Skip to main content
Top
Published in: Heart Failure Reviews 6/2023

Open Access 05-10-2023 | Myocardial Infarction

The role and medical prospects of long non-coding RNAs in cardiovascular disease

Authors: Najung Kim, Woo-Young Chung, Je-Yoel Cho

Published in: Heart Failure Reviews | Issue 6/2023

Login to get access

Abstract

Cardiovascular disease (CVD) has reached epidemic proportions and is a leading cause of death worldwide. One of the long-standing goals of scientists is to repair heart tissue damaged by various forms of CVD such as cardiac hypertrophy, dilated cardiomyopathy, myocardial infarction, heart fibrosis, and genetic and developmental heart defects such as heart valve deformities. Damaged or defective heart tissue has limited regenerative capacity and results in a loss of functioning myocardium. Advances in transcriptomic profiling technology have revealed that long noncoding RNA (lncRNA) is transcribed from what was once considered “junk DNA.” It has since been discovered that lncRNAs play a critical role in the pathogenesis of various CVDs and in myocardial regeneration. This review will explore how lncRNAs impact various forms of CVD as well as those involved in cardiomyocyte regeneration. Further, we discuss the potential of lncRNAs as a therapeutic modality for treating CVD.
Literature
1.
go back to reference Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al (2001) The sequence of the human genome. Science 291:1304–1351PubMedCrossRef Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al (2001) The sequence of the human genome. Science 291:1304–1351PubMedCrossRef
2.
go back to reference Sequencing HG (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945CrossRef Sequencing HG (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945CrossRef
3.
4.
go back to reference Ling H, Vincent K, Pichler M, Fodde R, Berindan-Neagoe I, Slack FJ et al (2015) Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene 34:5003–5011PubMedPubMedCentralCrossRef Ling H, Vincent K, Pichler M, Fodde R, Berindan-Neagoe I, Slack FJ et al (2015) Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene 34:5003–5011PubMedPubMedCentralCrossRef
5.
go back to reference Lee H, Zhang Z, Krause HM (2019) Long noncoding RNAs and repetitive elements: junk or intimate evolutionary partners? Trends Genet 35:892–902PubMedCrossRef Lee H, Zhang Z, Krause HM (2019) Long noncoding RNAs and repetitive elements: junk or intimate evolutionary partners? Trends Genet 35:892–902PubMedCrossRef
6.
go back to reference Uszczynska-Ratajczak B, Lagarde J, Frankish A, Guigó R, Johnson R (2018) Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet 19:535–548PubMedPubMedCentralCrossRef Uszczynska-Ratajczak B, Lagarde J, Frankish A, Guigó R, Johnson R (2018) Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet 19:535–548PubMedPubMedCentralCrossRef
7.
go back to reference Statello L, Guo C-J, Chen L-L, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22:96–118PubMedCrossRef Statello L, Guo C-J, Chen L-L, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22:96–118PubMedCrossRef
8.
go back to reference Gao N, Li Y, Li J, Gao Z, Yang Z, Li Y et al (2020) Long non-coding RNAs: the regulatory mechanisms, research strategies, and future directions in cancers. Front Oncol 10:598817PubMedPubMedCentralCrossRef Gao N, Li Y, Li J, Gao Z, Yang Z, Li Y et al (2020) Long non-coding RNAs: the regulatory mechanisms, research strategies, and future directions in cancers. Front Oncol 10:598817PubMedPubMedCentralCrossRef
9.
go back to reference Gao L, Zhao Y, Ma X, Zhang L (2021) Integrated analysis of lncRNA–miRNA–mRNA ceRNA network and the potential prognosis indicators in sarcomas. BMC Med Genomics 14:1–11CrossRef Gao L, Zhao Y, Ma X, Zhang L (2021) Integrated analysis of lncRNA–miRNA–mRNA ceRNA network and the potential prognosis indicators in sarcomas. BMC Med Genomics 14:1–11CrossRef
10.
go back to reference de Goede OM, Nachun DC, Ferraro NM, Gloudemans MJ, Rao AS, Smail C et al (2021) Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease. Cell 184:2633–2648. e19 de Goede OM, Nachun DC, Ferraro NM, Gloudemans MJ, Rao AS, Smail C et al (2021) Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease. Cell 184:2633–2648. e19
11.
go back to reference Organization WH (2019) Global action plan for the prevention and control of NCDs 2013–2020. 2013. Geneva: WHO Organization WH (2019) Global action plan for the prevention and control of NCDs 2013–2020. 2013. Geneva: WHO
12.
go back to reference Cheng Y, Mou L, Li Z (2022) Trends in adherence to recommended physical activity and its association with cardiovascular risk factors in US adults with cardiovascular disease: a cross-sectional study. BMC Cardiovasc Disord 22:1–7CrossRef Cheng Y, Mou L, Li Z (2022) Trends in adherence to recommended physical activity and its association with cardiovascular risk factors in US adults with cardiovascular disease: a cross-sectional study. BMC Cardiovasc Disord 22:1–7CrossRef
14.
go back to reference Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS et al (2022) Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation. 145:e153–e639PubMedCrossRef Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS et al (2022) Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation. 145:e153–e639PubMedCrossRef
15.
go back to reference Lu L, Liu M, Sun R, Zheng Y, Zhang P (2015) Myocardial infarction: symptoms and treatments. Cell Biochem Biophys 72:865–867PubMedCrossRef Lu L, Liu M, Sun R, Zheng Y, Zhang P (2015) Myocardial infarction: symptoms and treatments. Cell Biochem Biophys 72:865–867PubMedCrossRef
16.
go back to reference Ojha N, Dhamoon AS (2021) Myocardial infarction. StatPearls [Internet]: StatPearls Publishing Ojha N, Dhamoon AS (2021) Myocardial infarction. StatPearls [Internet]: StatPearls Publishing
18.
go back to reference Millett ER, Peters SA, Woodward M (2018) Sex differences in risk factors for myocardial infarction: cohort study of UK Biobank participants. BMJ 363:3–6 Millett ER, Peters SA, Woodward M (2018) Sex differences in risk factors for myocardial infarction: cohort study of UK Biobank participants. BMJ 363:3–6
19.
go back to reference Albrektsen G, Heuch I, Løchen M-L, Thelle DS, Wilsgaard T, Njølstad I et al (2016) Lifelong gender gap in risk of incident myocardial infarction: the Tromsø study. JAMA Intern Med 176:1673–1679PubMedCrossRef Albrektsen G, Heuch I, Løchen M-L, Thelle DS, Wilsgaard T, Njølstad I et al (2016) Lifelong gender gap in risk of incident myocardial infarction: the Tromsø study. JAMA Intern Med 176:1673–1679PubMedCrossRef
20.
go back to reference Li M, Han Y, Chen Y, Li B, Chen G, Chen X et al (2021) LncRNA Snhg1-driven self-reinforcing regulatory network promoted cardiac regeneration and repair after myocardial infarction. Theranostics 11:9397PubMedPubMedCentralCrossRef Li M, Han Y, Chen Y, Li B, Chen G, Chen X et al (2021) LncRNA Snhg1-driven self-reinforcing regulatory network promoted cardiac regeneration and repair after myocardial infarction. Theranostics 11:9397PubMedPubMedCentralCrossRef
21.
go back to reference Li L, Wang J, Zhang H (2018) LncRNA-CARl in a rat model of myocardial infarction. Eur Rev Med Pharmacol Sci 22:4332–4340PubMed Li L, Wang J, Zhang H (2018) LncRNA-CARl in a rat model of myocardial infarction. Eur Rev Med Pharmacol Sci 22:4332–4340PubMed
22.
go back to reference Wang K, Long B, Zhou L-Y, Liu F, Zhou Q-Y, Liu C-Y et al (2014) CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun 5:1–13 Wang K, Long B, Zhou L-Y, Liu F, Zhou Q-Y, Liu C-Y et al (2014) CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun 5:1–13
23.
go back to reference Mo Y, Wu H, Zheng X, Xu L, Liu L, Liu Z (2021) LncRNA CHRF aggravates myocardial ischemia/reperfusion injury by enhancing autophagy via modulation of the miR-182-5p/ATG7 pathway. J Biochem Mol Toxicol 35:e22709PubMedCrossRef Mo Y, Wu H, Zheng X, Xu L, Liu L, Liu Z (2021) LncRNA CHRF aggravates myocardial ischemia/reperfusion injury by enhancing autophagy via modulation of the miR-182-5p/ATG7 pathway. J Biochem Mol Toxicol 35:e22709PubMedCrossRef
24.
go back to reference Niu X, Pu S, Ling C, Xu J, Wang J, Sun S et al (2020) lncRNA Oip5-as1 attenuates myocardial ischaemia/reperfusion injury by sponging miR-29a to activate the SIRT1/AMPK/PGC1α pathway. Cell Prolif 53:e12818PubMedPubMedCentralCrossRef Niu X, Pu S, Ling C, Xu J, Wang J, Sun S et al (2020) lncRNA Oip5-as1 attenuates myocardial ischaemia/reperfusion injury by sponging miR-29a to activate the SIRT1/AMPK/PGC1α pathway. Cell Prolif 53:e12818PubMedPubMedCentralCrossRef
25.
go back to reference Gao L, Liu Y, Guo S, Yao R, Wu L, Xiao L et al (2017) Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cell Physiol Biochem 44:1497–1508PubMedCrossRef Gao L, Liu Y, Guo S, Yao R, Wu L, Xiao L et al (2017) Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cell Physiol Biochem 44:1497–1508PubMedCrossRef
26.
go back to reference Yao J, Ma R, Wang C, Zhao G (2022) LncRNA-HOTAIR inhibits H9c2 apoptosis after acute myocardial infarction via miR-206/FN1 axis. Biochem Genet 1–12 Yao J, Ma R, Wang C, Zhao G (2022) LncRNA-HOTAIR inhibits H9c2 apoptosis after acute myocardial infarction via miR-206/FN1 axis. Biochem Genet 1–12
27.
go back to reference Hinderer S, Schenke-Layland K (2019) Cardiac fibrosis–a short review of causes and therapeutic strategies. Adv Drug Deliv Rev 146:77–82PubMedCrossRef Hinderer S, Schenke-Layland K (2019) Cardiac fibrosis–a short review of causes and therapeutic strategies. Adv Drug Deliv Rev 146:77–82PubMedCrossRef
28.
go back to reference Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Kardiologia Polska (Polish Heart Journal) 74:1037–1147PubMedCrossRef Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Kardiologia Polska (Polish Heart Journal) 74:1037–1147PubMedCrossRef
29.
go back to reference Matsusaka H, Ide T, Matsushima S, Ikeuchi M, Kubota T, Sunagawa K et al (2006) Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload. Hypertension 47:711–717PubMedCrossRef Matsusaka H, Ide T, Matsushima S, Ikeuchi M, Kubota T, Sunagawa K et al (2006) Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload. Hypertension 47:711–717PubMedCrossRef
30.
go back to reference Piccoli M-T, Gupta SK, Viereck J, Foinquinos A, Samolovac S, Kramer FL et al (2017) Inhibition of the cardiac fibroblast–enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ Res 121:575–583PubMedCrossRef Piccoli M-T, Gupta SK, Viereck J, Foinquinos A, Samolovac S, Kramer FL et al (2017) Inhibition of the cardiac fibroblast–enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ Res 121:575–583PubMedCrossRef
31.
go back to reference Micheletti R, Plaisance I, Abraham BJ, Sarre A, Ting C-C, Alexanian M et al (2017) The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci Transl Med 9:eaai9118 Micheletti R, Plaisance I, Abraham BJ, Sarre A, Ting C-C, Alexanian M et al (2017) The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci Transl Med 9:eaai9118
32.
go back to reference Huang S, Zhang L, Song J, Wang Z, Huang X, Guo Z et al (2019) Long noncoding RNA MALAT1 mediates cardiac fibrosis in experimental postinfarct myocardium mice model. J Cell Physiol 234:2997–3006PubMedCrossRef Huang S, Zhang L, Song J, Wang Z, Huang X, Guo Z et al (2019) Long noncoding RNA MALAT1 mediates cardiac fibrosis in experimental postinfarct myocardium mice model. J Cell Physiol 234:2997–3006PubMedCrossRef
33.
go back to reference Qu X, Du Y, Shu Y, Gao M, Sun F, Luo S et al (2017) MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci Rep 7:1–11 Qu X, Du Y, Shu Y, Gao M, Sun F, Luo S et al (2017) MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci Rep 7:1–11
34.
go back to reference Brieler J, Breeden MA, Tucker J (2017) Cardiomyopathy: an overview. Am Fam Physician 96:640–646PubMed Brieler J, Breeden MA, Tucker J (2017) Cardiomyopathy: an overview. Am Fam Physician 96:640–646PubMed
35.
go back to reference Maron BJ, Desai MY, Nishimura RA, Spirito P, Rakowski H, Towbin JA et al (2022) Management of hypertrophic cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol 79:390–414PubMedCrossRef Maron BJ, Desai MY, Nishimura RA, Spirito P, Rakowski H, Towbin JA et al (2022) Management of hypertrophic cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol 79:390–414PubMedCrossRef
36.
go back to reference Han P, Li W, Lin C-H, Yang J, Shang C, Nurnberg ST et al (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514:102–106PubMedPubMedCentralCrossRef Han P, Li W, Lin C-H, Yang J, Shang C, Nurnberg ST et al (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514:102–106PubMedPubMedCentralCrossRef
37.
go back to reference Zhang J, Gao C, Meng M, Tang H (2016) Long noncoding RNA MHRT protects cardiomyocytes against H2O2-induced apoptosis. Biomol Ther 24:19CrossRef Zhang J, Gao C, Meng M, Tang H (2016) Long noncoding RNA MHRT protects cardiomyocytes against H2O2-induced apoptosis. Biomol Ther 24:19CrossRef
38.
go back to reference Forini F, Nicolini G, Kusmic C, D’Aurizio R, Mercatanti A, Iervasi G et al (2020) T3 critically affects the Mhrt/Brg1 axis to regulate the cardiac MHC switch: role of an epigenetic cross-talk. Cells 9:2155PubMedPubMedCentralCrossRef Forini F, Nicolini G, Kusmic C, D’Aurizio R, Mercatanti A, Iervasi G et al (2020) T3 critically affects the Mhrt/Brg1 axis to regulate the cardiac MHC switch: role of an epigenetic cross-talk. Cells 9:2155PubMedPubMedCentralCrossRef
39.
go back to reference Zhang L-E, Wu Y-J, Zhang S-L (2019) Circulating lncRNA MHRT predicts survival of patients with chronic heart failure. J Geriatr Cardiol JGC 16:818PubMed Zhang L-E, Wu Y-J, Zhang S-L (2019) Circulating lncRNA MHRT predicts survival of patients with chronic heart failure. J Geriatr Cardiol JGC 16:818PubMed
40.
go back to reference Wang Z, Zhang X-J, Ji Y-X, Zhang P, Deng K-Q, Gong J et al (2016) The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 22:1131–1139PubMedPubMedCentralCrossRef Wang Z, Zhang X-J, Ji Y-X, Zhang P, Deng K-Q, Gong J et al (2016) The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 22:1131–1139PubMedPubMedCentralCrossRef
41.
go back to reference Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M et al (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8:326ra22-ra22 Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M et al (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8:326ra22-ra22
42.
go back to reference Sun X, Lv J, Dou L, Chen D, Zhu Y, Hu X (2020) LncRNA NEAT1 promotes cardiac hypertrophy through microRNA-19a-3p/SMYD2 axis. Eur Rev Med Pharmacol Sci 24:1367–1377PubMed Sun X, Lv J, Dou L, Chen D, Zhu Y, Hu X (2020) LncRNA NEAT1 promotes cardiac hypertrophy through microRNA-19a-3p/SMYD2 axis. Eur Rev Med Pharmacol Sci 24:1367–1377PubMed
43.
go back to reference Andersson C, Schou M, Schwartz B, Vasan RS, Christiansen MN, D’Souza M et al (2022) Incidence rates of dilated cardiomyopathy in adult first-degree relatives versus matched controls. IJC Heart Vasc 41:101065CrossRef Andersson C, Schou M, Schwartz B, Vasan RS, Christiansen MN, D’Souza M et al (2022) Incidence rates of dilated cardiomyopathy in adult first-degree relatives versus matched controls. IJC Heart Vasc 41:101065CrossRef
44.
go back to reference Hagar A, Pu X-B, Chen S-J, Shah J-P, Chen M (2019) Clinical characteristics, treatment and prognosis of patients with idiopathic dilated cardiomyopathy: a tertiary center experience. J Geriatr Cardiol JGC 16:320PubMed Hagar A, Pu X-B, Chen S-J, Shah J-P, Chen M (2019) Clinical characteristics, treatment and prognosis of patients with idiopathic dilated cardiomyopathy: a tertiary center experience. J Geriatr Cardiol JGC 16:320PubMed
45.
go back to reference Fan J, Li H, Xie R, Zhang X, Nie X, Shi X et al (2021) LncRNA ZNF593-AS alleviates contractile dysfunction in dilated cardiomyopathy. Circ Res 128:1708–1723PubMedCrossRef Fan J, Li H, Xie R, Zhang X, Nie X, Shi X et al (2021) LncRNA ZNF593-AS alleviates contractile dysfunction in dilated cardiomyopathy. Circ Res 128:1708–1723PubMedCrossRef
46.
go back to reference Zhang Y, Zhang M, Xu W, Chen J, Zhou X (2017) The long non-coding RNA H19 promotes cardiomyocyte apoptosis in dilated cardiomyopathy. Oncotarget 8:28588PubMedPubMedCentralCrossRef Zhang Y, Zhang M, Xu W, Chen J, Zhou X (2017) The long non-coding RNA H19 promotes cardiomyocyte apoptosis in dilated cardiomyopathy. Oncotarget 8:28588PubMedPubMedCentralCrossRef
47.
go back to reference Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102PubMedPubMedCentralCrossRef Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102PubMedPubMedCentralCrossRef
48.
go back to reference Giacca M (2020) Cardiac regeneration after myocardial infarction: an approachable goal. Curr Cardiol Rep 22:1–8CrossRef Giacca M (2020) Cardiac regeneration after myocardial infarction: an approachable goal. Curr Cardiol Rep 22:1–8CrossRef
49.
go back to reference Doppler SA, Deutsch M-A, Serpooshan V, Li G, Dzilic E, Lange R et al (2017) Mammalian heart regeneration: the race to the finish line. Circ Res 120:630–632PubMedPubMedCentralCrossRef Doppler SA, Deutsch M-A, Serpooshan V, Li G, Dzilic E, Lange R et al (2017) Mammalian heart regeneration: the race to the finish line. Circ Res 120:630–632PubMedPubMedCentralCrossRef
50.
go back to reference Chen Y, Li X, Li B, Wang H, Li M, Huang S et al (2019) Long non-coding RNA ECRAR triggers post-natal myocardial regeneration by activating ERK1/2 signaling. Mol Ther 27:29–45PubMedCrossRef Chen Y, Li X, Li B, Wang H, Li M, Huang S et al (2019) Long non-coding RNA ECRAR triggers post-natal myocardial regeneration by activating ERK1/2 signaling. Mol Ther 27:29–45PubMedCrossRef
51.
go back to reference Li B, Hu Y, Li X, Jin G, Chen X, Chen G et al (2018) Sirt1 antisense long noncoding RNA promotes cardiomyocyte proliferation by enhancing the stability of Sirt1. J Am Heart Assoc 7:e009700PubMedPubMedCentralCrossRef Li B, Hu Y, Li X, Jin G, Chen X, Chen G et al (2018) Sirt1 antisense long noncoding RNA promotes cardiomyocyte proliferation by enhancing the stability of Sirt1. J Am Heart Assoc 7:e009700PubMedPubMedCentralCrossRef
52.
go back to reference Wang J, Chen X, Shen D, Ge D, Chen J, Pei J et al (2019) A long noncoding RNA NR_045363 controls cardiomyocyte proliferation and cardiac repair. J Mol Cell Cardiol 127:105–114PubMedCrossRef Wang J, Chen X, Shen D, Ge D, Chen J, Pei J et al (2019) A long noncoding RNA NR_045363 controls cardiomyocyte proliferation and cardiac repair. J Mol Cell Cardiol 127:105–114PubMedCrossRef
53.
go back to reference Cai B, Ma W, Wang X, Sukhareva N, Hua B, Zhang L et al (2020) Targeting LncDACH1 promotes cardiac repair and regeneration after myocardium infarction. Cell Death Differ 27:2158–2175PubMedPubMedCentralCrossRef Cai B, Ma W, Wang X, Sukhareva N, Hua B, Zhang L et al (2020) Targeting LncDACH1 promotes cardiac repair and regeneration after myocardium infarction. Cell Death Differ 27:2158–2175PubMedPubMedCentralCrossRef
54.
go back to reference Chen G, Li H, Li X, Li B, Zhong L, Huang S et al (2018) Loss of long non-coding RNA CRRL promotes cardiomyocyte regeneration and improves cardiac repair by functioning as a competing endogenous RNA. J Mol Cell Cardiol 122:152–164PubMedCrossRef Chen G, Li H, Li X, Li B, Zhong L, Huang S et al (2018) Loss of long non-coding RNA CRRL promotes cardiomyocyte regeneration and improves cardiac repair by functioning as a competing endogenous RNA. J Mol Cell Cardiol 122:152–164PubMedCrossRef
55.
go back to reference Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML et al (2013) Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152:570–583PubMedPubMedCentralCrossRef Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML et al (2013) Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152:570–583PubMedPubMedCentralCrossRef
56.
go back to reference Guo X, Xu Y, Wang Z, Wu Y, Chen J, Wang G et al (2018) A Linc1405/Eomes complex promotes cardiac mesoderm specification and cardiogenesis. Cell Stem Cell 22:893–908. e6 Guo X, Xu Y, Wang Z, Wu Y, Chen J, Wang G et al (2018) A Linc1405/Eomes complex promotes cardiac mesoderm specification and cardiogenesis. Cell Stem Cell 22:893–908. e6
57.
go back to reference Kim N-J, Lee K-H, Son Y, Nam A-R, Moon E-H, Pyun J-H et al (2021) Spatiotemporal expression of long noncoding RNA Moshe modulates heart cell lineage commitment. RNA Biol 18:640–654PubMedPubMedCentralCrossRef Kim N-J, Lee K-H, Son Y, Nam A-R, Moon E-H, Pyun J-H et al (2021) Spatiotemporal expression of long noncoding RNA Moshe modulates heart cell lineage commitment. RNA Biol 18:640–654PubMedPubMedCentralCrossRef
58.
go back to reference Fathi DB (2020) Strategies to target long non-coding RNAs in cancer treatment: progress and challenges. Egyp J Med Human Genet 21:1–15 Fathi DB (2020) Strategies to target long non-coding RNAs in cancer treatment: progress and challenges. Egyp J Med Human Genet 21:1–15
60.
go back to reference Rao DD, Vorhies JS, Senzer N, Nemunaitis J (2009) siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev 61:746–759PubMedCrossRef Rao DD, Vorhies JS, Senzer N, Nemunaitis J (2009) siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev 61:746–759PubMedCrossRef
61.
go back to reference Ling H (2016) Non-coding RNAs: therapeutic strategies and delivery systems. Non-coding RNAs in Colorectal Cancer. Adv Exp Med Biol 937(229–237):231–233. Springer Ling H (2016) Non-coding RNAs: therapeutic strategies and delivery systems. Non-coding RNAs in Colorectal Cancer. Adv Exp Med Biol 937(229–237):231–233. Springer
63.
go back to reference Montes M, Arnes L (2021) lncRNAs: potential therapeutic targets and biomarkers for pancreatic cancer? Expert Opin Ther Targets 25:521–528PubMedCrossRef Montes M, Arnes L (2021) lncRNAs: potential therapeutic targets and biomarkers for pancreatic cancer? Expert Opin Ther Targets 25:521–528PubMedCrossRef
64.
go back to reference Li X, Qi H, Cui W, Wang Z, Fu X, Li T et al (2022) Recent advances in targeted delivery of non-coding RNA-based therapeutics for atherosclerosis. Mol Ther 3121 Li X, Qi H, Cui W, Wang Z, Fu X, Li T et al (2022) Recent advances in targeted delivery of non-coding RNA-based therapeutics for atherosclerosis. Mol Ther 3121
65.
go back to reference Park JY, Lee JE, Park JB, Yoo H, Lee S-H, Kim JH (2014) Roles of long non-coding RNAs on tumorigenesis and glioma development. Brain Tumor Res Treat 2:1PubMedPubMedCentralCrossRef Park JY, Lee JE, Park JB, Yoo H, Lee S-H, Kim JH (2014) Roles of long non-coding RNAs on tumorigenesis and glioma development. Brain Tumor Res Treat 2:1PubMedPubMedCentralCrossRef
66.
go back to reference Parasramka MA, Maji S, Matsuda A, Yan IK, Patel T (2016) Long non-coding RNAs as novel targets for therapy in hepatocellular carcinoma. Pharmacol Ther 161:67–78PubMedPubMedCentralCrossRef Parasramka MA, Maji S, Matsuda A, Yan IK, Patel T (2016) Long non-coding RNAs as novel targets for therapy in hepatocellular carcinoma. Pharmacol Ther 161:67–78PubMedPubMedCentralCrossRef
68.
go back to reference Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267PubMedCrossRef Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267PubMedCrossRef
69.
go back to reference Chen Y, Li Z, Chen X, Zhang S (2021) Long non-coding RNAs: from disease code to drug role. Acta Pharm Sin B 11:340–354PubMedCrossRef Chen Y, Li Z, Chen X, Zhang S (2021) Long non-coding RNAs: from disease code to drug role. Acta Pharm Sin B 11:340–354PubMedCrossRef
70.
go back to reference Bisserier M, Sun XQ, Fazal S, Turnbull IC, Bonnet S, Hadri L (2022) Novel insights into the therapeutic potential of lung-targeted gene transfer in the most common respiratory diseases. Cells 11:3–12CrossRef Bisserier M, Sun XQ, Fazal S, Turnbull IC, Bonnet S, Hadri L (2022) Novel insights into the therapeutic potential of lung-targeted gene transfer in the most common respiratory diseases. Cells 11:3–12CrossRef
71.
go back to reference Tenchov R, Bird R, Curtze AE, Zhou QQ (2021) Lipid nanoparticles-from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 15:16982–17015PubMedCrossRef Tenchov R, Bird R, Curtze AE, Zhou QQ (2021) Lipid nanoparticles-from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 15:16982–17015PubMedCrossRef
72.
go back to reference Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle Formation during reticulocyte maturation - association of plasma-membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420PubMedCrossRef Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle Formation during reticulocyte maturation - association of plasma-membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420PubMedCrossRef
73.
go back to reference Han SQ, Qi YQ, Luo YM, Chen XP, Liang HF (2021) Exosomal long non-coding RNA: interaction between cancer cells and non-cancer cells. Front Oncol 10:1–7CrossRef Han SQ, Qi YQ, Luo YM, Chen XP, Liang HF (2021) Exosomal long non-coding RNA: interaction between cancer cells and non-cancer cells. Front Oncol 10:1–7CrossRef
74.
go back to reference Andaloussi EL, S, Lakhal S, Mager I, Wood MJA. (2013) Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 65:391–397PubMedCrossRef Andaloussi EL, S, Lakhal S, Mager I, Wood MJA. (2013) Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 65:391–397PubMedCrossRef
75.
go back to reference Tao SC, Guo SC, Zhang CQ (2018) Modularized extracellular vesicles: the dawn of prospective personalized and precision medicine. Adv Sci 5:2–9 Tao SC, Guo SC, Zhang CQ (2018) Modularized extracellular vesicles: the dawn of prospective personalized and precision medicine. Adv Sci 5:2–9
76.
go back to reference Lin Y, Wu JH, Gu WH, Huang YL, Tong ZC, Huang LJ et al (2018) Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv Sci 5 Lin Y, Wu JH, Gu WH, Huang YL, Tong ZC, Huang LJ et al (2018) Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv Sci 5
78.
go back to reference Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M et al (2015) Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131:e29–e322 Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M et al (2015) Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131:e29–e322
79.
go back to reference Reimer KA, Tanaka M, Murry CE, Richard VJ, Jennings RB (1990) Evaluation of free radical injury in myocardium. Toxicol Pathol 18:470–480PubMedCrossRef Reimer KA, Tanaka M, Murry CE, Richard VJ, Jennings RB (1990) Evaluation of free radical injury in myocardium. Toxicol Pathol 18:470–480PubMedCrossRef
80.
go back to reference Richard V, Murry C, Jennings R, Reimer K (1990) Oxygen-derived free radicals and postischemic myocardial reperfusion: therapeutic implications. Fundam Clin Pharmacol 4:85–103PubMedCrossRef Richard V, Murry C, Jennings R, Reimer K (1990) Oxygen-derived free radicals and postischemic myocardial reperfusion: therapeutic implications. Fundam Clin Pharmacol 4:85–103PubMedCrossRef
81.
go back to reference Kloner RA (1988) Introduction to the role of oxygen radicals in myocardial ischemia and infarction. Free Radical Biol Med 4:5–7CrossRef Kloner RA (1988) Introduction to the role of oxygen radicals in myocardial ischemia and infarction. Free Radical Biol Med 4:5–7CrossRef
82.
go back to reference Jain A, Mohan A, Gupta O, Jajoo U, Kalantri S, Srivastava L (2000) Role of oxygen free radicals in causing endothelial damage in acute myocardial infarction. J Assoc Physicians India 48:478–480PubMed Jain A, Mohan A, Gupta O, Jajoo U, Kalantri S, Srivastava L (2000) Role of oxygen free radicals in causing endothelial damage in acute myocardial infarction. J Assoc Physicians India 48:478–480PubMed
83.
go back to reference Sharma V, Bell RM, Yellon DM (2012) Targeting reperfusion injury in acute myocardial infarction: a review of reperfusion injury pharmacotherapy. Expert Opin Pharmacother 13:1153–1175PubMedCrossRef Sharma V, Bell RM, Yellon DM (2012) Targeting reperfusion injury in acute myocardial infarction: a review of reperfusion injury pharmacotherapy. Expert Opin Pharmacother 13:1153–1175PubMedCrossRef
84.
go back to reference Batchelor R, Liu DH, Bloom J, Noaman S, Chan W (2020) Association of periprocedural intravenous morphine use on clinical outcomes in ST-elevation myocardial infarction (STEMI) treated by primary percutaneous coronary intervention: Systematic review and meta-analysis. Catheter Cardiovasc Interv 96:76–88PubMedCrossRef Batchelor R, Liu DH, Bloom J, Noaman S, Chan W (2020) Association of periprocedural intravenous morphine use on clinical outcomes in ST-elevation myocardial infarction (STEMI) treated by primary percutaneous coronary intervention: Systematic review and meta-analysis. Catheter Cardiovasc Interv 96:76–88PubMedCrossRef
85.
go back to reference Hoedemaker NP, Roolvink V, de Winter RJ, van Royen N, Fuster V, García-Ruiz JM et al (2020) Early intravenous beta-blockers in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: a patient-pooled meta-analysis of randomized clinical trials. Eur Heart J Acute Cardiovasc Care 9:469–477PubMedCrossRef Hoedemaker NP, Roolvink V, de Winter RJ, van Royen N, Fuster V, García-Ruiz JM et al (2020) Early intravenous beta-blockers in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: a patient-pooled meta-analysis of randomized clinical trials. Eur Heart J Acute Cardiovasc Care 9:469–477PubMedCrossRef
86.
87.
go back to reference Mathur A, Fernández-Avilés F, Bartunek J, Belmans A, Crea F, Dowlut S et al (2020) The effect of intracoronary infusion of bone marrow-derived mononuclear cells on all-cause mortality in acute myocardial infarction: the BAMI trial. Eur Heart J 41:3702–3710PubMedPubMedCentralCrossRef Mathur A, Fernández-Avilés F, Bartunek J, Belmans A, Crea F, Dowlut S et al (2020) The effect of intracoronary infusion of bone marrow-derived mononuclear cells on all-cause mortality in acute myocardial infarction: the BAMI trial. Eur Heart J 41:3702–3710PubMedPubMedCentralCrossRef
88.
go back to reference Nicolau JC, Furtado RH, Silva SA, Rochitte CE, Rassi A Jr, Moraes JB Jr et al (2018) Stem-cell therapy in ST-segment elevation myocardial infarction with reduced ejection fraction: a multicenter, double-blind randomized trial. Clin Cardiol 41:392–399PubMedPubMedCentralCrossRef Nicolau JC, Furtado RH, Silva SA, Rochitte CE, Rassi A Jr, Moraes JB Jr et al (2018) Stem-cell therapy in ST-segment elevation myocardial infarction with reduced ejection fraction: a multicenter, double-blind randomized trial. Clin Cardiol 41:392–399PubMedPubMedCentralCrossRef
89.
go back to reference Quyyumi AA, Vasquez A, Kereiakes DJ, Klapholz M, Schaer GL, Abdel-Latif A et al (2017) PreSERVE-AMI: a randomized, double-blind, placebo-controlled clinical trial of intracoronary administration of autologous CD34+ cells in patients with left ventricular dysfunction post STEMI. Circ Res 120:324–331PubMedCrossRef Quyyumi AA, Vasquez A, Kereiakes DJ, Klapholz M, Schaer GL, Abdel-Latif A et al (2017) PreSERVE-AMI: a randomized, double-blind, placebo-controlled clinical trial of intracoronary administration of autologous CD34+ cells in patients with left ventricular dysfunction post STEMI. Circ Res 120:324–331PubMedCrossRef
90.
go back to reference Lindeman A, Pepine CJ, March KL (2020) Cardiac stem cell therapy among Clinics of Uncertain Regulatory Status (COURS): under-regulated, under-observed, incompletely understood. J Transl Med 18:1–7CrossRef Lindeman A, Pepine CJ, March KL (2020) Cardiac stem cell therapy among Clinics of Uncertain Regulatory Status (COURS): under-regulated, under-observed, incompletely understood. J Transl Med 18:1–7CrossRef
91.
go back to reference Xia D, Sui R, Zhang Z (2019) Administration of resveratrol improved Parkinson’s disease-like phenotype by suppressing apoptosis of neurons via modulating the MALAT1/miR-129/SNCA signaling pathway. J Cell Biochem 120:4942–4951PubMedCrossRef Xia D, Sui R, Zhang Z (2019) Administration of resveratrol improved Parkinson’s disease-like phenotype by suppressing apoptosis of neurons via modulating the MALAT1/miR-129/SNCA signaling pathway. J Cell Biochem 120:4942–4951PubMedCrossRef
92.
go back to reference Geng W, Guo X, Zhang L, Ma Y, Wang L, Liu Z et al (2018) Resveratrol inhibits proliferation, migration and invasion of multiple myeloma cells via NEAT1-mediated Wnt/β-catenin signaling pathway. Biomed Pharmacother 107:484–494PubMedCrossRef Geng W, Guo X, Zhang L, Ma Y, Wang L, Liu Z et al (2018) Resveratrol inhibits proliferation, migration and invasion of multiple myeloma cells via NEAT1-mediated Wnt/β-catenin signaling pathway. Biomed Pharmacother 107:484–494PubMedCrossRef
93.
94.
go back to reference Wei D, Yun L, Dejun X, Cong L, He J-H, Yan L (2019) Curcumin combining with si-MALAT1 inhibits the invasion and migration of colon cancer SW480 cells. Braz J Pharm Sci 55 Wei D, Yun L, Dejun X, Cong L, He J-H, Yan L (2019) Curcumin combining with si-MALAT1 inhibits the invasion and migration of colon cancer SW480 cells. Braz J Pharm Sci 55
95.
go back to reference Yuan X, Wang J, Tang X, Li Y, Xia P, Gao X (2015) Berberine ameliorates nonalcoholic fatty liver disease by a global modulation of hepatic mRNA and lncRNA expression profiles. J Transl Med 13:1–11CrossRef Yuan X, Wang J, Tang X, Li Y, Xia P, Gao X (2015) Berberine ameliorates nonalcoholic fatty liver disease by a global modulation of hepatic mRNA and lncRNA expression profiles. J Transl Med 13:1–11CrossRef
97.
go back to reference Rüger J, Ioannou S, Castanotto D, Stein CA (2020) Oligonucleotides to the (gene) rescue: FDA approvals 2017–2019. Trends Pharmacol Sci 41:27–41PubMedCrossRef Rüger J, Ioannou S, Castanotto D, Stein CA (2020) Oligonucleotides to the (gene) rescue: FDA approvals 2017–2019. Trends Pharmacol Sci 41:27–41PubMedCrossRef
98.
go back to reference Crooke ST (2007) Antisense drug technology: principles, strategies, and applications. CRC press Crooke ST (2007) Antisense drug technology: principles, strategies, and applications. CRC press
99.
100.
go back to reference Hueso M, Mallén A, Suñé-Pou M, Aran JM, Suñé-Negre JM, Navarro E (2021) ncRNAs in therapeutics: challenges and limitations in nucleic acid-based drug delivery. Int J Mol Sci 22:11596PubMedPubMedCentralCrossRef Hueso M, Mallén A, Suñé-Pou M, Aran JM, Suñé-Negre JM, Navarro E (2021) ncRNAs in therapeutics: challenges and limitations in nucleic acid-based drug delivery. Int J Mol Sci 22:11596PubMedPubMedCentralCrossRef
101.
go back to reference Liu C-Y, Zhang Y-H, Li R-B, Zhou L-Y, An T, Zhang R-C et al (2018) LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat Commun 9:1–12 Liu C-Y, Zhang Y-H, Li R-B, Zhou L-Y, An T, Zhang R-C et al (2018) LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat Commun 9:1–12
102.
go back to reference Ponnusamy M, Liu F, Zhang Y-H, Li R-B, Zhai M, Liu F et al (2019) Long noncoding RNA CPR (cardiomyocyte proliferation regulator) regulates cardiomyocyte proliferation and cardiac repair. Circulation 139:2668–2684PubMedCrossRef Ponnusamy M, Liu F, Zhang Y-H, Li R-B, Zhai M, Liu F et al (2019) Long noncoding RNA CPR (cardiomyocyte proliferation regulator) regulates cardiomyocyte proliferation and cardiac repair. Circulation 139:2668–2684PubMedCrossRef
103.
go back to reference Li X, Zhou J, Huang K (2017) Inhibition of the lncRNA Mirt1 attenuates acute myocardial infarction by suppressing NF-κB activation. Cell Physiol Biochem 42:1153–1164PubMedCrossRef Li X, Zhou J, Huang K (2017) Inhibition of the lncRNA Mirt1 attenuates acute myocardial infarction by suppressing NF-κB activation. Cell Physiol Biochem 42:1153–1164PubMedCrossRef
104.
go back to reference Zhuang A, Calkin AC, Lau S, Kiriazis H, Donner DG, Liu Y et al (2021) Loss of the long non-coding RNA OIP5-AS1 exacerbates heart failure in a sex-specific manner. iScience 24:102537 Zhuang A, Calkin AC, Lau S, Kiriazis H, Donner DG, Liu Y et al (2021) Loss of the long non-coding RNA OIP5-AS1 exacerbates heart failure in a sex-specific manner. iScience 24:102537
105.
go back to reference Wang K, Liu C-Y, Zhou L-Y, Wang J-X, Wang M, Zhao B et al (2015) APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat Commun 6:1–11 Wang K, Liu C-Y, Zhou L-Y, Wang J-X, Wang M, Zhao B et al (2015) APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat Commun 6:1–11
106.
go back to reference Zeng H, Hu F, Duan Y, Li H, Wang Y (2022) Expression of lncRNA APF in peripheral blood of patients with acute myocardial infarction caused by coronary heart disease and its clinical significance. Int Heart J 63:742–748PubMedCrossRef Zeng H, Hu F, Duan Y, Li H, Wang Y (2022) Expression of lncRNA APF in peripheral blood of patients with acute myocardial infarction caused by coronary heart disease and its clinical significance. Int Heart J 63:742–748PubMedCrossRef
107.
go back to reference Cai B, Ma W, Ding F, Zhang L, Huang Q, Wang X et al (2018) The long noncoding RNA CAREL controls cardiac regeneration. J Am Coll Cardiol 72:534–550PubMedCrossRef Cai B, Ma W, Ding F, Zhang L, Huang Q, Wang X et al (2018) The long noncoding RNA CAREL controls cardiac regeneration. J Am Coll Cardiol 72:534–550PubMedCrossRef
108.
go back to reference Liang H, Su X, Wu Q, Shan H, Lv L, Yu T et al (2020) LncRNA 2810403D21Rik/Mirf promotes ischemic myocardial injury by regulating autophagy through targeting Mir26a. Autophagy 16:1077–1091PubMedCrossRef Liang H, Su X, Wu Q, Shan H, Lv L, Yu T et al (2020) LncRNA 2810403D21Rik/Mirf promotes ischemic myocardial injury by regulating autophagy through targeting Mir26a. Autophagy 16:1077–1091PubMedCrossRef
109.
go back to reference Long B, Li N, Xu X-X, Li X-X, Xu X-J, Guo D et al (2018) Long noncoding RNA FTX regulates cardiomyocyte apoptosis by targeting miR-29b-1-5p and Bcl2l2. Biochem Biophys Res Commun 495:312–318PubMedCrossRef Long B, Li N, Xu X-X, Li X-X, Xu X-J, Guo D et al (2018) Long noncoding RNA FTX regulates cardiomyocyte apoptosis by targeting miR-29b-1-5p and Bcl2l2. Biochem Biophys Res Commun 495:312–318PubMedCrossRef
110.
go back to reference Li X, He X, Wang H, Li M, Huang S, Chen G et al (2018) Loss of AZIN2 splice variant facilitates endogenous cardiac regeneration. Cardiovasc Res 114:1642–1655PubMedPubMedCentralCrossRef Li X, He X, Wang H, Li M, Huang S, Chen G et al (2018) Loss of AZIN2 splice variant facilitates endogenous cardiac regeneration. Cardiovasc Res 114:1642–1655PubMedPubMedCentralCrossRef
111.
go back to reference Huang L, Guo B, Liu S, Miao C, Li Y (2020) Inhibition of the LncRNA Gpr19 attenuates ischemia-reperfusion injury after acute myocardial infarction by inhibiting apoptosis and oxidative stress via the miR-324-5p/Mtfr1 axis. IUBMB life 72:373–383PubMedCrossRef Huang L, Guo B, Liu S, Miao C, Li Y (2020) Inhibition of the LncRNA Gpr19 attenuates ischemia-reperfusion injury after acute myocardial infarction by inhibiting apoptosis and oxidative stress via the miR-324-5p/Mtfr1 axis. IUBMB life 72:373–383PubMedCrossRef
112.
go back to reference Wang Q-S, Zhou J, Li X (2020) LncRNA UCA1 protects cardiomyocytes against hypoxia/reoxygenation induced apoptosis through inhibiting miR-143/MDM2/p53 axis. Genomics 112:574–580PubMedCrossRef Wang Q-S, Zhou J, Li X (2020) LncRNA UCA1 protects cardiomyocytes against hypoxia/reoxygenation induced apoptosis through inhibiting miR-143/MDM2/p53 axis. Genomics 112:574–580PubMedCrossRef
113.
go back to reference Yu J, Yang Y, Xu Z, Lan C, Chen C, Li C et al (2020) Long noncoding RNA Ahit protects against cardiac hypertrophy through SUZ12 (suppressor of Zeste 12 protein homolog)-mediated downregulation of MEF2A (myocyte enhancer factor 2A). Circ Heart Fail 13:e006525 Yu J, Yang Y, Xu Z, Lan C, Chen C, Li C et al (2020) Long noncoding RNA Ahit protects against cardiac hypertrophy through SUZ12 (suppressor of Zeste 12 protein homolog)-mediated downregulation of MEF2A (myocyte enhancer factor 2A). Circ Heart Fail 13:e006525
114.
go back to reference Viereck J, Bührke A, Foinquinos A, Chatterjee S, Kleeberger JA, Xiao K et al (2020) Targeting muscle-enriched long non-coding RNA H19 reverses pathological cardiac hypertrophy. Eur Heart J 41:3462–3474PubMedPubMedCentralCrossRef Viereck J, Bührke A, Foinquinos A, Chatterjee S, Kleeberger JA, Xiao K et al (2020) Targeting muscle-enriched long non-coding RNA H19 reverses pathological cardiac hypertrophy. Eur Heart J 41:3462–3474PubMedPubMedCentralCrossRef
115.
go back to reference Wang K, Liu F, Zhou L-Y, Long B, Yuan S-M, Wang Y et al (2014) The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114:1377–1388PubMedCrossRef Wang K, Liu F, Zhou L-Y, Long B, Yuan S-M, Wang Y et al (2014) The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114:1377–1388PubMedCrossRef
116.
go back to reference Lv L, Li T, Li X, Xu C, Liu Q, Jiang H et al (2018) The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214. Mol Ther Nucleic Acids 10:387–397PubMedCrossRef Lv L, Li T, Li X, Xu C, Liu Q, Jiang H et al (2018) The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214. Mol Ther Nucleic Acids 10:387–397PubMedCrossRef
117.
go back to reference Lai Y, He S, Ma L, Lin H, Ren B, Ma J et al (2017) HOTAIR functions as a competing endogenous RNA to regulate PTEN expression by inhibiting miR-19 in cardiac hypertrophy. Mol Cell Biochem 432:179–187PubMedCrossRef Lai Y, He S, Ma L, Lin H, Ren B, Ma J et al (2017) HOTAIR functions as a competing endogenous RNA to regulate PTEN expression by inhibiting miR-19 in cardiac hypertrophy. Mol Cell Biochem 432:179–187PubMedCrossRef
118.
go back to reference Li Y, Wang J, Sun L, Zhu S (2018) LncRNA myocardial infarction-associated transcript (MIAT) contributed to cardiac hypertrophy by regulating TLR4 via miR-93. Eur J Pharmacol 818:508–517PubMedCrossRef Li Y, Wang J, Sun L, Zhu S (2018) LncRNA myocardial infarction-associated transcript (MIAT) contributed to cardiac hypertrophy by regulating TLR4 via miR-93. Eur J Pharmacol 818:508–517PubMedCrossRef
119.
go back to reference Zhu X, Yuan Y, Rao S, Wang P (2016) LncRNA MIAT enhances cardiac hypertrophy partly through sponging miR-150. Eur Rev Med Pharmacol Sci 20:3653–3660PubMed Zhu X, Yuan Y, Rao S, Wang P (2016) LncRNA MIAT enhances cardiac hypertrophy partly through sponging miR-150. Eur Rev Med Pharmacol Sci 20:3653–3660PubMed
120.
go back to reference Zhang Q, Wang F, Wang F, Wu N (2020) Long noncoding RNA MAGI1-IT1 regulates cardiac hypertrophy by modulating miR-302e/DKK1/Wnt/beta-catenin signaling pathway. J Cell Physiol 235:245–253PubMedCrossRef Zhang Q, Wang F, Wang F, Wu N (2020) Long noncoding RNA MAGI1-IT1 regulates cardiac hypertrophy by modulating miR-302e/DKK1/Wnt/beta-catenin signaling pathway. J Cell Physiol 235:245–253PubMedCrossRef
121.
go back to reference Wang Y, Cao R, Yang W, Qi B (2019) SP1-SYNE1-AS1-miR-525-5p feedback loop regulates Ang-II-induced cardiac hypertrophy. J Cell Physiol 234:14319–14329PubMedCrossRef Wang Y, Cao R, Yang W, Qi B (2019) SP1-SYNE1-AS1-miR-525-5p feedback loop regulates Ang-II-induced cardiac hypertrophy. J Cell Physiol 234:14319–14329PubMedCrossRef
122.
go back to reference Xiao L, Gu Y, Sun Y, Chen J, Wang X, Zhang Y et al (2019) The long noncoding RNA XIST regulates cardiac hypertrophy by targeting miR-101. J Cell Physiol 234:13680–13692PubMedCrossRef Xiao L, Gu Y, Sun Y, Chen J, Wang X, Zhang Y et al (2019) The long noncoding RNA XIST regulates cardiac hypertrophy by targeting miR-101. J Cell Physiol 234:13680–13692PubMedCrossRef
123.
go back to reference Trembinski DJ, Bink DI, Theodorou K, Sommer J, Fischer A, van Bergen A et al (2020) Aging-regulated anti-apoptotic long non-coding RNA Sarrah augments recovery from acute myocardial infarction. Nat Commun 11:1–14CrossRef Trembinski DJ, Bink DI, Theodorou K, Sommer J, Fischer A, van Bergen A et al (2020) Aging-regulated anti-apoptotic long non-coding RNA Sarrah augments recovery from acute myocardial infarction. Nat Commun 11:1–14CrossRef
124.
go back to reference Anderson KM, Anderson DM, McAnally JR, Shelton JM, Bassel-Duby R, Olson EN (2016) Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature 539:433–436PubMedPubMedCentralCrossRef Anderson KM, Anderson DM, McAnally JR, Shelton JM, Bassel-Duby R, Olson EN (2016) Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature 539:433–436PubMedPubMedCentralCrossRef
Metadata
Title
The role and medical prospects of long non-coding RNAs in cardiovascular disease
Authors
Najung Kim
Woo-Young Chung
Je-Yoel Cho
Publication date
05-10-2023
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 6/2023
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-023-10342-1

Other articles of this Issue 6/2023

Heart Failure Reviews 6/2023 Go to the issue