Skip to main content
Top
Published in: Inflammation 5/2016

01-10-2016 | ORIGINAL ARTICLE

Melatonin Alters the Mechanical and Thermal Hyperalgesia Induced by Orofacial Pain Model in Rats

Authors: Vanessa Leal Scarabelot, Liciane Fernandes Medeiros, Carla de Oliveira, Lauren Naomi Spezia Adachi, Isabel Cristina de Macedo, Stefania Giotti Cioato, Joice S. de Freitas, Andressa de Souza, Alexandre Quevedo, Wolnei Caumo, Iraci Lucena da Silva Torres

Published in: Inflammation | Issue 5/2016

Login to get access

Abstract

Melatonin is a neuroendocrine hormone that presents a wide range of physiological functions including regulating circadian rhythms and sleep, enhancing immune function, sleep improvement, and antioxidant effects. In addition, melatonin has received special attention in pain treatment since it is effective and presents few adverse effects. In this study, we evaluated the effect of acute dose of melatonin upon hyperalgesia induced by complete Freund’s adjuvant in a chronic orofacial pain model in Sprague–Dawley rats. Nociceptive behavior was assessed by facial Von Frey and the hot plate tests at baseline and thereafter 30, 60, and 120 min, 24 h, and 7 days after melatonin treatment. We demonstrated that acute melatonin administration alters mechanical and thermal hyperalgesia induced by an orofacial pain model (TMD), highlighting that the melatonin effect upon mechanical hyperalgesia remained until 7 days after its administration. Besides, we observed specific tissue profiles of neuroimmunomodulators linked to pain conditions and/or melatonin effect (brain-derived neurotrophic factor, nerve growth factor, and interleukins 6 and 10) in the brainstem levels, and its effects were state-dependent of the baseline of these animals.
Literature
1.
go back to reference Ingawalé, S., and T. Goswami. 2009. Temporomandibular joint: disorders, treatments, and biomechanics. Annals of Biomedical Engineering 37(5): 976–996.CrossRefPubMed Ingawalé, S., and T. Goswami. 2009. Temporomandibular joint: disorders, treatments, and biomechanics. Annals of Biomedical Engineering 37(5): 976–996.CrossRefPubMed
2.
go back to reference Detamore, M.S., and K.A. Athanasiou. 2003. Structure and function of the temporomandibular joint disc: implications for tissue engineering. Journal of Oral Maxillofacial Surgery 61(4): 494–506.CrossRefPubMed Detamore, M.S., and K.A. Athanasiou. 2003. Structure and function of the temporomandibular joint disc: implications for tissue engineering. Journal of Oral Maxillofacial Surgery 61(4): 494–506.CrossRefPubMed
3.
go back to reference Smith, M.T., E.M. Wickwire, E.G. Grace, R.R. Edwards, L.F. Buenaver, S. Peterson, B. Klick, and J.A. Haythornthwaite. 2009. Sleep disorders and their association with laboratory pain sensitivity in temporomandibular joint disorder. Sleep 32(6): 779–790.PubMedPubMedCentral Smith, M.T., E.M. Wickwire, E.G. Grace, R.R. Edwards, L.F. Buenaver, S. Peterson, B. Klick, and J.A. Haythornthwaite. 2009. Sleep disorders and their association with laboratory pain sensitivity in temporomandibular joint disorder. Sleep 32(6): 779–790.PubMedPubMedCentral
4.
go back to reference Dubrovsky, B., K.G. Raphael, G.J. Lavigne, M.N. Janal, D.A. Sirois, P.E. Wigren, L.V. Nemelivsky, J.J. Klausner, and A.C. Krieger. 2014. Polysomnographic investigation of sleep and respiratory parameters in women with temporomandibular pain disorders. Journal of Clinical Sleep Medicine 10(2): 195–201.PubMedPubMedCentral Dubrovsky, B., K.G. Raphael, G.J. Lavigne, M.N. Janal, D.A. Sirois, P.E. Wigren, L.V. Nemelivsky, J.J. Klausner, and A.C. Krieger. 2014. Polysomnographic investigation of sleep and respiratory parameters in women with temporomandibular pain disorders. Journal of Clinical Sleep Medicine 10(2): 195–201.PubMedPubMedCentral
5.
go back to reference Cunali, P.A., F.R. Almeida, C.D. Santos, N.Y. Valdrighi, L.S. Nascimento, C. Dal’Fabbro, S. Tufik, and L.R. Bittencourt. 2009. Prevalence of temporomandibular disorders in obstructive sleep apnea patients referred for oral appliance therapy. Journal of Orofacial Pain 23(4): 339–344.PubMed Cunali, P.A., F.R. Almeida, C.D. Santos, N.Y. Valdrighi, L.S. Nascimento, C. Dal’Fabbro, S. Tufik, and L.R. Bittencourt. 2009. Prevalence of temporomandibular disorders in obstructive sleep apnea patients referred for oral appliance therapy. Journal of Orofacial Pain 23(4): 339–344.PubMed
6.
go back to reference Kellesarian, S.V., A.A. Al-Kheraif, F. Vohra, A. Ghanem, H. Malmstrom, G.E. Romanos, and F. Javed. 2016. Cytokine profile in the synovial fluid of patients with temporomandibular joint disorders: a systematic review. Cytokine 77: 98–106.CrossRefPubMed Kellesarian, S.V., A.A. Al-Kheraif, F. Vohra, A. Ghanem, H. Malmstrom, G.E. Romanos, and F. Javed. 2016. Cytokine profile in the synovial fluid of patients with temporomandibular joint disorders: a systematic review. Cytokine 77: 98–106.CrossRefPubMed
7.
go back to reference Anderson, L.C., and R.D. Rao. 2001. Interleukin-6 and nerve growth factor levels in peripheral nerve and brainstem after trigeminal nerve injury in the rat. Archives of Oral Biology 46(7): 633–640.CrossRefPubMed Anderson, L.C., and R.D. Rao. 2001. Interleukin-6 and nerve growth factor levels in peripheral nerve and brainstem after trigeminal nerve injury in the rat. Archives of Oral Biology 46(7): 633–640.CrossRefPubMed
8.
go back to reference Shimizu, K., W. Guo, H. Wang, S. Zou, S.C. La Graize, K. Iwata, F. Wei, R. Dubner, and K. Ren. 2009. Differential involvement of trigeminal transition zone and laminated subnucleuscaudalis in orofacial deep and cutaneous hyperalgesia: the effects of interleukin-10 and glial inhibitors. Molecular Pain 21: 5–75. Shimizu, K., W. Guo, H. Wang, S. Zou, S.C. La Graize, K. Iwata, F. Wei, R. Dubner, and K. Ren. 2009. Differential involvement of trigeminal transition zone and laminated subnucleuscaudalis in orofacial deep and cutaneous hyperalgesia: the effects of interleukin-10 and glial inhibitors. Molecular Pain 21: 5–75.
9.
go back to reference Peimani, A., and F. Sardary. 2014. Effect of low level laser on healing of temporomandibular joint osteoarthritis in rats. Journal of Dentistry (Tehran, Iran) 11(3): 319–327. Peimani, A., and F. Sardary. 2014. Effect of low level laser on healing of temporomandibular joint osteoarthritis in rats. Journal of Dentistry (Tehran, Iran) 11(3): 319–327.
10.
go back to reference Laste, G., I.C. Macedo, J.R. Rozisky, F.R. Silva, W. Caumo, and I.L.S. Torres. 2012. Melatonin administration reduces inflammatory pain in rats. Journal of Pain Research 5: 359–362.PubMedPubMedCentral Laste, G., I.C. Macedo, J.R. Rozisky, F.R. Silva, W. Caumo, and I.L.S. Torres. 2012. Melatonin administration reduces inflammatory pain in rats. Journal of Pain Research 5: 359–362.PubMedPubMedCentral
11.
go back to reference Laste, G., J. Ripoll Rozisky, W. Caumo, and I. Lucena da Silva Torres. 2015. Short- but not long-term melatonin administration reduces central levels of brain-derived neurotrophic factor in rats with inflammatory pain. Neuroimmunomodulation 22(6): 358–64.CrossRefPubMed Laste, G., J. Ripoll Rozisky, W. Caumo, and I. Lucena da Silva Torres. 2015. Short- but not long-term melatonin administration reduces central levels of brain-derived neurotrophic factor in rats with inflammatory pain. Neuroimmunomodulation 22(6): 358–64.CrossRefPubMed
12.
go back to reference Zhang, L., H.Q. Zhang, X.Y. Liang, H.F. Zhang, T. Zhang, and F.E. Liu. 2013. Melatonin ameliorates cognitive impairment induced by sleep deprivation in rats: role of oxidative stress, BDNF and CaMKII. Behavioural Brain Research 256: 72–81.CrossRefPubMed Zhang, L., H.Q. Zhang, X.Y. Liang, H.F. Zhang, T. Zhang, and F.E. Liu. 2013. Melatonin ameliorates cognitive impairment induced by sleep deprivation in rats: role of oxidative stress, BDNF and CaMKII. Behavioural Brain Research 256: 72–81.CrossRefPubMed
13.
go back to reference Reiter, R.J., S.D. Paredes, L.C. Manchester, and D.X. Tan. 2009. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Critical Reviews in Biochemistry and Molecular Biology 44(4): 175–200.CrossRefPubMed Reiter, R.J., S.D. Paredes, L.C. Manchester, and D.X. Tan. 2009. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Critical Reviews in Biochemistry and Molecular Biology 44(4): 175–200.CrossRefPubMed
14.
go back to reference Huang, F., H. He, W. Fan, Y. Liu, H. Zhou, and B. Cheng. 2013. Orofacial inflammatory pain affects the expression of MT1 and NADPH-d in rat caudal spinal trigeminal nucleus and trigeminal ganglion. Neural Regeneration Research 8(32): 2991–3002.PubMedPubMedCentral Huang, F., H. He, W. Fan, Y. Liu, H. Zhou, and B. Cheng. 2013. Orofacial inflammatory pain affects the expression of MT1 and NADPH-d in rat caudal spinal trigeminal nucleus and trigeminal ganglion. Neural Regeneration Research 8(32): 2991–3002.PubMedPubMedCentral
15.
go back to reference Lopez-Canul, M., E. Palazzo, S. Dominguez-Lopez, L. Luongo, B. Lacoste, S. Comal, D. Angeloni, F. Fraschini, S. Boccella, G. Spadoni, A. Bedini, G. Tarzia, S. Maione, V. Granados-Soto, and G. Gobbi. 2015. Selective melatonin MT2 receptor ligands relieve neuropathic pain through modulation of brainstem descending antinociceptive pathways. Pain 156: 305–317.CrossRefPubMed Lopez-Canul, M., E. Palazzo, S. Dominguez-Lopez, L. Luongo, B. Lacoste, S. Comal, D. Angeloni, F. Fraschini, S. Boccella, G. Spadoni, A. Bedini, G. Tarzia, S. Maione, V. Granados-Soto, and G. Gobbi. 2015. Selective melatonin MT2 receptor ligands relieve neuropathic pain through modulation of brainstem descending antinociceptive pathways. Pain 156: 305–317.CrossRefPubMed
16.
go back to reference Noseda, R., A. Hernández, L. Valladares, M. Mondaca, C. Laurido, and R. Soto-Moyano. 2004. Melatonin-induced inhibition of spinal cord synaptic potentiation in rats is MT2 receptor-dependent. Neuroscience Letters 360(1–2): 41–44.CrossRefPubMed Noseda, R., A. Hernández, L. Valladares, M. Mondaca, C. Laurido, and R. Soto-Moyano. 2004. Melatonin-induced inhibition of spinal cord synaptic potentiation in rats is MT2 receptor-dependent. Neuroscience Letters 360(1–2): 41–44.CrossRefPubMed
17.
go back to reference Vidor, L.P., I.L.S. Torres, I.C.C. de Souza, F. Fregni, and C. Caumo. 2013. Analgesic and sedative effects of melatonin in temporomandibular disorders: a double-blind, randomized, parallel-group, placebo-controlled study. Journal of Pain Symptom Management 46(3): 422–432.CrossRefPubMed Vidor, L.P., I.L.S. Torres, I.C.C. de Souza, F. Fregni, and C. Caumo. 2013. Analgesic and sedative effects of melatonin in temporomandibular disorders: a double-blind, randomized, parallel-group, placebo-controlled study. Journal of Pain Symptom Management 46(3): 422–432.CrossRefPubMed
18.
go back to reference Li, J.G., J.J. Lin, Z.L. Wang, W.K. Cai, P.N. Wang, Q. Jia, A.S. Zhang, G.Y. Wu, G.X. Zhu, and L.X. Ni. 2015. Melatonin attenuates inflammation of acute pulpitis subjected to dental pulp injury. American Journal of Translational Research 7(1): 66–78.PubMedPubMedCentral Li, J.G., J.J. Lin, Z.L. Wang, W.K. Cai, P.N. Wang, Q. Jia, A.S. Zhang, G.Y. Wu, G.X. Zhu, and L.X. Ni. 2015. Melatonin attenuates inflammation of acute pulpitis subjected to dental pulp injury. American Journal of Translational Research 7(1): 66–78.PubMedPubMedCentral
19.
go back to reference Cardinali, D.P., A.P. García, P. Cano, and A.I. Esquifino. 2004. Melatonin role in experimental arthritis. Current Drug Targets Immune, Endocrine and Metabol Disorders 4(1): 1–10.CrossRef Cardinali, D.P., A.P. García, P. Cano, and A.I. Esquifino. 2004. Melatonin role in experimental arthritis. Current Drug Targets Immune, Endocrine and Metabol Disorders 4(1): 1–10.CrossRef
20.
go back to reference Zhao, J., A. Seereeram, M.A. Nassar, A. Levato, S. Pezet, G. Hathaway, C. Morenilla-Palao, C. Stirling, M. Fitzgerald, S.B. McMahon, M. Rios, and J.N. Wood. 2006. Nociceptor-derived brain-derived neurotrophic factor regulates acute and inflammatory but not neuropathic pain. Molecular and Cellular Neuroscience 31: 539–548.CrossRefPubMed Zhao, J., A. Seereeram, M.A. Nassar, A. Levato, S. Pezet, G. Hathaway, C. Morenilla-Palao, C. Stirling, M. Fitzgerald, S.B. McMahon, M. Rios, and J.N. Wood. 2006. Nociceptor-derived brain-derived neurotrophic factor regulates acute and inflammatory but not neuropathic pain. Molecular and Cellular Neuroscience 31: 539–548.CrossRefPubMed
21.
go back to reference Chang, D.S., E. Hsu, D.G. Hottinger, and S.P. Cohen. 2016. Anti-nerve growth factor in pain management: current evidence. Journal of Pain Research 2016(9): 373–383. Chang, D.S., E. Hsu, D.G. Hottinger, and S.P. Cohen. 2016. Anti-nerve growth factor in pain management: current evidence. Journal of Pain Research 2016(9): 373–383.
22.
go back to reference Cuzzocrea, S., B. Zingarelli, E. Gilad, P. Hake, A.L. Salzman, and C. Szabó. 1997. Protective effect of melatonin in carrageenan-induced models of local inflammation: relationship to its inhibitory effect on nitric oxide production and its peroxynitrite scavenging activity. Journal of Pineal Research 23(2): 106–116.CrossRefPubMed Cuzzocrea, S., B. Zingarelli, E. Gilad, P. Hake, A.L. Salzman, and C. Szabó. 1997. Protective effect of melatonin in carrageenan-induced models of local inflammation: relationship to its inhibitory effect on nitric oxide production and its peroxynitrite scavenging activity. Journal of Pineal Research 23(2): 106–116.CrossRefPubMed
23.
go back to reference Esposito, E., I. Paterniti, E. Mazzon, P. Bramanti, and S. Cuzzocrea. 2010. Melatonin reduces hyperalgesia associated with inflammation. Journal of Pineal Research 49: 321–331.CrossRefPubMed Esposito, E., I. Paterniti, E. Mazzon, P. Bramanti, and S. Cuzzocrea. 2010. Melatonin reduces hyperalgesia associated with inflammation. Journal of Pineal Research 49: 321–331.CrossRefPubMed
24.
go back to reference Ambriz-Tututi, M., H.I. Rocha-González, S.L. Cruz, and V. Granados-Soto. 2009. Melatonin: a hormone that modulates pain. Life Science 84(15–16): 489–498.CrossRef Ambriz-Tututi, M., H.I. Rocha-González, S.L. Cruz, and V. Granados-Soto. 2009. Melatonin: a hormone that modulates pain. Life Science 84(15–16): 489–498.CrossRef
25.
go back to reference Weaver, D.R., S.A. Rivkees, and S.M. Reppert. 1989. Localization and characterization of melatonin receptors in rodent brain by in vitro autoradiography. Journal of Neurosciences 9(7): 2581–2590. Weaver, D.R., S.A. Rivkees, and S.M. Reppert. 1989. Localization and characterization of melatonin receptors in rodent brain by in vitro autoradiography. Journal of Neurosciences 9(7): 2581–2590.
26.
go back to reference Williams, L.M., L.T. Hannah, M.H. Hastings, and E.S. Maywood. 1995. Melatonin receptors in the rat brain and pituitary. Journal of Pineal Research 19(4): 173–177.CrossRefPubMed Williams, L.M., L.T. Hannah, M.H. Hastings, and E.S. Maywood. 1995. Melatonin receptors in the rat brain and pituitary. Journal of Pineal Research 19(4): 173–177.CrossRefPubMed
27.
go back to reference Ambriz-Tututi, M., and V. Granados-Soto. 2007. Oral and spinal melatonin reduces tactile allodynia in rats via activation of MT2 and opioid receptors. Pain 132(3): 273–280.CrossRefPubMed Ambriz-Tututi, M., and V. Granados-Soto. 2007. Oral and spinal melatonin reduces tactile allodynia in rats via activation of MT2 and opioid receptors. Pain 132(3): 273–280.CrossRefPubMed
28.
go back to reference Vanecek, J. 1998. Cellular mechanisms of melatonin action. Physiological Reviews 78(3): 687–721.PubMed Vanecek, J. 1998. Cellular mechanisms of melatonin action. Physiological Reviews 78(3): 687–721.PubMed
29.
go back to reference Arreola-Espino, R., H. Urquiza-Marín, M. Ambriz-Tututi, C.I. Araiza-Saldaña, N.L. Caram-Salas, H.I. Rocha-González, T. Mixcoatl-Zecuatl, and V. Granados-Soto. 2007. Melatonin reduces formalin-induced nociception and tactile allodynia in diabetic rats. European Journal of Pharmacology 577: 203–210.CrossRefPubMed Arreola-Espino, R., H. Urquiza-Marín, M. Ambriz-Tututi, C.I. Araiza-Saldaña, N.L. Caram-Salas, H.I. Rocha-González, T. Mixcoatl-Zecuatl, and V. Granados-Soto. 2007. Melatonin reduces formalin-induced nociception and tactile allodynia in diabetic rats. European Journal of Pharmacology 577: 203–210.CrossRefPubMed
30.
go back to reference Kilkenny, C., W.J. Browne, I.C. Cuthill, M. Emerson, and D.G. Altman. 2010. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biology 8(6): 1–6.CrossRef Kilkenny, C., W.J. Browne, I.C. Cuthill, M. Emerson, and D.G. Altman. 2010. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biology 8(6): 1–6.CrossRef
31.
go back to reference Yamasaki, Y., K. Ren, M. Shimada, and K. Iwata. 2008. Modulation of paratrigeminal nociceptive neurons following temporomandibular joint inflammation in rats. Experimental Neurology 214(2): 209–218.CrossRef Yamasaki, Y., K. Ren, M. Shimada, and K. Iwata. 2008. Modulation of paratrigeminal nociceptive neurons following temporomandibular joint inflammation in rats. Experimental Neurology 214(2): 209–218.CrossRef
32.
go back to reference Bereiter, D.A., K. Okamoto, and D.F. Bereiter. 2005. Effect of persistent monoarthritis of the temporomandibular joint region on acute mustard oil-induced excitation of trigeminal subnucleus caudalis neurons in male and female rats. Pain 117: 58–67.CrossRefPubMed Bereiter, D.A., K. Okamoto, and D.F. Bereiter. 2005. Effect of persistent monoarthritis of the temporomandibular joint region on acute mustard oil-induced excitation of trigeminal subnucleus caudalis neurons in male and female rats. Pain 117: 58–67.CrossRefPubMed
33.
go back to reference Okamoto, K., A. Kimura, T. Donishi, H. Imbe, K. Goda, K. Kawanishi, Y. Tamai, and E. Senba. 2006. Persistent monoarthritis of the temporomandibular joint region enhances nocifensive behavior and lumbar spinal Fos expression after noxious stimulation to the hindpaw in rats. Experimental Brain Research 170(3): 358–367.CrossRefPubMed Okamoto, K., A. Kimura, T. Donishi, H. Imbe, K. Goda, K. Kawanishi, Y. Tamai, and E. Senba. 2006. Persistent monoarthritis of the temporomandibular joint region enhances nocifensive behavior and lumbar spinal Fos expression after noxious stimulation to the hindpaw in rats. Experimental Brain Research 170(3): 358–367.CrossRefPubMed
34.
go back to reference Laste, G., L. Vidor, I.C. de Macedo, J.R. Rozisky, L. Medeiros, A. de Souza, L. Meurer, I.C. de Souza, I.L. Torres, and W. Caumo. 2013. Melatonin treatment entrains the rest-activity circadian rhythm in rats with chronic inflammation. Chronobiology International 30(9): 1077–1088.CrossRefPubMed Laste, G., L. Vidor, I.C. de Macedo, J.R. Rozisky, L. Medeiros, A. de Souza, L. Meurer, I.C. de Souza, I.L. Torres, and W. Caumo. 2013. Melatonin treatment entrains the rest-activity circadian rhythm in rats with chronic inflammation. Chronobiology International 30(9): 1077–1088.CrossRefPubMed
35.
go back to reference Wilhelmsen, M., I. Amirian, R.J. Reiter, J. Rosenberg, and I. Gögenur. 2011. Analgesic effects of melatonin: a review of current evidence from experimental and clinical studies. Journal of Pineal Research 51(3): 270–277.CrossRefPubMed Wilhelmsen, M., I. Amirian, R.J. Reiter, J. Rosenberg, and I. Gögenur. 2011. Analgesic effects of melatonin: a review of current evidence from experimental and clinical studies. Journal of Pineal Research 51(3): 270–277.CrossRefPubMed
36.
go back to reference Ossipov, M.H., C.J. Kovelowski, M.L. Nichols, V.J. Hruby, and F. Porreca. 1995. Characterization of supra spinal antinociceptive actions of opioid delta agonists in the rat. Pain 62(3): 287–293.CrossRefPubMed Ossipov, M.H., C.J. Kovelowski, M.L. Nichols, V.J. Hruby, and F. Porreca. 1995. Characterization of supra spinal antinociceptive actions of opioid delta agonists in the rat. Pain 62(3): 287–293.CrossRefPubMed
37.
go back to reference Spezia Adachi, L.N.S., W. Caumo, G. Laste, L.F. Medeiros, J.R. Rozisky, A. Souza, F. Fregni, and I.L.S. Torres. 2012. Reversal of chronic stress-induced pain by transcranial direct current stimulation (tDCS) in an animal model. Brain Research 1489: 17–26.CrossRefPubMed Spezia Adachi, L.N.S., W. Caumo, G. Laste, L.F. Medeiros, J.R. Rozisky, A. Souza, F. Fregni, and I.L.S. Torres. 2012. Reversal of chronic stress-induced pain by transcranial direct current stimulation (tDCS) in an animal model. Brain Research 1489: 17–26.CrossRefPubMed
38.
go back to reference Caggiula, R., L.H. Epstein, K.A. Perkins, and S. Saylor. 1995. Different methods of assessing nicotine-induced antinociception may engage different neural mechanisms. Psychopharmacology 122(3): 301–306.CrossRefPubMed Caggiula, R., L.H. Epstein, K.A. Perkins, and S. Saylor. 1995. Different methods of assessing nicotine-induced antinociception may engage different neural mechanisms. Psychopharmacology 122(3): 301–306.CrossRefPubMed
39.
go back to reference Rubinstein, M., J.S. Mogil, M. Japón, E.C. Chan, R.G. Allen, and M.J. Low. 1996. Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis. Proceedings of the National Academy of Sciences 93(9): 3995–4000.CrossRef Rubinstein, M., J.S. Mogil, M. Japón, E.C. Chan, R.G. Allen, and M.J. Low. 1996. Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis. Proceedings of the National Academy of Sciences 93(9): 3995–4000.CrossRef
40.
go back to reference Netto, C.A., B. Siegfried, and I. Izquierdo. 1987. Analgesia induced by exposure to a novel environment in rats: effect of concurrent and post-training stressful stimulation. Behavioral and Neural Biology 48(2): 304–309.CrossRefPubMed Netto, C.A., B. Siegfried, and I. Izquierdo. 1987. Analgesia induced by exposure to a novel environment in rats: effect of concurrent and post-training stressful stimulation. Behavioral and Neural Biology 48(2): 304–309.CrossRefPubMed
41.
go back to reference Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.CrossRefPubMed Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.CrossRefPubMed
42.
go back to reference Kim, S.H., C.N. Son, H.J. Lee, H.C. Cho, S.W. Jung, J.A. Hur, W.K. Baek, H.R. Jung, and J.H. Hong. 2015. Infliximab partially alleviates the bite force reduction in a mouse model of temporomandibular joint pain. Journal of Korean Medical Science 30(5): 552–558.CrossRefPubMedPubMedCentral Kim, S.H., C.N. Son, H.J. Lee, H.C. Cho, S.W. Jung, J.A. Hur, W.K. Baek, H.R. Jung, and J.H. Hong. 2015. Infliximab partially alleviates the bite force reduction in a mouse model of temporomandibular joint pain. Journal of Korean Medical Science 30(5): 552–558.CrossRefPubMedPubMedCentral
43.
go back to reference Maleki, N., A. Garjani, H. Nazemiyeh, N. Nilfouroushan, A.T. Eftekhar Sadat, Z. Allameh, and N. Hasannia. 2001. Potent anti-inflammatory activities of hydroalcoholic extract from aerial parts of Stachys inflata on rats. Ethnopharmacology 75: 213–218.CrossRefPubMed Maleki, N., A. Garjani, H. Nazemiyeh, N. Nilfouroushan, A.T. Eftekhar Sadat, Z. Allameh, and N. Hasannia. 2001. Potent anti-inflammatory activities of hydroalcoholic extract from aerial parts of Stachys inflata on rats. Ethnopharmacology 75: 213–218.CrossRefPubMed
44.
go back to reference Zaringhalam, J., H. Manaheji, N. Mghsoodi, B. Farokhi, and V. Mirzaiee. 2008. Spinal mu-opioid receptor expression and hyperalgesia with dexamethasone in chronic adjuvant arthritis rats. Clinical and Experimental Pharmacology and Physiology 35: 1309–1315.CrossRefPubMed Zaringhalam, J., H. Manaheji, N. Mghsoodi, B. Farokhi, and V. Mirzaiee. 2008. Spinal mu-opioid receptor expression and hyperalgesia with dexamethasone in chronic adjuvant arthritis rats. Clinical and Experimental Pharmacology and Physiology 35: 1309–1315.CrossRefPubMed
45.
go back to reference Spears, R., L.A. Dees, M. Sapozhnikov, L.L. Bellinger, and B. Hutchins. 2005. Temporal changes in inflammatory mediator concentrations in an adjuvant model of temporomandibular joint inflammation. Journal of Orofacial Pain 19: 34–40.PubMed Spears, R., L.A. Dees, M. Sapozhnikov, L.L. Bellinger, and B. Hutchins. 2005. Temporal changes in inflammatory mediator concentrations in an adjuvant model of temporomandibular joint inflammation. Journal of Orofacial Pain 19: 34–40.PubMed
46.
go back to reference Woolfe, G., and A.D. MacDonald. 1944. The evaluation of the analgesic action of pethidine hydrochloride. Journal of Pharmacology and Experimental Therapeutics 80: 300–307. Woolfe, G., and A.D. MacDonald. 1944. The evaluation of the analgesic action of pethidine hydrochloride. Journal of Pharmacology and Experimental Therapeutics 80: 300–307.
47.
go back to reference Le Bars, D., M. Gozariu, and S.W. Cadden. 2001. Animal models of nociception. Pharmacol Reviews 53(4): 597–652. Le Bars, D., M. Gozariu, and S.W. Cadden. 2001. Animal models of nociception. Pharmacol Reviews 53(4): 597–652.
48.
go back to reference Millan, M.J. 1999. The induction of pain: an integrative review. Progress in Neurobiology 57(1): 1–164.CrossRefPubMed Millan, M.J. 1999. The induction of pain: an integrative review. Progress in Neurobiology 57(1): 1–164.CrossRefPubMed
49.
go back to reference Ma, Q.P., and C.J. Woolf. 1996. Progressive tactile hypersensitivity: an inflammation-induced incremental increase in the excitability of the spinal cord. Pain 67(1): 97–106.CrossRefPubMed Ma, Q.P., and C.J. Woolf. 1996. Progressive tactile hypersensitivity: an inflammation-induced incremental increase in the excitability of the spinal cord. Pain 67(1): 97–106.CrossRefPubMed
50.
go back to reference Neumann, S., T.P. Doubell, T. Leslie, and C. Wolff. 1996. Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons. Nature 384: 360–364.CrossRefPubMed Neumann, S., T.P. Doubell, T. Leslie, and C. Wolff. 1996. Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons. Nature 384: 360–364.CrossRefPubMed
51.
go back to reference Srinivasan, V., S.R. Pandi-Perumal, D.W. Spence, A. Moscovitch, I. Trakht, G.M. Brown, and D.P. Cardinali. 2010. Potential use of melatonergic drugs in analgesia: mechanisms of action. Brain Research Bulletin 81: 362–371.CrossRefPubMed Srinivasan, V., S.R. Pandi-Perumal, D.W. Spence, A. Moscovitch, I. Trakht, G.M. Brown, and D.P. Cardinali. 2010. Potential use of melatonergic drugs in analgesia: mechanisms of action. Brain Research Bulletin 81: 362–371.CrossRefPubMed
52.
go back to reference Ambriz-Tututi, M., and V. Granados-Soto. 2007. Oral and spinal melatonin reduces tactile allodynia in rats via activation of MT2 and opioid receptors. Pain 132(3): 273–280.CrossRefPubMed Ambriz-Tututi, M., and V. Granados-Soto. 2007. Oral and spinal melatonin reduces tactile allodynia in rats via activation of MT2 and opioid receptors. Pain 132(3): 273–280.CrossRefPubMed
53.
go back to reference Yu, C.X., C.B. Zhu, S.F. Xu, X.D. Cao, and G.C. Wu. 2000. The analgesic effects of peripheral and central administration of melatonin in rats. European Journal of Pharmacology 403: 49–53.CrossRefPubMed Yu, C.X., C.B. Zhu, S.F. Xu, X.D. Cao, and G.C. Wu. 2000. The analgesic effects of peripheral and central administration of melatonin in rats. European Journal of Pharmacology 403: 49–53.CrossRefPubMed
54.
go back to reference Morgan, P.J., P. Barret, E. Howell, and R. Helliwell. 1994. Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochemistry International 24: 101–146.CrossRefPubMed Morgan, P.J., P. Barret, E. Howell, and R. Helliwell. 1994. Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochemistry International 24: 101–146.CrossRefPubMed
55.
go back to reference Srinivasan, V., R. Zakaria, H. Jeet Singh, and D. Acuna-Castroviejo. 2012. Melatonin and its agonists in pain modulation and its clinical application. Archives Italiennes de Biologie 150(4): 274–289.PubMed Srinivasan, V., R. Zakaria, H. Jeet Singh, and D. Acuna-Castroviejo. 2012. Melatonin and its agonists in pain modulation and its clinical application. Archives Italiennes de Biologie 150(4): 274–289.PubMed
56.
go back to reference Wang, S., L. Zhang, G. Lim, B. Sung, Y. Tian, C.W. Chou, H. Hernstadt, G. Rusanescu, Y. Ma, and J.A. Mao. 2009. Combined effect of dextromethorphan and melatonin on neuropathic pain behavior in rats. Brain Research 1288: 42–49.CrossRefPubMedPubMedCentral Wang, S., L. Zhang, G. Lim, B. Sung, Y. Tian, C.W. Chou, H. Hernstadt, G. Rusanescu, Y. Ma, and J.A. Mao. 2009. Combined effect of dextromethorphan and melatonin on neuropathic pain behavior in rats. Brain Research 1288: 42–49.CrossRefPubMedPubMedCentral
57.
go back to reference Merighi, A., C. Salio, A. Ghirri, L. Lossi, F. Ferrini, C. Betelli, and R. Bardoni. 2008. BDNF as a pain modulator. Progress in Neurobiology 85: 297–317.CrossRefPubMed Merighi, A., C. Salio, A. Ghirri, L. Lossi, F. Ferrini, C. Betelli, and R. Bardoni. 2008. BDNF as a pain modulator. Progress in Neurobiology 85: 297–317.CrossRefPubMed
58.
go back to reference Tao, W., Q. Chen, W. Zhou, Y. Wang, L. Wang, and Z. Zhang. 2014. Persistent inflammation-induced up-regulation of brain-derived neurotrophic factor (BDNF) promotes synaptic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 subunits in descending pain modulatory circuits. The Journal of Biolical Chemistry 289(32): 22196–22204.CrossRef Tao, W., Q. Chen, W. Zhou, Y. Wang, L. Wang, and Z. Zhang. 2014. Persistent inflammation-induced up-regulation of brain-derived neurotrophic factor (BDNF) promotes synaptic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 subunits in descending pain modulatory circuits. The Journal of Biolical Chemistry 289(32): 22196–22204.CrossRef
59.
go back to reference Caldeira, M.V., C.V. Melo, D.B. Pereira, R.F. Carvalho, A.L. Carvalho, and C.B. Duarte. 2007. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Molecular and Cellular Neuroscience 35(2): 208–219.CrossRefPubMed Caldeira, M.V., C.V. Melo, D.B. Pereira, R.F. Carvalho, A.L. Carvalho, and C.B. Duarte. 2007. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Molecular and Cellular Neuroscience 35(2): 208–219.CrossRefPubMed
60.
go back to reference Filho, P.R., R. Vercelino, S.G. Cioato, L.F. Medeiros, C. Oliveira, V.L. Scarabelot, A. Souza, J.R. Rozisky, A.S. Quevedo, L.N. Adachi, P.R. Sanches, F. Fregni, W. Caumo, and I.L. Torres. 2015. Transcranial direct current stimulation (tDCS) reverts behavioral alterations and brainstem BDNF level increase induced by neuropathic pain model: long-lasting effect. Progress in Neuro-psychopharmacol & Biological Psychiatry 64: 44–51.CrossRef Filho, P.R., R. Vercelino, S.G. Cioato, L.F. Medeiros, C. Oliveira, V.L. Scarabelot, A. Souza, J.R. Rozisky, A.S. Quevedo, L.N. Adachi, P.R. Sanches, F. Fregni, W. Caumo, and I.L. Torres. 2015. Transcranial direct current stimulation (tDCS) reverts behavioral alterations and brainstem BDNF level increase induced by neuropathic pain model: long-lasting effect. Progress in Neuro-psychopharmacol & Biological Psychiatry 64: 44–51.CrossRef
61.
go back to reference Spezia Adachi, L.N.S., A. Quevedo, A. Souza, V.L. Scarabelot, J.R. Rozisky, C. Oliveira, P. Marques, L.F. Medeiros, F. Fregni, W. Caumo, and I.L.S. Torres. 2015. Exogenously induced brain activation regulates neuronal activity by top-down modulation: conceptualized model for electrical brain stimulation. Experimental Brain Research 233(5): 1377–1389.CrossRefPubMed Spezia Adachi, L.N.S., A. Quevedo, A. Souza, V.L. Scarabelot, J.R. Rozisky, C. Oliveira, P. Marques, L.F. Medeiros, F. Fregni, W. Caumo, and I.L.S. Torres. 2015. Exogenously induced brain activation regulates neuronal activity by top-down modulation: conceptualized model for electrical brain stimulation. Experimental Brain Research 233(5): 1377–1389.CrossRefPubMed
62.
go back to reference Raivio, N., E. Tiraboschi, S.T. Saarikoski, E. Castrén, and K. Kiianmaa. 2012. Brain-derived neurotrophic factor expression after acute administration of ethanol. European Journal of Pharmacology 687(1–3): 9–13.CrossRefPubMed Raivio, N., E. Tiraboschi, S.T. Saarikoski, E. Castrén, and K. Kiianmaa. 2012. Brain-derived neurotrophic factor expression after acute administration of ethanol. European Journal of Pharmacology 687(1–3): 9–13.CrossRefPubMed
63.
go back to reference Kumar, S., P. Porcu, D.F. Werner, D.B. Matthews, J.L. Diaz-Granados, S. Helfand, and A.L. Morrow. 2009. The role of GABA(A) receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology (Berl) 205: 529–564.CrossRef Kumar, S., P. Porcu, D.F. Werner, D.B. Matthews, J.L. Diaz-Granados, S. Helfand, and A.L. Morrow. 2009. The role of GABA(A) receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology (Berl) 205: 529–564.CrossRef
64.
go back to reference Jing, Y.Y., J.Y. Wang, X.L. Li, Z.H. Wang, L. Pei, M.M. Pan, X.P. Dong, G.X. Fan, and Y.K. Yuan. 2009. Nerve growth factor of red nucleus involvement in pain induced by spared nerve injury of the rat sciatic nerve. Neurochemical Research 34(9): 1612–1618.CrossRefPubMed Jing, Y.Y., J.Y. Wang, X.L. Li, Z.H. Wang, L. Pei, M.M. Pan, X.P. Dong, G.X. Fan, and Y.K. Yuan. 2009. Nerve growth factor of red nucleus involvement in pain induced by spared nerve injury of the rat sciatic nerve. Neurochemical Research 34(9): 1612–1618.CrossRefPubMed
65.
go back to reference Pezet, S., B. Onténiente, G. Grannec, and B. Calvino. 1999. Chronic pain is associated with increased TrkA immunoreactivity in spinoreticular neurons. The Journal of Neuroscience 19(13): 5482–5492.PubMed Pezet, S., B. Onténiente, G. Grannec, and B. Calvino. 1999. Chronic pain is associated with increased TrkA immunoreactivity in spinoreticular neurons. The Journal of Neuroscience 19(13): 5482–5492.PubMed
66.
go back to reference Wang, Z.Y., T. Miki, K.Y. Lee, T. Yokoyama, T. Kusaka, K. Sumitani, K. Warita, Y. Matsumoto, T. Yakura, N. Hosomi, K. Ameno, K.S. Bedi, and Y. Takeuchi. 2010. Short-term exposure to ethanol causes a differential response between nerve growth factor and brain-derived neurotrophic factor ligand/receptor systems in the mouse cerebellum. Neuroscience 165(2): 485–491.CrossRefPubMed Wang, Z.Y., T. Miki, K.Y. Lee, T. Yokoyama, T. Kusaka, K. Sumitani, K. Warita, Y. Matsumoto, T. Yakura, N. Hosomi, K. Ameno, K.S. Bedi, and Y. Takeuchi. 2010. Short-term exposure to ethanol causes a differential response between nerve growth factor and brain-derived neurotrophic factor ligand/receptor systems in the mouse cerebellum. Neuroscience 165(2): 485–491.CrossRefPubMed
67.
go back to reference Coiro, V., and P.P. Vescovi. 1998. Alcoholism abolishes the effects of melatonin on growth hormone secretion in humans. Neuropeptides 32(3): 211–214.CrossRefPubMed Coiro, V., and P.P. Vescovi. 1998. Alcoholism abolishes the effects of melatonin on growth hormone secretion in humans. Neuropeptides 32(3): 211–214.CrossRefPubMed
68.
go back to reference Campos, M.I.G., P.S.F. Campos, and S.R.P. Line. 2006. Inflammatory cytokines activity in temporomandibular joint disorders: a review of literature. Brazilian Journal of Oral Science 5(18): 1054–1062. Campos, M.I.G., P.S.F. Campos, and S.R.P. Line. 2006. Inflammatory cytokines activity in temporomandibular joint disorders: a review of literature. Brazilian Journal of Oral Science 5(18): 1054–1062.
69.
go back to reference Heffner, K.L., C.R. France, Z. Trost, H.M. Ng, and W.R. Pigeon. 2011. Chronic low back pain, sleep disturbance, and interleukin-6. The Clinical Journal of Pain 27(1): 35–41.CrossRefPubMedPubMedCentral Heffner, K.L., C.R. France, Z. Trost, H.M. Ng, and W.R. Pigeon. 2011. Chronic low back pain, sleep disturbance, and interleukin-6. The Clinical Journal of Pain 27(1): 35–41.CrossRefPubMedPubMedCentral
70.
go back to reference Ouyang, W., S. Rutz, N.K. Crellin, P.A. Valdez, and S.G. Hymowitz. 2011. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annual Review of Immunology 29: 71–109.CrossRefPubMed Ouyang, W., S. Rutz, N.K. Crellin, P.A. Valdez, and S.G. Hymowitz. 2011. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annual Review of Immunology 29: 71–109.CrossRefPubMed
71.
go back to reference Schunck, R.V., I.L. Torres, G. Laste, A. de Souza, I.C. Macedo, M.T. Valle, J.L. Salomón, S. Moreira, J. Kuo, M.D. Arbo, E. Dallegrave, and M.B. Leal. 2015. Protracted alcohol abstinence induces analgesia in rats: possible relationships with BDNF and interleukin-10. Pharmacology, Biochemestry, and Behavior 135: 64–69.CrossRef Schunck, R.V., I.L. Torres, G. Laste, A. de Souza, I.C. Macedo, M.T. Valle, J.L. Salomón, S. Moreira, J. Kuo, M.D. Arbo, E. Dallegrave, and M.B. Leal. 2015. Protracted alcohol abstinence induces analgesia in rats: possible relationships with BDNF and interleukin-10. Pharmacology, Biochemestry, and Behavior 135: 64–69.CrossRef
72.
go back to reference Nascimento, G.C., and C.R.A. Leite-Panissi. 2014. Time-dependent analysis of nociception and anxiety-like behavior in rats submitted to persistent inflammation of the temporomandibular joint. Physiology & Behavior 125: 1–7.CrossRef Nascimento, G.C., and C.R.A. Leite-Panissi. 2014. Time-dependent analysis of nociception and anxiety-like behavior in rats submitted to persistent inflammation of the temporomandibular joint. Physiology & Behavior 125: 1–7.CrossRef
Metadata
Title
Melatonin Alters the Mechanical and Thermal Hyperalgesia Induced by Orofacial Pain Model in Rats
Authors
Vanessa Leal Scarabelot
Liciane Fernandes Medeiros
Carla de Oliveira
Lauren Naomi Spezia Adachi
Isabel Cristina de Macedo
Stefania Giotti Cioato
Joice S. de Freitas
Andressa de Souza
Alexandre Quevedo
Wolnei Caumo
Iraci Lucena da Silva Torres
Publication date
01-10-2016
Publisher
Springer US
Published in
Inflammation / Issue 5/2016
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0399-y

Other articles of this Issue 5/2016

Inflammation 5/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.