Skip to main content
Top
Published in: Inflammation 3-4/2007

01-08-2007

Anti-Inflammation Role for Mesenchymal Stem Cells Transplantation in Myocardial Infarction

Authors: Jun Guo, Guo-sheng Lin, Cui-yu Bao, Zhi-min Hu, Ming-yan Hu

Published in: Inflammation | Issue 3-4/2007

Login to get access

Abstract

The aim of the present study was to investigate the role of anti-inflammation for MSCs transplantation in rat models of myocardial infarction. Rats with AMI induced by occlusion of the left coronary artery were randomized to MSCs transplantation group, MI group and sham operated group. The effects of MSCs transplantation on cardiac inflammation and left ventricular remodeling in non-infarcted zone were observed after 4 weeks of MI. We found that MSC transplantation (1) decreased protein production and gene expression of inflammation cytokines TNF-α, IL-1β and IL-6, (2) inhibited deposition of type I and III collagen, as well as gene and protein expression of MMP-1 and TIMP-1, (3) attenuated LV cavitary dilation and transmural infarct thinning, thus prevent myocardial remodeling after myocardial infarction, and (4) increased EF, FS, LVESP and dp/dtmax (P < 0.01), decreased LVDd, LVEDV, LVEDP (P < 0.05). Anti-inflammation role for MSCs transplantation might partly account for the cardiac protective effect in ischemic heart disease.
Literature
1.
go back to reference Li, R. K., D. A. Mickle, R. D. Weisel, M. K. Mohabeer, J. Zhang, V. Rao, et al. 1997. Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation 96(9 Suppl):II-179–186; discussion 186–187. Li, R. K., D. A. Mickle, R. D. Weisel, M. K. Mohabeer, J. Zhang, V. Rao, et al. 1997. Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation 96(9 Suppl):II-179–186; discussion 186–187.
2.
go back to reference Scorsin, M., A. Hagege, J. T. Vilquin, M. Fiszman, F. Marotte, J. L. Samuel, et al. 2000. Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J. Thorac. Cardiovasc. Surg. 119:1169–1175.PubMedCrossRef Scorsin, M., A. Hagege, J. T. Vilquin, M. Fiszman, F. Marotte, J. L. Samuel, et al. 2000. Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J. Thorac. Cardiovasc. Surg. 119:1169–1175.PubMedCrossRef
3.
go back to reference Min, J. Y., Y. Yang, K. L. Converso, L. Liu, Q. Huang, and J. P. Morgan, et al. 2002. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol. 92:288–296.PubMedCrossRef Min, J. Y., Y. Yang, K. L. Converso, L. Liu, Q. Huang, and J. P. Morgan, et al. 2002. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol. 92:288–296.PubMedCrossRef
4.
go back to reference Min, J. Y., Y. Yang, M. F. Sullivan, Q. Ke, K. L. Converso, Y. Chen, et al. 2003. Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J. Thorac. Cardiovasc. Surg. 125:361–369.PubMedCrossRef Min, J. Y., Y. Yang, M. F. Sullivan, Q. Ke, K. L. Converso, Y. Chen, et al. 2003. Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J. Thorac. Cardiovasc. Surg. 125:361–369.PubMedCrossRef
5.
go back to reference Taylor, D. A., B. Z. Atkins, P. Hungspreugs, T. R. Jones, M. C. Reedy, K. A. Hutcheson, et al. 1998. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med. 4:929–933.PubMedCrossRef Taylor, D. A., B. Z. Atkins, P. Hungspreugs, T. R. Jones, M. C. Reedy, K. A. Hutcheson, et al. 1998. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med. 4:929–933.PubMedCrossRef
6.
go back to reference Menasche, P., A. A. Hagege, M. Scorsin, B. Pouzet, M. Desnos, D. Duboc, et al. 2001. Myoblast transplantation for heart failure. Lancet 357:279–280.PubMedCrossRef Menasche, P., A. A. Hagege, M. Scorsin, B. Pouzet, M. Desnos, D. Duboc, et al. 2001. Myoblast transplantation for heart failure. Lancet 357:279–280.PubMedCrossRef
7.
go back to reference Jiang, Y., B. N. Jahagirdar, R. L. Reinhardt, R. E. Schwartz, C. D. Keene, X. R. Ortiz-Gonzalez, et al. 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49.PubMedCrossRef Jiang, Y., B. N. Jahagirdar, R. L. Reinhardt, R. E. Schwartz, C. D. Keene, X. R. Ortiz-Gonzalez, et al. 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49.PubMedCrossRef
8.
go back to reference Pittenger, M. F., and B. J. Martin. 2004. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. 95:9.PubMedCrossRef Pittenger, M. F., and B. J. Martin. 2004. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. 95:9.PubMedCrossRef
9.
go back to reference Barry, F. P., and J. M. Murphy. 2004. Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell. Biol. 36:568.PubMedCrossRef Barry, F. P., and J. M. Murphy. 2004. Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell. Biol. 36:568.PubMedCrossRef
10.
go back to reference Toma, C., M. F. Pittenger, K. S. Cahill, B. J. Byrne, and P. D. Kessler. 2002. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98.PubMedCrossRef Toma, C., M. F. Pittenger, K. S. Cahill, B. J. Byrne, and P. D. Kessler. 2002. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98.PubMedCrossRef
11.
go back to reference Shake, J. G., P. J. Gruber, W. A. Baumgartner, G. Senechal, J. Meyers, J. M. Redmond, et al. 2002. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann. Thorac. Surg. 73:1919–1926.PubMedCrossRef Shake, J. G., P. J. Gruber, W. A. Baumgartner, G. Senechal, J. Meyers, J. M. Redmond, et al. 2002. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann. Thorac. Surg. 73:1919–1926.PubMedCrossRef
12.
go back to reference Mangi, A. A., N. Noiseux, D. Kong, H. He, M. Rezvani, and J. S. Ingwall, et al. 2003. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med. 9:1201–1995.CrossRef Mangi, A. A., N. Noiseux, D. Kong, H. He, M. Rezvani, and J. S. Ingwall, et al. 2003. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med. 9:1201–1995.CrossRef
13.
go back to reference Makino, S., K. Fukuda, S. Miyoshi, F. Konishi, H. Kodama, J. Pan, et al. 1999. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103:697–705.PubMedCrossRef Makino, S., K. Fukuda, S. Miyoshi, F. Konishi, H. Kodama, J. Pan, et al. 1999. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103:697–705.PubMedCrossRef
14.
go back to reference Toma, C., M. F. Pittenger, K. S. Cahill, B. J. Byrne, and P. D. Kessler. 2002. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98.PubMedCrossRef Toma, C., M. F. Pittenger, K. S. Cahill, B. J. Byrne, and P. D. Kessler. 2002. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98.PubMedCrossRef
15.
go back to reference Uemura, R., M. Xu, N. Ahmad, and M. Ashraf. 2006. Bone Marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ. Res. 98:1414–1421.PubMedCrossRef Uemura, R., M. Xu, N. Ahmad, and M. Ashraf. 2006. Bone Marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ. Res. 98:1414–1421.PubMedCrossRef
16.
go back to reference Hou, M., K.-M. Yang, H. Zhang, W.-Q. Zhu, F.-J. Duan, H. Wang, et al. 2007. Transplantation of mesenchymal stem cells from human bone marrow improves damaged heart function in rats. Int. J. Cardiol. 115:220–228.PubMedCrossRef Hou, M., K.-M. Yang, H. Zhang, W.-Q. Zhu, F.-J. Duan, H. Wang, et al. 2007. Transplantation of mesenchymal stem cells from human bone marrow improves damaged heart function in rats. Int. J. Cardiol. 115:220–228.PubMedCrossRef
17.
go back to reference Nygren, J. M., S. Jovinge, M. Breitbach, P. Sawen, W. Roll, J. Hescheler, et al. 2004. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10:494–501.PubMedCrossRef Nygren, J. M., S. Jovinge, M. Breitbach, P. Sawen, W. Roll, J. Hescheler, et al. 2004. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10:494–501.PubMedCrossRef
18.
go back to reference Zhang, S., D. Wang, Z. Estrov, S. Raj, J. T. Willerson, and E. T. Yeh. 2004. Both cell fusion and transdifferentiation account for the transformation of human peripheral blood CD34-positive cells into cardiomyocytes in vivo. Circulation 110:3803–3807.PubMedCrossRef Zhang, S., D. Wang, Z. Estrov, S. Raj, J. T. Willerson, and E. T. Yeh. 2004. Both cell fusion and transdifferentiation account for the transformation of human peripheral blood CD34-positive cells into cardiomyocytes in vivo. Circulation 110:3803–3807.PubMedCrossRef
19.
go back to reference Andrade, J., J. T. Lam, M. Zamora, C. Huang, D. Franco, N. Sevilla, et al. 2005. Predominant fusion of bone marrow-derived cardiomyocytes. Cardiovasc. Res. 68:387–393.PubMedCrossRef Andrade, J., J. T. Lam, M. Zamora, C. Huang, D. Franco, N. Sevilla, et al. 2005. Predominant fusion of bone marrow-derived cardiomyocytes. Cardiovasc. Res. 68:387–393.PubMedCrossRef
20.
go back to reference Ohnishi, S., B. Yanagawa, K. Tanaka, Y. Miyahara, H. Obata, M. Kataoka, et al. 2007. Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. J. Mol. Cell Cardiol. 42:88–97.PubMedCrossRef Ohnishi, S., B. Yanagawa, K. Tanaka, Y. Miyahara, H. Obata, M. Kataoka, et al. 2007. Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. J. Mol. Cell Cardiol. 42:88–97.PubMedCrossRef
21.
go back to reference DiNicola, M., C. Carlo-Stella, M. Magni, M. Milanesi, P. D. Longoni, P. Matteucci, et al. 2002. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843.CrossRef DiNicola, M., C. Carlo-Stella, M. Magni, M. Milanesi, P. D. Longoni, P. Matteucci, et al. 2002. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843.CrossRef
22.
go back to reference Tse, W. T., J. D. Pendleton, W. M. Beyer, M. C. Egalka, and E. C. Guinan. 2003. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–397.PubMedCrossRef Tse, W. T., J. D. Pendleton, W. M. Beyer, M. C. Egalka, and E. C. Guinan. 2003. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–397.PubMedCrossRef
23.
go back to reference Ono, K., A. Matsumori, T. Shioi, Y. Furukawa, S. Sasayama. 1998. Cytokine gene expression after myocardial infarction in rat hearts. Possible implication in left ventricular remodeling. Circulation 98:149–156.PubMed Ono, K., A. Matsumori, T. Shioi, Y. Furukawa, S. Sasayama. 1998. Cytokine gene expression after myocardial infarction in rat hearts. Possible implication in left ventricular remodeling. Circulation 98:149–156.PubMed
24.
go back to reference Sugano, M., K. Tsuchida, T. Hata, and N. Makino. 2004. In vivo transfer of soluble TNF-α receptor 1 gene improves cardiac function and reduces infarct size after myocardial infarction in rats. FASEB J. 18:911–913.PubMed Sugano, M., K. Tsuchida, T. Hata, and N. Makino. 2004. In vivo transfer of soluble TNF-α receptor 1 gene improves cardiac function and reduces infarct size after myocardial infarction in rats. FASEB J. 18:911–913.PubMed
25.
go back to reference Berry, M. F., J. Woo, T. J. Pirolli, L. T. Bish, M. A. Moise, J. Burdick, et al. 2004. Administration of tumor necrosis factor inhibitor at the time of myocardial infarction attenuates subsequent ventricular remodeling. J. Heart Lung Transplant. 23:1061–1068.PubMedCrossRef Berry, M. F., J. Woo, T. J. Pirolli, L. T. Bish, M. A. Moise, J. Burdick, et al. 2004. Administration of tumor necrosis factor inhibitor at the time of myocardial infarction attenuates subsequent ventricular remodeling. J. Heart Lung Transplant. 23:1061–1068.PubMedCrossRef
26.
go back to reference Siwik, D. A., D. Chang, and W. S. Colucci. 2000. Interleukin-1beta and tumor necrosis factor alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ. Res. 86:1259–1265.PubMed Siwik, D. A., D. Chang, and W. S. Colucci. 2000. Interleukin-1beta and tumor necrosis factor alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ. Res. 86:1259–1265.PubMed
27.
go back to reference Peterson, J. T., H. Li, L. Dillon, J. W. Bryant. 2000. Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovasc. Res. 46:307–315.PubMedCrossRef Peterson, J. T., H. Li, L. Dillon, J. W. Bryant. 2000. Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovasc. Res. 46:307–315.PubMedCrossRef
28.
go back to reference Lutgens, E., M. J. Daemen, E. D. de Muinck, J. Debets, P. Leenders, and J. F. Smits. 1999. Chronic myocardial infarction in the mouse: cardiac structural and functional changes. Cardiovasc. Res. 41:586–593.PubMedCrossRef Lutgens, E., M. J. Daemen, E. D. de Muinck, J. Debets, P. Leenders, and J. F. Smits. 1999. Chronic myocardial infarction in the mouse: cardiac structural and functional changes. Cardiovasc. Res. 41:586–593.PubMedCrossRef
29.
go back to reference Van Kerckhoven, R., E. A. Kalkman, P. R. Saxena, and R. G. Schoemaker. 2000. Altered cardiac collagen and associated changes in diastolic function of infarcted rat hearts. Cardiovasc. Res. 46:316–323.PubMedCrossRef Van Kerckhoven, R., E. A. Kalkman, P. R. Saxena, and R. G. Schoemaker. 2000. Altered cardiac collagen and associated changes in diastolic function of infarcted rat hearts. Cardiovasc. Res. 46:316–323.PubMedCrossRef
30.
go back to reference Xu, X., Z. Xu, Y. Xu, and G. Cui. 2005. Selective down-regulation of extracellular matrix gene expression by bone marrow derived stem cell transplantation into infarcted myocardium. Circ. J. 69:1275–1283.PubMedCrossRef Xu, X., Z. Xu, Y. Xu, and G. Cui. 2005. Selective down-regulation of extracellular matrix gene expression by bone marrow derived stem cell transplantation into infarcted myocardium. Circ. J. 69:1275–1283.PubMedCrossRef
31.
go back to reference Jugdutt, B. I. 2003. Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 108:1043–1395.CrossRef Jugdutt, B. I. 2003. Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 108:1043–1395.CrossRef
Metadata
Title
Anti-Inflammation Role for Mesenchymal Stem Cells Transplantation in Myocardial Infarction
Authors
Jun Guo
Guo-sheng Lin
Cui-yu Bao
Zhi-min Hu
Ming-yan Hu
Publication date
01-08-2007
Published in
Inflammation / Issue 3-4/2007
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-007-9025-3

Other articles of this Issue 3-4/2007

Inflammation 3-4/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.