Skip to main content
Top
Published in: Heart Failure Reviews 6/2021

01-11-2021 | Epigenetics

The role and molecular mechanism of epigenetics in cardiac hypertrophy

Authors: Hao Lei, Jiahui Hu, Kaijun Sun, Danyan Xu

Published in: Heart Failure Reviews | Issue 6/2021

Login to get access

Abstract

Cardiac hypertrophy is a significant risk factor for cardiovascular disease, including heart failure, arrhythmia, and sudden death. Cardiac hypertrophy involves both embryonic gene expression and transcriptional reprogramming, which are tightly regulated by epigenetic mechanisms. An increasing number of studies have demonstrated that epigenetics plays an influential role in the occurrence and development of cardiac hypertrophy. Here, we summarize the latest research progress on epigenetics in cardiac hypertrophy involving DNA methylation, histone modification, and non-coding RNA, to help understand the mechanism of epigenetics in cardiac hypertrophy. The expression of both embryonic and functional genes can be precisely regulated by epigenetic mechanisms during cardiac hypertrophy, providing a substantial number of therapeutic targets. Thus, epigenetic treatment is expected to become a novel therapeutic strategy for cardiac hypertrophy. According to the research performed to date, epigenetic mechanisms associated with cardiac hypertrophy remain far from completely understood. Therefore, epigenetic mechanisms require further exploration to improve the prevention, diagnosis, and treatment of cardiac hypertrophy.
Literature
8.
go back to reference Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang M-L, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MVG, Høydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13(5):613–618. https://doi.org/10.1038/nm1582CrossRefPubMed Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang M-L, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MVG, Høydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13(5):613–618. https://​doi.​org/​10.​1038/​nm1582CrossRefPubMed
14.
23.
go back to reference Sasaki K, Hara S, Yamakami R, Sato Y, Hasegawa S, Kono T, Morohaku K, Obata Y (2019) Ectopic expression of DNA methyltransferases DNMT3A2 and DNMT3L leads to aberrant hypermethylation and postnatal lethality in mice. Mol Reprod Dev. https://doi.org/10.1002/mrd.23137 Sasaki K, Hara S, Yamakami R, Sato Y, Hasegawa S, Kono T, Morohaku K, Obata Y (2019) Ectopic expression of DNA methyltransferases DNMT3A2 and DNMT3L leads to aberrant hypermethylation and postnatal lethality in mice. Mol Reprod Dev. https://​doi.​org/​10.​1002/​mrd.​23137
25.
go back to reference Han P, Li W, Yang J, Shang C, Lin C-H, Cheng W, Hang CT, Cheng H-L, Chen C-H, Wong J, Xiong Y, Zhao M, Drakos SG, Ghetti A, Li DY, Bernstein D, Chen H-SV, Quertermous T, Chang C-P (2016) Epigenetic response to environmental stress: assembly of BRG1-G9a/GLP-DNMT3 repressive chromatin complex on Myh6 promoter in pathologically stressed hearts. Biochim Biophys Acta 1863(7 Pt B):1772–1781. https://doi.org/10.1016/j.bbamcr.2016.03.002CrossRefPubMedPubMedCentral Han P, Li W, Yang J, Shang C, Lin C-H, Cheng W, Hang CT, Cheng H-L, Chen C-H, Wong J, Xiong Y, Zhao M, Drakos SG, Ghetti A, Li DY, Bernstein D, Chen H-SV, Quertermous T, Chang C-P (2016) Epigenetic response to environmental stress: assembly of BRG1-G9a/GLP-DNMT3 repressive chromatin complex on Myh6 promoter in pathologically stressed hearts. Biochim Biophys Acta 1863(7 Pt B):1772–1781. https://​doi.​org/​10.​1016/​j.​bbamcr.​2016.​03.​002CrossRefPubMedPubMedCentral
28.
go back to reference Mayer SC, Gilsbach R, Preissl S, Monroy Ordonez EB, Schnick T, Beetz N, Lother A, Rommel C, Ihle H, Bugger H, Ruhle F, Schrepper A, Schwarzer M, Heilmann C, Bonisch U, Gupta SK, Wilpert J, Kretz O, von Elverfeldt D, Orth J, Aktories K, Beyersdorf F, Bode C, Stiller B, Kruger M, Thum T, Doenst T, Stoll M, Hein L (2015) Adrenergic repression of the epigenetic reader MeCP2 facilitates cardiac adaptation in chronic heart failure. Circ Res 117(7):622–633. https://doi.org/10.1161/circresaha.115.306721CrossRefPubMedPubMedCentral Mayer SC, Gilsbach R, Preissl S, Monroy Ordonez EB, Schnick T, Beetz N, Lother A, Rommel C, Ihle H, Bugger H, Ruhle F, Schrepper A, Schwarzer M, Heilmann C, Bonisch U, Gupta SK, Wilpert J, Kretz O, von Elverfeldt D, Orth J, Aktories K, Beyersdorf F, Bode C, Stiller B, Kruger M, Thum T, Doenst T, Stoll M, Hein L (2015) Adrenergic repression of the epigenetic reader MeCP2 facilitates cardiac adaptation in chronic heart failure. Circ Res 117(7):622–633. https://​doi.​org/​10.​1161/​circresaha.​115.​306721CrossRefPubMedPubMedCentral
30.
go back to reference Thienpont B, Aronsen JM, Robinson EL, Okkenhaug H, Loche E, Ferrini A, Brien P, Alkass K, Tomasso A, Agrawal A, Bergmann O, Sjaastad I, Reik W, Roderick HL (2017) The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy. J Clin Invest 127(1):335–348. https://doi.org/10.1172/JCI88353CrossRefPubMed Thienpont B, Aronsen JM, Robinson EL, Okkenhaug H, Loche E, Ferrini A, Brien P, Alkass K, Tomasso A, Agrawal A, Bergmann O, Sjaastad I, Reik W, Roderick HL (2017) The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy. J Clin Invest 127(1):335–348. https://​doi.​org/​10.​1172/​JCI88353CrossRefPubMed
31.
go back to reference Wang S, Wang C, Turdi S, Richmond KL, Zhang Y, Ren J (2018) ALDH2 protects against high fat diet-induced obesity cardiomyopathy and defective autophagy: role of CaM kinase II, histone H3K9 methyltransferase SUV39H, Sirt1, and PGC-1alpha deacetylation. Int J Obes 42(5):1073–1087. https://doi.org/10.1038/s41366-018-0030-4CrossRef Wang S, Wang C, Turdi S, Richmond KL, Zhang Y, Ren J (2018) ALDH2 protects against high fat diet-induced obesity cardiomyopathy and defective autophagy: role of CaM kinase II, histone H3K9 methyltransferase SUV39H, Sirt1, and PGC-1alpha deacetylation. Int J Obes 42(5):1073–1087. https://​doi.​org/​10.​1038/​s41366-018-0030-4CrossRef
33.
go back to reference Warren JS, Tracy CM, Miller MR, Makaju A, Szulik MW, Oka SI, Yuzyuk TN, Cox JE, Kumar A, Lozier BK, Wang L, Llana JG, Sabry AD, Cawley KM, Barton DW, Han YH, Boudina S, Fiehn O, Tucker HO, Zaitsev AV, Franklin S (2018) Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart. Proc Natl Acad Sci U S A 115(33):E7871–e7880. https://doi.org/10.1073/pnas.1800680115CrossRefPubMedPubMedCentral Warren JS, Tracy CM, Miller MR, Makaju A, Szulik MW, Oka SI, Yuzyuk TN, Cox JE, Kumar A, Lozier BK, Wang L, Llana JG, Sabry AD, Cawley KM, Barton DW, Han YH, Boudina S, Fiehn O, Tucker HO, Zaitsev AV, Franklin S (2018) Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart. Proc Natl Acad Sci U S A 115(33):E7871–e7880. https://​doi.​org/​10.​1073/​pnas.​1800680115CrossRefPubMedPubMedCentral
41.
go back to reference Morales CR, Li DL, Pedrozo Z, May HI, Jiang N, Kyrychenko V, Cho GW, Kim SY, Wang ZV, Rotter D, Rothermel BA, Schneider JW, Lavandero S, Gillette TG, Hill JA (2016) Inhibition of class I histone deacetylases blunts cardiac hypertrophy through TSC2-dependent mTOR repression. Sci Sign 9(422):ra34. https://doi.org/10.1126/scisignal.aad5736CrossRef Morales CR, Li DL, Pedrozo Z, May HI, Jiang N, Kyrychenko V, Cho GW, Kim SY, Wang ZV, Rotter D, Rothermel BA, Schneider JW, Lavandero S, Gillette TG, Hill JA (2016) Inhibition of class I histone deacetylases blunts cardiac hypertrophy through TSC2-dependent mTOR repression. Sci Sign 9(422):ra34. https://​doi.​org/​10.​1126/​scisignal.​aad5736CrossRef
43.
go back to reference Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger PR, Wurst W, Ferrari VA, Abrams CS, Gruber PJ, Epstein JA (2007) Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 13(3):324–331. https://doi.org/10.1038/nm1552CrossRefPubMed Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger PR, Wurst W, Ferrari VA, Abrams CS, Gruber PJ, Epstein JA (2007) Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 13(3):324–331. https://​doi.​org/​10.​1038/​nm1552CrossRefPubMed
51.
go back to reference Awad S, Al-Haffar KM, Marashly Q, Quijada P, Kunhi M, Al-Yacoub N, Wade FS, Mohammed SF, Al-Dayel F, Sutherland G, Assiri A, Sussman M, Bers D, Al-Habeeb W, Poizat C (2015) Control of histone H3 phosphorylation by CaMKIIδ in response to haemodynamic cardiac stress. J Pathol 235(4):606–618. https://doi.org/10.1002/path.4489CrossRefPubMed Awad S, Al-Haffar KM, Marashly Q, Quijada P, Kunhi M, Al-Yacoub N, Wade FS, Mohammed SF, Al-Dayel F, Sutherland G, Assiri A, Sussman M, Bers D, Al-Habeeb W, Poizat C (2015) Control of histone H3 phosphorylation by CaMKIIδ in response to haemodynamic cardiac stress. J Pathol 235(4):606–618. https://​doi.​org/​10.​1002/​path.​4489CrossRefPubMed
55.
go back to reference Gottlieb PD, Pierce SA, Sims RJ, Yamagishi H, Weihe EK, Harriss JV, Maika SD, Kuziel WA, King HL, Olson EN, Nakagawa O, Srivastava D (2002) Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet 31(1):25–32. https://doi.org/10.1038/ng866CrossRefPubMed Gottlieb PD, Pierce SA, Sims RJ, Yamagishi H, Weihe EK, Harriss JV, Maika SD, Kuziel WA, King HL, Olson EN, Nakagawa O, Srivastava D (2002) Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet 31(1):25–32. https://​doi.​org/​10.​1038/​ng866CrossRefPubMed
79.
go back to reference Cui H, Schlesinger J, Schoenhals S, Tonjes M, Dunkel I, Meierhofer D, Cano E, Schulz K, Berger MF, Haack T, Abdelilah-Seyfried S, Bulyk ML, Sauer S, Sperling SR (2016) Phosphorylation of the chromatin remodeling factor DPF3a induces cardiac hypertrophy through releasing HEY repressors from DNA. Nucleic Acids Res 44(6):2538–2553. https://doi.org/10.1093/nar/gkv1244CrossRefPubMed Cui H, Schlesinger J, Schoenhals S, Tonjes M, Dunkel I, Meierhofer D, Cano E, Schulz K, Berger MF, Haack T, Abdelilah-Seyfried S, Bulyk ML, Sauer S, Sperling SR (2016) Phosphorylation of the chromatin remodeling factor DPF3a induces cardiac hypertrophy through releasing HEY repressors from DNA. Nucleic Acids Res 44(6):2538–2553. https://​doi.​org/​10.​1093/​nar/​gkv1244CrossRefPubMed
80.
92.
go back to reference Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S, Dangwal S, Kumarswamy R, Bang C, Holzmann A, Remke J, Caprio M, Jentzsch C, Engelhardt S, Geisendorf S, Glas C, Hofmann TG, Nessling M, Richter K, Schiffer M, Carrier L, Napp LC, Bauersachs J, Chowdhury K, Thum T (2012) The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 3:1078. https://doi.org/10.1038/ncomms2090CrossRefPubMed Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S, Dangwal S, Kumarswamy R, Bang C, Holzmann A, Remke J, Caprio M, Jentzsch C, Engelhardt S, Geisendorf S, Glas C, Hofmann TG, Nessling M, Richter K, Schiffer M, Carrier L, Napp LC, Bauersachs J, Chowdhury K, Thum T (2012) The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 3:1078. https://​doi.​org/​10.​1038/​ncomms2090CrossRefPubMed
100.
go back to reference Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M, Dittrich M, Maetzig T, Zimmer K, Remke J, Just A, Fendrich J, Scherf K, Bolesani E, Schambach A, Weidemann F, Zweigerdt R, de Windt LJ, Engelhardt S, Dandekar T, Batkai S, Thum T (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8(326):326ra322. https://doi.org/10.1126/scitranslmed.aaf1475CrossRef Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M, Dittrich M, Maetzig T, Zimmer K, Remke J, Just A, Fendrich J, Scherf K, Bolesani E, Schambach A, Weidemann F, Zweigerdt R, de Windt LJ, Engelhardt S, Dandekar T, Batkai S, Thum T (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8(326):326ra322. https://​doi.​org/​10.​1126/​scitranslmed.​aaf1475CrossRef
103.
go back to reference Wang Z, Zhang XJ, Ji YX, Zhang P, Deng KQ, Gong J, Ren S, Wang X, Chen I, Wang H, Gao C, Yokota T, Ang YS, Li S, Cass A, Vondriska TM, Li G, Deb A, Srivastava D, Yang HT, Xiao X, Li H, Wang Y (2016) The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 22(10):1131–1139. https://doi.org/10.1038/nm.4179CrossRefPubMedPubMedCentral Wang Z, Zhang XJ, Ji YX, Zhang P, Deng KQ, Gong J, Ren S, Wang X, Chen I, Wang H, Gao C, Yokota T, Ang YS, Li S, Cass A, Vondriska TM, Li G, Deb A, Srivastava D, Yang HT, Xiao X, Li H, Wang Y (2016) The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 22(10):1131–1139. https://​doi.​org/​10.​1038/​nm.​4179CrossRefPubMedPubMedCentral
Metadata
Title
The role and molecular mechanism of epigenetics in cardiac hypertrophy
Authors
Hao Lei
Jiahui Hu
Kaijun Sun
Danyan Xu
Publication date
01-11-2021
Publisher
Springer US
Keyword
Epigenetics
Published in
Heart Failure Reviews / Issue 6/2021
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-020-09959-3

Other articles of this Issue 6/2021

Heart Failure Reviews 6/2021 Go to the issue