Skip to main content
Top
Published in: Inflammation 5/2020

01-10-2020 | Original Article

Transcriptome Landscape of Intracellular Brucella ovis Surviving in RAW264.7 Macrophage Immune System

Authors: Hanwei Jiao, Bowen Li, Zonglin Zheng, Zhixiong Zhou, Wenjie Li, Guojing Gu, Juan Liu, Yichen Luo, Xuehong Shuai, Yu Zhao, Yuxuan Liu, Yidan Wang, Xinglong Wang, Xiaoyan Hu, Li Wu, Jixuan Chen, Qingzhou Huang

Published in: Inflammation | Issue 5/2020

Login to get access

Abstract

Brucella ovis infection results in genital damage and epididymitis in rams, placental inflammation and rare abortion in ewes, and neonatal mortality in lambs. However, the mechanism underlying B. ovis infection remains unclear. In the present study, we used prokaryotic transcriptome sequencing to identify the differentially expressed genes (DEGs) between wild-type B. ovis and intracellular B. ovis in RAW264.7 macrophages. Gene ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed, and quantitative reverse transcriptase PCR (qRT-PCR) was used to validate the top 10 upregulated and downregulated DEGs. The results showed that 212 genes were differentially expressed, including 68 upregulated and 144 downregulated genes, which were mainly enriched in 30 GO terms linked to biological process, cellular component, and molecular function. KEGG analysis showed that the DEGs were enriched in the hypoxia-inducible factor 1 (HIF-1) signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, beta-alanine metabolism, and quorum sensing pathway. BME_RS01160, BME_RS04270, BME_RS08185, BME_RS12880, BME_RS25875, predicted_RNA865, and predicted_RNA953 were confirmed with the transcriptome sequencing data. Hence, our findings not only reveal the intracellular parasitism of B. ovis in the macrophage immune system, but also help to understand the mechanism of chronic B. ovis infection.
Literature
1.
go back to reference Pandey, A., F. Lin, A.L. Cabello, L.F. da Costa, X. Feng, H.Q. Feng, M.Z. Zhang, T. Iwawaki, A. Rice-Ficht, T.A. Ficht, P. de Figueiredo, and Q.M. Qin. 2018. Activation of host IRE1α-dependent signaling axis contributes the intracellular parasitism of Brucella melitensis. Frontiers in Cellular and Infection Microbiology 8: 103.PubMedPubMedCentral Pandey, A., F. Lin, A.L. Cabello, L.F. da Costa, X. Feng, H.Q. Feng, M.Z. Zhang, T. Iwawaki, A. Rice-Ficht, T.A. Ficht, P. de Figueiredo, and Q.M. Qin. 2018. Activation of host IRE1α-dependent signaling axis contributes the intracellular parasitism of Brucella melitensis. Frontiers in Cellular and Infection Microbiology 8: 103.PubMedPubMedCentral
2.
go back to reference Rittig, M.G., A. Kaufmann, A. Robins, B. Shaw, H. Sprenger, D. Gemsa, V. Foulongne, B. Rouot, and J. Dornand. 2003. Smooth and rough lipopolysaccharide phenotypes of Brucella induce different intracellular trafficking and cytokine/chemokine release in human monocytes. Journal of Leukocyte Biology 74: 1045–1055.PubMed Rittig, M.G., A. Kaufmann, A. Robins, B. Shaw, H. Sprenger, D. Gemsa, V. Foulongne, B. Rouot, and J. Dornand. 2003. Smooth and rough lipopolysaccharide phenotypes of Brucella induce different intracellular trafficking and cytokine/chemokine release in human monocytes. Journal of Leukocyte Biology 74: 1045–1055.PubMed
3.
go back to reference Adams, L.G. 2002. The pathology of brucellosis reflects the outcome of the battle between the host genome and the Brucella genome. Veterinary Microbiology 90: 553–561.PubMed Adams, L.G. 2002. The pathology of brucellosis reflects the outcome of the battle between the host genome and the Brucella genome. Veterinary Microbiology 90: 553–561.PubMed
4.
go back to reference Li, S., Y. Liu, Y. Wang, H. Chen, C. Liu, and Y. Wang. 2019. Lateral flow biosensor combined with loop-mediated isothermal amplification for simple, rapid, sensitive, and reliable detection of Brucella spp. Infect Drug Resist 12: 2343–2353.PubMedPubMedCentral Li, S., Y. Liu, Y. Wang, H. Chen, C. Liu, and Y. Wang. 2019. Lateral flow biosensor combined with loop-mediated isothermal amplification for simple, rapid, sensitive, and reliable detection of Brucella spp. Infect Drug Resist 12: 2343–2353.PubMedPubMedCentral
5.
go back to reference Das, A., B. Kumar, S. Chakravarti, C. Prakash, R.P. Singh, V. Gupta, K.P. Singh, R.K. Agrawal, V.K. Chaturvedi, Abhishek, and G. Shrinet. 2018. Rapid visual isothermal nucleic acid-based detection assay of Brucella species by polymerase spiral reaction. Journal of Applied Microbiology 125: 646–654.PubMed Das, A., B. Kumar, S. Chakravarti, C. Prakash, R.P. Singh, V. Gupta, K.P. Singh, R.K. Agrawal, V.K. Chaturvedi, Abhishek, and G. Shrinet. 2018. Rapid visual isothermal nucleic acid-based detection assay of Brucella species by polymerase spiral reaction. Journal of Applied Microbiology 125: 646–654.PubMed
6.
go back to reference Lusk Pfefer, T.S., R. Timme, and J.A. Kase. 2018. Identification of Brucella genus and eight Brucella species by Luminex bead-based suspension array. Food Microbiology 70: 113–119.PubMed Lusk Pfefer, T.S., R. Timme, and J.A. Kase. 2018. Identification of Brucella genus and eight Brucella species by Luminex bead-based suspension array. Food Microbiology 70: 113–119.PubMed
7.
go back to reference Abd El-Wahab, E.W., Y.M. Hegazy, W.F. El-Tras, A. Mikheal, A.F. Kabapy, M. Abdelfatah, M. Bruce, and M.M. Eltholth. 2019. A multifaceted risk model of brucellosis at the human-animal interface in Egypt. Transboundary and Emerging Diseases 66: 2383–2401.PubMed Abd El-Wahab, E.W., Y.M. Hegazy, W.F. El-Tras, A. Mikheal, A.F. Kabapy, M. Abdelfatah, M. Bruce, and M.M. Eltholth. 2019. A multifaceted risk model of brucellosis at the human-animal interface in Egypt. Transboundary and Emerging Diseases 66: 2383–2401.PubMed
8.
go back to reference Hosein, H.I., H.M. Zaki, N.M. Safwat, A.M.S. Menshawy, S. Rouby, A. Mahrous, and B.E. Madkour. 2018. Evaluation of the General Organization of Veterinary Services control program of animal brucellosis in Egypt: An outbreak investigation of brucellosis in buffalo. Vet World 11: 748–757.PubMedPubMedCentral Hosein, H.I., H.M. Zaki, N.M. Safwat, A.M.S. Menshawy, S. Rouby, A. Mahrous, and B.E. Madkour. 2018. Evaluation of the General Organization of Veterinary Services control program of animal brucellosis in Egypt: An outbreak investigation of brucellosis in buffalo. Vet World 11: 748–757.PubMedPubMedCentral
9.
go back to reference Njeru, J., G. Wareth, F. Melzer, K. Henning, M.W. Pletz, R. Heller, and H. Neubauer. 2016. Systematic review of brucellosis in Kenya: Disease frequency in humans and animals and risk factors for human infection. BMC Public Health 16: 853.PubMedPubMedCentral Njeru, J., G. Wareth, F. Melzer, K. Henning, M.W. Pletz, R. Heller, and H. Neubauer. 2016. Systematic review of brucellosis in Kenya: Disease frequency in humans and animals and risk factors for human infection. BMC Public Health 16: 853.PubMedPubMedCentral
10.
go back to reference Perin, G., N.B. Bottari, A.D. Silva, A.M. Jaguezeski, T.M.A. Gomes, T.F. Lopes, M.R.C. Schetinger, V.M. Morsch, and A.S. Da Silva. 2019. Cholinesterase's activities of infected mice by Brucella ovis. Microbial Pathogenesis 132: 137–140.PubMed Perin, G., N.B. Bottari, A.D. Silva, A.M. Jaguezeski, T.M.A. Gomes, T.F. Lopes, M.R.C. Schetinger, V.M. Morsch, and A.S. Da Silva. 2019. Cholinesterase's activities of infected mice by Brucella ovis. Microbial Pathogenesis 132: 137–140.PubMed
11.
go back to reference Pérez-Etayo, L., M.J. de Miguel, R. Conde-Álvarez, P.M. Muñoz, M. Khames, M. Iriarte, I. Moriyón, and A. Zúñiga-Ripa. 2018. The CO2-dependence of Brucella ovis and Brucella abortus biovars is caused by defective carbonic anhydrases. Veterinary Research 49: 85.PubMedPubMedCentral Pérez-Etayo, L., M.J. de Miguel, R. Conde-Álvarez, P.M. Muñoz, M. Khames, M. Iriarte, I. Moriyón, and A. Zúñiga-Ripa. 2018. The CO2-dependence of Brucella ovis and Brucella abortus biovars is caused by defective carbonic anhydrases. Veterinary Research 49: 85.PubMedPubMedCentral
12.
go back to reference Sidhu-Muñoz, R.S., P. Sancho, and N. Vizcaíno. 2016. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties. Veterinary Microbiology 186: 59–66.PubMed Sidhu-Muñoz, R.S., P. Sancho, and N. Vizcaíno. 2016. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties. Veterinary Microbiology 186: 59–66.PubMed
13.
go back to reference Macedo, A.A., A.P. Silva, J.P. Mol, L.F. Costa, L.N. Garcia, M.S. Araújo, O.A. Martins Filho, T.A. Paixão, and R.L. Santos. 2015. The abcEDCBA-encoded ABC transporter and the virB operon-encoded type IV secretion system of Brucella ovis are critical for intracellular trafficking and survival in ovine monocyte-derived macrophages. PLoS One 10: e0138131.PubMedPubMedCentral Macedo, A.A., A.P. Silva, J.P. Mol, L.F. Costa, L.N. Garcia, M.S. Araújo, O.A. Martins Filho, T.A. Paixão, and R.L. Santos. 2015. The abcEDCBA-encoded ABC transporter and the virB operon-encoded type IV secretion system of Brucella ovis are critical for intracellular trafficking and survival in ovine monocyte-derived macrophages. PLoS One 10: e0138131.PubMedPubMedCentral
14.
go back to reference Soler-Lloréns, P., Y. Gil-Ramírez, A. Zabalza-Baranguá, M. Iriarte, R. Conde-Álvarez, A. Zúñiga-Ripa, B. San Román, M.S. Zygmunt, N. Vizcaíno, A. Cloeckaert, M.J. Grilló, I. Moriyón, and I. López-Goñi. 2014. Mutants in the lipopolysaccharide of Brucella ovis are attenuated and protect against B. ovis infection in mice. Veterinary Research 45: 72.PubMedPubMedCentral Soler-Lloréns, P., Y. Gil-Ramírez, A. Zabalza-Baranguá, M. Iriarte, R. Conde-Álvarez, A. Zúñiga-Ripa, B. San Román, M.S. Zygmunt, N. Vizcaíno, A. Cloeckaert, M.J. Grilló, I. Moriyón, and I. López-Goñi. 2014. Mutants in the lipopolysaccharide of Brucella ovis are attenuated and protect against B. ovis infection in mice. Veterinary Research 45: 72.PubMedPubMedCentral
15.
go back to reference Buccheri, M.A., E. Salvo, M. Coci, G.M. Quero, L. Zoccarato, V. Privitera, and G. Rappazzo. Investigating microbial indicators of anthropogenic marine pollution by 16S and 18S high-throughput sequencing (HTS) library analysis. 2019. FEMS Microbiology Letters. https://doi.org/10.1093/femsle/fnz179. Buccheri, M.A., E. Salvo, M. Coci, G.M. Quero, L. Zoccarato, V. Privitera, and G. Rappazzo. Investigating microbial indicators of anthropogenic marine pollution by 16S and 18S high-throughput sequencing (HTS) library analysis. 2019. FEMS Microbiology Letters. https://​doi.​org/​10.​1093/​femsle/​fnz179.
16.
go back to reference Wu, Z., F.J. Gatesoupe, Q. Zhang, X. Wang, Y. Feng, S. Wang, D. Feng, and A. Li. 2019. High-throughput sequencing reveals the gut and lung prokaryotic community profiles of the Chinese giant salamander (Andrias davidianus). Molecular Biology Reports 46: 5143–5154.PubMed Wu, Z., F.J. Gatesoupe, Q. Zhang, X. Wang, Y. Feng, S. Wang, D. Feng, and A. Li. 2019. High-throughput sequencing reveals the gut and lung prokaryotic community profiles of the Chinese giant salamander (Andrias davidianus). Molecular Biology Reports 46: 5143–5154.PubMed
17.
go back to reference Jain, C., L.M. Rodriguez-R, A.M. Phillippy, K.T. Konstantinidis, and S. Aluru. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications 9: 5114.PubMedPubMedCentral Jain, C., L.M. Rodriguez-R, A.M. Phillippy, K.T. Konstantinidis, and S. Aluru. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications 9: 5114.PubMedPubMedCentral
18.
go back to reference Numanagić, I., J.K. Bonfield, F. Hach, J. Voges, J. Ostermann, C. Alberti, M. Mattavelli, and S.C. Sahinalp. 2016. Comparison of high-throughput sequencing data compression tools. Nature Methods 13: 1005–1008.PubMed Numanagić, I., J.K. Bonfield, F. Hach, J. Voges, J. Ostermann, C. Alberti, M. Mattavelli, and S.C. Sahinalp. 2016. Comparison of high-throughput sequencing data compression tools. Nature Methods 13: 1005–1008.PubMed
19.
go back to reference Singh, A., and P. Bhatia. 2016. Automated Sanger Analysis Pipeline (ASAP): A tool for rapidly analyzing sanger sequencing data with minimum user interference. Journal of Biomolecular Techniques 27: 129–131.PubMed Singh, A., and P. Bhatia. 2016. Automated Sanger Analysis Pipeline (ASAP): A tool for rapidly analyzing sanger sequencing data with minimum user interference. Journal of Biomolecular Techniques 27: 129–131.PubMed
20.
go back to reference Albayrak, L., K. Khanipov, G. Golovko, and Y. Fofanov. 2019. Broom: Application for non-redundant storage of high throughput sequencing data. Bioinformatics 35: 143–145.PubMed Albayrak, L., K. Khanipov, G. Golovko, and Y. Fofanov. 2019. Broom: Application for non-redundant storage of high throughput sequencing data. Bioinformatics 35: 143–145.PubMed
21.
go back to reference Dodds, K.G., J.C. McEwan, R. Brauning, T.C. van Stijn, S.J. Rowe, K.M. McEwan, and S.M. Clarke. 2019. G3 (Bethesda). Exclusion and genomic relatedness methods for assignment of parentage using genotyping-by-sequencing data. 9: 3239–3247. Dodds, K.G., J.C. McEwan, R. Brauning, T.C. van Stijn, S.J. Rowe, K.M. McEwan, and S.M. Clarke. 2019. G3 (Bethesda). Exclusion and genomic relatedness methods for assignment of parentage using genotyping-by-sequencing data. 9: 3239–3247.
22.
go back to reference Sadedin, S.P., and A. Oshlack. 2019. Bazam: A rapid method for read extraction and realignment of high-throughput sequencing data. Genome Biology 20: 78.PubMedPubMedCentral Sadedin, S.P., and A. Oshlack. 2019. Bazam: A rapid method for read extraction and realignment of high-throughput sequencing data. Genome Biology 20: 78.PubMedPubMedCentral
23.
go back to reference Nietsch, R., J. Haas, A. Lai, D. Oehler, S. Mester, K.S. Frese, F. Sedaghat-Hamedani, E. Kayvanpour, A. Keller, and B. Meder. 2016. The role of quality control in targeted next-generation sequencing library preparation. Genom Ptoteom Bioinf 14: 200–206. Nietsch, R., J. Haas, A. Lai, D. Oehler, S. Mester, K.S. Frese, F. Sedaghat-Hamedani, E. Kayvanpour, A. Keller, and B. Meder. 2016. The role of quality control in targeted next-generation sequencing library preparation. Genom Ptoteom Bioinf 14: 200–206.
24.
go back to reference Escobar, A., P.I. Rodas, and C. Acuña-Castillo. 2018. Macrophage-Neisseria gonorrhoeae interactions: A better understanding of pathogen mechanisms of immunomodulation. Frontiers in Immunology 9: 3044.PubMedPubMedCentral Escobar, A., P.I. Rodas, and C. Acuña-Castillo. 2018. Macrophage-Neisseria gonorrhoeae interactions: A better understanding of pathogen mechanisms of immunomodulation. Frontiers in Immunology 9: 3044.PubMedPubMedCentral
25.
go back to reference BoseDasgupta, S., and J. Pieters. 2018. Macrophage-microbe interaction: Lessons learned from the pathogen mycobacterium tuberculosis. Seminars in Immunopathology 40: 577–591.PubMed BoseDasgupta, S., and J. Pieters. 2018. Macrophage-microbe interaction: Lessons learned from the pathogen mycobacterium tuberculosis. Seminars in Immunopathology 40: 577–591.PubMed
27.
go back to reference Hartenstein, V., and P. Martinez. 2019. Phagocytosis in cellular defense and nutrition: A food-centered approach to the evolution of macrophages. Cell and Tissue Research 377: 527–547.PubMedPubMedCentral Hartenstein, V., and P. Martinez. 2019. Phagocytosis in cellular defense and nutrition: A food-centered approach to the evolution of macrophages. Cell and Tissue Research 377: 527–547.PubMedPubMedCentral
29.
go back to reference Ma, Y., Y. Liang, N. Wang, L. Cui, Z. Chen, H. Wu, C. Zhu, Z. Wang, S. Liu, and H. Li. Avian flavivirus infection of monocytes/macrophages by extensive subversion of host antiviral innate immune responses. 2019. Journal of Virology. https://doi.org/10.1128/JVI.00978-19. Ma, Y., Y. Liang, N. Wang, L. Cui, Z. Chen, H. Wu, C. Zhu, Z. Wang, S. Liu, and H. Li. Avian flavivirus infection of monocytes/macrophages by extensive subversion of host antiviral innate immune responses. 2019. Journal of Virology. https://​doi.​org/​10.​1128/​JVI.​00978-19.
30.
go back to reference Sidhu-Muñoz, R.S., P. Sancho, and N. Vizcaíno. 2018. Evaluation of human trophoblasts and ovine testis cell lines for the study of the intracellular pathogen Brucella ovis. FEMS Microbiology Letters 365: 24. Sidhu-Muñoz, R.S., P. Sancho, and N. Vizcaíno. 2018. Evaluation of human trophoblasts and ovine testis cell lines for the study of the intracellular pathogen Brucella ovis. FEMS Microbiology Letters 365: 24.
31.
go back to reference Silva, T.M., J.P. Mol, M.G. Winter, V. Atluri, M.N. Xavier, S.F. Pires, T.A. Paixão, H.M. Andrade, R.L. Santos, and R.M. Tsolis. 2014. The predicted ABC transporter AbcEDCBA is required for type IV secretion system expression and lysosomal evasion by Brucella ovis. PLoS One 9: e114532.PubMedPubMedCentral Silva, T.M., J.P. Mol, M.G. Winter, V. Atluri, M.N. Xavier, S.F. Pires, T.A. Paixão, H.M. Andrade, R.L. Santos, and R.M. Tsolis. 2014. The predicted ABC transporter AbcEDCBA is required for type IV secretion system expression and lysosomal evasion by Brucella ovis. PLoS One 9: e114532.PubMedPubMedCentral
32.
go back to reference Silva, T.M., Paixão, T.A., Costa, E.A., Xavier, M.N., Sá, J.C., Moustacas, V.S., den Hartigh, A.B., Carvalho Neta, A.V, Oliveira, S.C., Tsolis, R., and Santos, R.L. Putative ATP-binding cassette transporter is essential for Brucella ovis pathogenesis in mice. 2011. Infection and Immunity 79: 1706–1717.PubMedPubMedCentral Silva, T.M., Paixão, T.A., Costa, E.A., Xavier, M.N., Sá, J.C., Moustacas, V.S., den Hartigh, A.B., Carvalho Neta, A.​V, Oliveira, S.C., Tsolis, R., and Santos, R.L. Putative ATP-binding cassette transporter is essential for Brucella ovis pathogenesis in mice. 2011. Infection and Immunity 79: 1706–1717.PubMedPubMedCentral
33.
go back to reference Covert, J., A.J. Mathison, L. Eskra, M. Banai, and G. Splitter. 2009. Brucella melitensis, B. neotomae and B. ovis elicit common and distinctive macrophage defense transcriptional responses. Experimental Biology and Medicine (Maywood, N.J.) 234: 1450–1467. Covert, J., A.J. Mathison, L. Eskra, M. Banai, and G. Splitter. 2009. Brucella melitensis, B. neotomae and B. ovis elicit common and distinctive macrophage defense transcriptional responses. Experimental Biology and Medicine (Maywood, N.J.) 234: 1450–1467.
34.
go back to reference Galindo, R.C., P.M. Muñoz, M.J. de Miguel, C.M. Marin, J.M. Blasco, C. Gortazar, K.M. Kocan, and J. de la Fuente. 2009. Differential expression of inflammatory and immune response genes in rams experimentally infected with a rough virulent strain of Brucella ovis. Veterinary Immunology and Immunopathology 127: 295–303.PubMed Galindo, R.C., P.M. Muñoz, M.J. de Miguel, C.M. Marin, J.M. Blasco, C. Gortazar, K.M. Kocan, and J. de la Fuente. 2009. Differential expression of inflammatory and immune response genes in rams experimentally infected with a rough virulent strain of Brucella ovis. Veterinary Immunology and Immunopathology 127: 295–303.PubMed
35.
go back to reference David, V., A. Martin, T. Isakova, C. Spaulding, L. Qi, V. Ramirez, K.B. Zumbrennen-Bullough, C.C. Sun, H.Y. Lin, J.L. Babitt, and M. Wolf. 2016. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney International 89: 135–146.PubMedPubMedCentral David, V., A. Martin, T. Isakova, C. Spaulding, L. Qi, V. Ramirez, K.B. Zumbrennen-Bullough, C.C. Sun, H.Y. Lin, J.L. Babitt, and M. Wolf. 2016. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney International 89: 135–146.PubMedPubMedCentral
36.
go back to reference Reyes, A.W., L.T. Arayan, H.L. Simborio, H.T. Hop, W. Min, H.J. Lee, D.H. Kim, H.H. Chang, and S. Kim. 2016. Dextran sulfate sodium upregulates MAPK signaling for the uptake and subsequent intracellular survival of Brucella abortus in murine macrophages. Microbial Pathogenesis 91: 68–73.PubMed Reyes, A.W., L.T. Arayan, H.L. Simborio, H.T. Hop, W. Min, H.J. Lee, D.H. Kim, H.H. Chang, and S. Kim. 2016. Dextran sulfate sodium upregulates MAPK signaling for the uptake and subsequent intracellular survival of Brucella abortus in murine macrophages. Microbial Pathogenesis 91: 68–73.PubMed
37.
go back to reference Dimitrakopoulos, O., K. Liopeta, G. Dimitracopoulos, and F. Paliogianni. 2013. Replication of Brucella melitensis inside primary human monocytes depends on mitogen activated protein kinase signaling. Microbes and Infection 15: 450–460.PubMed Dimitrakopoulos, O., K. Liopeta, G. Dimitracopoulos, and F. Paliogianni. 2013. Replication of Brucella melitensis inside primary human monocytes depends on mitogen activated protein kinase signaling. Microbes and Infection 15: 450–460.PubMed
38.
go back to reference Mika, L.A., W. Braun, E. Ciaccio, and R.J. Goodlow. 1954. The nature of the effect of alpha-alanine on population changes of Brucella. Journal of Bacteriology 68: 562–569.PubMedPubMedCentral Mika, L.A., W. Braun, E. Ciaccio, and R.J. Goodlow. 1954. The nature of the effect of alpha-alanine on population changes of Brucella. Journal of Bacteriology 68: 562–569.PubMedPubMedCentral
39.
go back to reference Altenbern, R.A., H.S. Ginoza, and D.R. Willoams. 1957. Metabolism and population changes in Brucella abortus. I. Roles of alanine and pantothenate in population changes. Journal of Bacteriology 73: 691–696.PubMedPubMedCentral Altenbern, R.A., H.S. Ginoza, and D.R. Willoams. 1957. Metabolism and population changes in Brucella abortus. I. Roles of alanine and pantothenate in population changes. Journal of Bacteriology 73: 691–696.PubMedPubMedCentral
40.
go back to reference Tomita, H., Y. Yokooji, T. Ishibashi, T. Imanaka, and H. Atomi. 2014. An archaeal glutamate decarboxylase homolog functions as an aspartate decarboxylase and is involved in β-alanine and coenzyme a biosynthesis. Journal of Bacteriology 196: 1222–1230.PubMedPubMedCentral Tomita, H., Y. Yokooji, T. Ishibashi, T. Imanaka, and H. Atomi. 2014. An archaeal glutamate decarboxylase homolog functions as an aspartate decarboxylase and is involved in β-alanine and coenzyme a biosynthesis. Journal of Bacteriology 196: 1222–1230.PubMedPubMedCentral
41.
go back to reference Yokota, M., S. Yahagi, and H. Masaki. 2018. Ethyl 2,4-dicarboethoxy pantothenate, a derivative of pantothenic acid, prevents cellular damage initiated by environmental pollutants through Nrf2 activation. Journal of Dermatological Science 92: 162–171.PubMed Yokota, M., S. Yahagi, and H. Masaki. 2018. Ethyl 2,4-dicarboethoxy pantothenate, a derivative of pantothenic acid, prevents cellular damage initiated by environmental pollutants through Nrf2 activation. Journal of Dermatological Science 92: 162–171.PubMed
42.
go back to reference Taminiau, B., M. Daykin, S. Swift, M.L. Boschiroli, A. Tibor, P. Lestrate, X. De Bolle, D. O'Callaghan, P. Williams, and J.J. Letesson. 2002. Identification of a quorum-sensing signal molecule in the facultative intracellular pathogen Brucella melitensis. Infection and Immunity 70: 3004–3011.PubMedPubMedCentral Taminiau, B., M. Daykin, S. Swift, M.L. Boschiroli, A. Tibor, P. Lestrate, X. De Bolle, D. O'Callaghan, P. Williams, and J.J. Letesson. 2002. Identification of a quorum-sensing signal molecule in the facultative intracellular pathogen Brucella melitensis. Infection and Immunity 70: 3004–3011.PubMedPubMedCentral
43.
go back to reference Delrue, R.M., C. Deschamps, S. Léonard, C. Nijskens, I. Danese, J.M. Schaus, S. Bonnot, J. Ferooz, A. Tibor, X. De Bolle, and J.J. Letesson. 2005. A quorum-sensing regulator controls expression of both the type IV secretion system and the flagellar apparatus of Brucella melitensis. Cellular Microbiology 7: 1151–1161.PubMed Delrue, R.M., C. Deschamps, S. Léonard, C. Nijskens, I. Danese, J.M. Schaus, S. Bonnot, J. Ferooz, A. Tibor, X. De Bolle, and J.J. Letesson. 2005. A quorum-sensing regulator controls expression of both the type IV secretion system and the flagellar apparatus of Brucella melitensis. Cellular Microbiology 7: 1151–1161.PubMed
45.
go back to reference Mahdizade-Ari, M., M. Pourhajibagher, and A. Bahador. 2019. Changes of microbial cell survival, metabolic activity, efflux capacity, and quorum sensing ability of Aggregatibacter actinomycetemcomitans due to antimicrobial photodynamic therapy-induced bystander effects. Photodiagnosis and Photodynamic Therapy 26: 287–294.PubMed Mahdizade-Ari, M., M. Pourhajibagher, and A. Bahador. 2019. Changes of microbial cell survival, metabolic activity, efflux capacity, and quorum sensing ability of Aggregatibacter actinomycetemcomitans due to antimicrobial photodynamic therapy-induced bystander effects. Photodiagnosis and Photodynamic Therapy 26: 287–294.PubMed
46.
go back to reference Gül, B.Y., D.Y. Imer, P.K. Park, and I. Koyuncu. 2018. Selection of quorum quenching (QQ) bacteria for membrane biofouling control: Effect of different Gram-staining QQ bacteria, Bacillus sp. T5 and Delftia sp. T6, on microbial population in membrane bioreactors. Water Science and Technology 78: 358–366.PubMed Gül, B.Y., D.Y. Imer, P.K. Park, and I. Koyuncu. 2018. Selection of quorum quenching (QQ) bacteria for membrane biofouling control: Effect of different Gram-staining QQ bacteria, Bacillus sp. T5 and Delftia sp. T6, on microbial population in membrane bioreactors. Water Science and Technology 78: 358–366.PubMed
47.
go back to reference Camele, I., H.S. Elshafie, L. Caputo, and V. De Feo. 2019. Anti-quorum sensing and antimicrobial effect of mediterranean plant essential oils against phytopathogenic bacteria. Frontiers in Microbiology 10: 2619.PubMedPubMedCentral Camele, I., H.S. Elshafie, L. Caputo, and V. De Feo. 2019. Anti-quorum sensing and antimicrobial effect of mediterranean plant essential oils against phytopathogenic bacteria. Frontiers in Microbiology 10: 2619.PubMedPubMedCentral
48.
go back to reference Theodora, N.A., V. Dominika, and D.E. Waturangi. 2019. Screening and quantification of anti-quorum sensing and antibiofilm activities of phyllosphere bacteria against biofilm forming bacteria. BMC Research Notes 12: 732.PubMedPubMedCentral Theodora, N.A., V. Dominika, and D.E. Waturangi. 2019. Screening and quantification of anti-quorum sensing and antibiofilm activities of phyllosphere bacteria against biofilm forming bacteria. BMC Research Notes 12: 732.PubMedPubMedCentral
49.
go back to reference Al-Shabib, N.A., F.M. Husain, R.A. Khan, M.S. Khan, M.Z. Alam, F.A. Ansari, S. Laeeq, M. Zubair, S.A. Shahzad, J.M. Khan, A. Alsalme, and I. Ahmad. 2019. Interference of phosphane copper (I) complexes of β-carboline with quorum sensing regulated virulence functions and biofilm in foodborne pathogenic bacteria: A first report. Saudi Journal of Biological Sciences 26: 308–316.PubMed Al-Shabib, N.A., F.M. Husain, R.A. Khan, M.S. Khan, M.Z. Alam, F.A. Ansari, S. Laeeq, M. Zubair, S.A. Shahzad, J.M. Khan, A. Alsalme, and I. Ahmad. 2019. Interference of phosphane copper (I) complexes of β-carboline with quorum sensing regulated virulence functions and biofilm in foodborne pathogenic bacteria: A first report. Saudi Journal of Biological Sciences 26: 308–316.PubMed
50.
go back to reference Uzureau, S., J. Lemaire, E. Delaive, M. Dieu, A. Gaigneaux, M. Raes, X. De Bolle, and J.J. Letesson. 2010. Global analysis of quorum sensing targets in the intracellular pathogen Brucella melitensis 16 M. Journal of Proteome Research 9: 3200–3217.PubMedPubMedCentral Uzureau, S., J. Lemaire, E. Delaive, M. Dieu, A. Gaigneaux, M. Raes, X. De Bolle, and J.J. Letesson. 2010. Global analysis of quorum sensing targets in the intracellular pathogen Brucella melitensis 16 M. Journal of Proteome Research 9: 3200–3217.PubMedPubMedCentral
Metadata
Title
Transcriptome Landscape of Intracellular Brucella ovis Surviving in RAW264.7 Macrophage Immune System
Authors
Hanwei Jiao
Bowen Li
Zonglin Zheng
Zhixiong Zhou
Wenjie Li
Guojing Gu
Juan Liu
Yichen Luo
Xuehong Shuai
Yu Zhao
Yuxuan Liu
Yidan Wang
Xinglong Wang
Xiaoyan Hu
Li Wu
Jixuan Chen
Qingzhou Huang
Publication date
01-10-2020
Publisher
Springer US
Published in
Inflammation / Issue 5/2020
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-020-01239-4

Other articles of this Issue 5/2020

Inflammation 5/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.