, K., H. Yurugi, J. Schlöder, H. Jonuleit, M. Kaulich, F. Kirschner, et al. 2021. ERK5 modulates IL-6 secretion and contributes to tumor-induced immune suppression. Cell Death & Disease 12 (11): 969.CrossRef Riegel, K., H. Yurugi, J. Schlöder, H. Jonuleit, M. Kaulich, F. Kirschner, et al. 2021. ERK5 modulates IL-6 secretion and contributes to tumor-induced immune suppression. Cell Death & Disease 12 (11): 969.CrossRef
31.
go back to reference Philipova, R., and M. Whitaker. 2005. Active ERK1 is dimerized in vivo: bisphosphodimers generate peak kinase activity and monophosphodimers maintain basal ERK1 activity. Journal of Cell Science 118 (Pt 24): 5767–5776.CrossRefPubMed Philipova, R., and M. Whitaker. 2005. Active ERK1 is dimerized in vivo: bisphosphodimers generate peak kinase activity and monophosphodimers maintain basal ERK1 activity. Journal of Cell Science 118 (Pt 24): 5767–5776.CrossRefPubMed
32.
go back to reference Tomasovic, A., T. Brand, C. Schanbacher, S. Kramer, M.W. Hümmert, P. Godoy, et al. 2020. Interference with ERK-dimerization at the nucleocytosolic interface targets pathological ERK1/2 signaling without cardiotoxic side-effects. Nature Communications 11 (1): 1733.CrossRefPubMedPubMedCentral Tomasovic, A., T. Brand, C. Schanbacher, S. Kramer, M.W. Hümmert, P. Godoy, et al. 2020. Interference with ERK-dimerization at the nucleocytosolic interface targets pathological ERK1/2 signaling without cardiotoxic side-effects. Nature Communications 11 (1): 1733.CrossRefPubMedPubMedCentral
33.
go back to reference Casar, B., A. Pinto, and P. Crespo. 2009. ERK dimers and scaffold proteins: unexpected partners for a forgotten (cytoplasmic) task. Cell Cycle 8 (7): 1007–1013.CrossRefPubMed Casar, B., A. Pinto, and P. Crespo. 2009. ERK dimers and scaffold proteins: unexpected partners for a forgotten (cytoplasmic) task. Cell Cycle 8 (7): 1007–1013.CrossRefPubMed
34.
go back to reference Shindo, Y., K. Iwamoto, K. Mouri, K. Hibino, M. Tomita, H. Kosako, et al. 2016. Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling. Nature Communications 7: 10485.CrossRefPubMedPubMedCentral Shindo, Y., K. Iwamoto, K. Mouri, K. Hibino, M. Tomita, H. Kosako, et al. 2016. Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling. Nature Communications 7: 10485.CrossRefPubMedPubMedCentral
Metadata
Title
TLR7 Agonists Modulate the Activation of Human Conjunctival Epithelial Cells Induced by IL-1β via the ERK1/2 Signaling Pathway
Authors
Ling Wang
Shixu Li
Kaihong Cai
Yu Xiao
Lin Ye
Publication date
08-05-2023
Publisher
Springer US
Keyword
Cytokines
Published in
Inflammation / Issue 4/2023
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01818-1

Other articles of this Issue 4/2023

Inflammation 4/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine