Skip to main content
Top
Published in: Heart Failure Reviews 2/2011

01-03-2011

Methods of assessing vagus nerve activity and reflexes

Authors: Mark W. Chapleau, Rasna Sabharwal

Published in: Heart Failure Reviews | Issue 2/2011

Login to get access

Abstract

The methods used to assess cardiac parasympathetic (cardiovagal) activity and its effects on the heart in both humans and animal models are reviewed. Heart rate (HR)-based methods include measurements of the HR response to blockade of muscarinic cholinergic receptors (parasympathetic tone), beat-to-beat HR variability (HRV) (parasympathetic modulation), rate of post-exercise HR recovery (parasympathetic reactivation), and reflex-mediated changes in HR evoked by activation or inhibition of sensory (afferent) nerves. Sources of excitatory afferent input that increase cardiovagal activity and decrease HR include baroreceptors, chemoreceptors, trigeminal receptors, and subsets of cardiopulmonary receptors with vagal afferents. Sources of inhibitory afferent input include pulmonary stretch receptors with vagal afferents and subsets of visceral and somatic receptors with spinal afferents. The different methods used to assess cardiovagal control of the heart engage different mechanisms, and therefore provide unique and complementary insights into underlying physiology and pathophysiology. In addition, techniques for direct recording of cardiovagal nerve activity in animals; the use of decerebrate and in vitro preparations that avoid confounding effects of anesthesia; cardiovagal control of cardiac conduction, contractility, and refractoriness; and noncholinergic mechanisms are described. Advantages and limitations of the various methods are addressed, and future directions are proposed.
Literature
1.
go back to reference La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ, for the ATRAMI investigators (1998) Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 351:478–484PubMed La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ, for the ATRAMI investigators (1998) Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 351:478–484PubMed
2.
go back to reference Rosas-Ballina M, Tracey KJ (2009) Cholinergic control of inflammation. J Intern Med 265:663–679PubMed Rosas-Ballina M, Tracey KJ (2009) Cholinergic control of inflammation. J Intern Med 265:663–679PubMed
3.
go back to reference Thayer JF, Lane RD (2007) The role of vagal function in the risk for cardiovascular disease and mortality. Biol Psychol 74:224–242PubMed Thayer JF, Lane RD (2007) The role of vagal function in the risk for cardiovascular disease and mortality. Biol Psychol 74:224–242PubMed
4.
go back to reference Katona PG, Lipson D, Dauchot PJ (1977) Opposing central and peripheral effects of atropine on parasympathetic cardiac control. Am J Physiol 232:H146–H151PubMed Katona PG, Lipson D, Dauchot PJ (1977) Opposing central and peripheral effects of atropine on parasympathetic cardiac control. Am J Physiol 232:H146–H151PubMed
5.
go back to reference Brodde OE, Bruck H, Leineweber K, Seyfarth T (2001) Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res Cardiol 96:528–538PubMed Brodde OE, Bruck H, Leineweber K, Seyfarth T (2001) Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res Cardiol 96:528–538PubMed
6.
go back to reference Halliwill JR, Billman GE (1992) Effect of general anesthesia on cardiac vagal tone. Am J Physiol 262(Heart Circ Physiol 31):H1719–H1724PubMed Halliwill JR, Billman GE (1992) Effect of general anesthesia on cardiac vagal tone. Am J Physiol 262(Heart Circ Physiol 31):H1719–H1724PubMed
7.
go back to reference Bouairi E, Neff R, Evans C, Gold A, Andresen MC, Mendelowitz D (2004) Respiratory sinus arrhythmia in freely moving and anesthetized rats. J Appl Physiol 97:1431–1436PubMed Bouairi E, Neff R, Evans C, Gold A, Andresen MC, Mendelowitz D (2004) Respiratory sinus arrhythmia in freely moving and anesthetized rats. J Appl Physiol 97:1431–1436PubMed
8.
go back to reference Tzeng Y-C, Galletly DC, Larsen PD (2005) Paradoxical respiratory sinus arrhythmia in the anesthetized rat. Auton Neurosci 118:25–31PubMed Tzeng Y-C, Galletly DC, Larsen PD (2005) Paradoxical respiratory sinus arrhythmia in the anesthetized rat. Auton Neurosci 118:25–31PubMed
9.
go back to reference Levy MN (1971) Sympathetic-parasympathetic interactions in the heart. Circ Res 29:437–445PubMed Levy MN (1971) Sympathetic-parasympathetic interactions in the heart. Circ Res 29:437–445PubMed
10.
go back to reference De Angeles K, Wichi RB, Jesus WRA, Moreira ED, Morris M, Krieger EM, Irigoyen MC (2004) Exercise training changes autonomic cardiovascular balance in mice. J Appl Physiol 96:2174–2178 De Angeles K, Wichi RB, Jesus WRA, Moreira ED, Morris M, Krieger EM, Irigoyen MC (2004) Exercise training changes autonomic cardiovascular balance in mice. J Appl Physiol 96:2174–2178
11.
go back to reference Task Force of the European Society of Cardiology, the North American Society of Pacing, Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93:1043–1065 Task Force of the European Society of Cardiology, the North American Society of Pacing, Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93:1043–1065
12.
go back to reference Thireau J, Zhang BL, Poisson D, Babuty D (2007) Heart rate variability in mice: a theoretical and practical guide. Exp Physiol 93(1):83–94PubMed Thireau J, Zhang BL, Poisson D, Babuty D (2007) Heart rate variability in mice: a theoretical and practical guide. Exp Physiol 93(1):83–94PubMed
13.
go back to reference Laude D, Baudrie V, Elghozi J-L (2008) Effects of atropine on the time and frequency domain estimates of blood pressure and heart rate variability in mice. Clin Exp Pharmacol Physiol 35:454–457PubMed Laude D, Baudrie V, Elghozi J-L (2008) Effects of atropine on the time and frequency domain estimates of blood pressure and heart rate variability in mice. Clin Exp Pharmacol Physiol 35:454–457PubMed
14.
go back to reference Eckberg DL (2003) The human respiratory gate. J Physiol 548:339–352PubMed Eckberg DL (2003) The human respiratory gate. J Physiol 548:339–352PubMed
15.
go back to reference Grossman P, Kollai M (1993) Respiratory sinus arrhythmia, cardiac vagal tone, and respiration: within- and between-individual relations. Psychophysiology 30:486–495PubMed Grossman P, Kollai M (1993) Respiratory sinus arrhythmia, cardiac vagal tone, and respiration: within- and between-individual relations. Psychophysiology 30:486–495PubMed
16.
go back to reference Grossman P, Taylor EW (2007) Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol 74:263–285PubMed Grossman P, Taylor EW (2007) Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol 74:263–285PubMed
17.
go back to reference Routledge HC, Chowdhary S, Townend JN (2002) Heart rate variability—a therapeutic target? J Clin Pharm Ther 27:85–92PubMed Routledge HC, Chowdhary S, Townend JN (2002) Heart rate variability—a therapeutic target? J Clin Pharm Ther 27:85–92PubMed
18.
go back to reference Baudrie V, Laude D, Elghozi J-L (2007) Optimal frequency ranges for extracting information on cardiovascular autonomic control from the blood pressure and pulse interval spectrograms in mice. Am J Physiol Regul Integr Comp Physiol 292:R904–R912PubMed Baudrie V, Laude D, Elghozi J-L (2007) Optimal frequency ranges for extracting information on cardiovascular autonomic control from the blood pressure and pulse interval spectrograms in mice. Am J Physiol Regul Integr Comp Physiol 292:R904–R912PubMed
19.
go back to reference Perlini S, Giangregorio F, Coco M, Radaelli A, Solda PL, Bernardi L, Ferrari AU (1995) Autonomic and ventilatory components of heart rate and blood pressure variability in freely behaving rats. Am J Physiol 269(Heart Circ Physiol 38):H1729–H1734PubMed Perlini S, Giangregorio F, Coco M, Radaelli A, Solda PL, Bernardi L, Ferrari AU (1995) Autonomic and ventilatory components of heart rate and blood pressure variability in freely behaving rats. Am J Physiol 269(Heart Circ Physiol 38):H1729–H1734PubMed
20.
go back to reference Grossman P, Karemaker J, Wieling W (1991) Prediction of tonic parasympathetic cardiac control using respiratory sinus arrhythmia: the need for respiratory control. Psychophysiology 28:201–216PubMed Grossman P, Karemaker J, Wieling W (1991) Prediction of tonic parasympathetic cardiac control using respiratory sinus arrhythmia: the need for respiratory control. Psychophysiology 28:201–216PubMed
21.
go back to reference Bernardi L, Rossi M, Soffiantino F, Marti G, Ricordi L, Finardi G, Fratino P (1989) Cross correlation of heart rate and the respiration versus deep breathing. Assessment of new test of cardiac autonomic function in diabetes. Diabetes 38:589–596PubMed Bernardi L, Rossi M, Soffiantino F, Marti G, Ricordi L, Finardi G, Fratino P (1989) Cross correlation of heart rate and the respiration versus deep breathing. Assessment of new test of cardiac autonomic function in diabetes. Diabetes 38:589–596PubMed
22.
go back to reference Jokkel G, Bonyhay I, Kollai M (1995) Heart rate variability after complete autonomic blockade in man. J Auton Nerv Syst 51:85–89PubMed Jokkel G, Bonyhay I, Kollai M (1995) Heart rate variability after complete autonomic blockade in man. J Auton Nerv Syst 51:85–89PubMed
23.
go back to reference Fazan R Jr, de Oliveira M, Dias da Silva VJ, Joaquim LF, Montano N, Porta A, Chapleau MW, Salgado HC (2005) Frequency-dependent baroreflex modulation of blood pressure and heart rate variability in conscious mice. Am J Physiol Heart Circ Physiol 289:H1968–H1975PubMed Fazan R Jr, de Oliveira M, Dias da Silva VJ, Joaquim LF, Montano N, Porta A, Chapleau MW, Salgado HC (2005) Frequency-dependent baroreflex modulation of blood pressure and heart rate variability in conscious mice. Am J Physiol Heart Circ Physiol 289:H1968–H1975PubMed
24.
go back to reference Coote JH, Bothams VF (2001) Cardiac vagal control before, during and after exercise. Exp Physiol 86(6):811–815PubMed Coote JH, Bothams VF (2001) Cardiac vagal control before, during and after exercise. Exp Physiol 86(6):811–815PubMed
25.
go back to reference Tang Y-D, Dewland TA, Wencker D, Katz SD (2009) Post-exercise heart rate recovery independently predicts mortality risk in patients with chronic heart failure. J Cardiac Fail 15:850–855 Tang Y-D, Dewland TA, Wencker D, Katz SD (2009) Post-exercise heart rate recovery independently predicts mortality risk in patients with chronic heart failure. J Cardiac Fail 15:850–855
26.
go back to reference Kollai M, Mizsei G (1990) Respiratory sinus arrhythmia is a limited measure of cardiac parasympathetic control in man. J Physiol 424:329–342PubMed Kollai M, Mizsei G (1990) Respiratory sinus arrhythmia is a limited measure of cardiac parasympathetic control in man. J Physiol 424:329–342PubMed
27.
go back to reference Kiviniemi AM, Hautala AJ, Seppanen T, Makikallio TH, Huikuri HV, Tulppo MP (2004) Saturation of high frequency oscillations of R-R intervals in healthy subjects and patients after acute myocardial infarction during ambulatory conditions. Am J Physiol Heart Circ Physiol 287:H1921–H1927 Kiviniemi AM, Hautala AJ, Seppanen T, Makikallio TH, Huikuri HV, Tulppo MP (2004) Saturation of high frequency oscillations of R-R intervals in healthy subjects and patients after acute myocardial infarction during ambulatory conditions. Am J Physiol Heart Circ Physiol 287:H1921–H1927
28.
go back to reference Katona PG, Jih F (1975) Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol 39:801–805PubMed Katona PG, Jih F (1975) Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol 39:801–805PubMed
29.
go back to reference Bloomfield DM, Zweibel S, Bigger JT Jr, Steinman RC (1998) R-R variability detects increases in vagal modulation with phenylephrine infusion. Am J Physiol 274(Heart Circ Physiol 43):H1761–H1766 Bloomfield DM, Zweibel S, Bigger JT Jr, Steinman RC (1998) R-R variability detects increases in vagal modulation with phenylephrine infusion. Am J Physiol 274(Heart Circ Physiol 43):H1761–H1766
30.
go back to reference Goldberger JJ, Challapalli S, Tung R, Parker MA, Kadish AH (2001) Relationship of heart rate variability to parasympathetic effect. Circulation 103:1977–1983PubMed Goldberger JJ, Challapalli S, Tung R, Parker MA, Kadish AH (2001) Relationship of heart rate variability to parasympathetic effect. Circulation 103:1977–1983PubMed
31.
go back to reference Goldberger JJ, Ahmed MW, Parker MA, Kadish AH (1994) Dissociation of heart rate variability from parasympathetic tone. Am J Physiol 266(Heart Circ Physiol 35):H2152–H2157 Goldberger JJ, Ahmed MW, Parker MA, Kadish AH (1994) Dissociation of heart rate variability from parasympathetic tone. Am J Physiol 266(Heart Circ Physiol 35):H2152–H2157
32.
go back to reference Medigue C, Girard A, Laude D, Monti A, Wargon M, Elghozi J-L (2001) Relationship between pulse interval and respiratory sinus arrhythmia: a time- and frequency-domain analysis of the effects of atropine. Pflugers Arch Eur J Physiol 441:650–655 Medigue C, Girard A, Laude D, Monti A, Wargon M, Elghozi J-L (2001) Relationship between pulse interval and respiratory sinus arrhythmia: a time- and frequency-domain analysis of the effects of atropine. Pflugers Arch Eur J Physiol 441:650–655
33.
go back to reference Buchheit M, Gindre C (2006) Cardiac parasympathetic regulation: respective associations with cardiorespiratory fitness and training load. Am J Physiol Heart Circ Physiol 291:H451–H458PubMed Buchheit M, Gindre C (2006) Cardiac parasympathetic regulation: respective associations with cardiorespiratory fitness and training load. Am J Physiol Heart Circ Physiol 291:H451–H458PubMed
34.
go back to reference Buchheit M, Papelier Y, Laursen PB, Ahmaidi S (2007) Noninvasive assessment of cardiac parasympathetic function: postexercise heart rate recovery or heart rate variability? Am J Physiol Heart Circ Physiol 293:H8–H10PubMed Buchheit M, Papelier Y, Laursen PB, Ahmaidi S (2007) Noninvasive assessment of cardiac parasympathetic function: postexercise heart rate recovery or heart rate variability? Am J Physiol Heart Circ Physiol 293:H8–H10PubMed
35.
go back to reference Katz SD (2010) In search of the optimal measure for assessment of parasympathetic control of heart rate. Clin Auton Res 20:1–2PubMed Katz SD (2010) In search of the optimal measure for assessment of parasympathetic control of heart rate. Clin Auton Res 20:1–2PubMed
36.
go back to reference Kirchheim HR (1976) Systemic arterial baroreceptor reflexes. Physiol Rev 56:100–176PubMed Kirchheim HR (1976) Systemic arterial baroreceptor reflexes. Physiol Rev 56:100–176PubMed
37.
go back to reference Chapleau MW, Li Z, Meyrelles SS, Ma X, Abboud FM (2001) Mechanisms determining sensitivity of baroreceptor afferents in health and disease. Ann N Y Acad Sci 940:1–19PubMed Chapleau MW, Li Z, Meyrelles SS, Ma X, Abboud FM (2001) Mechanisms determining sensitivity of baroreceptor afferents in health and disease. Ann N Y Acad Sci 940:1–19PubMed
38.
go back to reference Kollai M, Jokkel G, Bonyhay I, Tomcsanyi J, Naszlady A (1994) Relation between baroreflex sensitivity and cardiac vagal tone in humans. Am J Physiol 266(Heart Circ Physiol 35):H21–H27PubMed Kollai M, Jokkel G, Bonyhay I, Tomcsanyi J, Naszlady A (1994) Relation between baroreflex sensitivity and cardiac vagal tone in humans. Am J Physiol 266(Heart Circ Physiol 35):H21–H27PubMed
39.
go back to reference Eckberg DL (1980) Parasympathetic cardiovascular control in human disease: a critical review of methods and results. Am J Physiol 239(Heart Circ Physiol 8):H581–H593PubMed Eckberg DL (1980) Parasympathetic cardiovascular control in human disease: a critical review of methods and results. Am J Physiol 239(Heart Circ Physiol 8):H581–H593PubMed
40.
go back to reference Parati G, Di Rienzo M, Mancia G (2000) How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens 18:7–19PubMed Parati G, Di Rienzo M, Mancia G (2000) How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens 18:7–19PubMed
41.
go back to reference Smyth HS, Sleight P, Pickering GW (1969) Reflex regulation of arterial pressure during sleep in man: a quantitative method of assessing baroreflex sensitivity. Circ Res 24:109–121PubMed Smyth HS, Sleight P, Pickering GW (1969) Reflex regulation of arterial pressure during sleep in man: a quantitative method of assessing baroreflex sensitivity. Circ Res 24:109–121PubMed
42.
go back to reference Gribbin B, Pickering TG, Sleight P, Peto R (1971) Effect of age and high blood pressure on baroreflex sensitivity in man. Circ Res 29:424–431PubMed Gribbin B, Pickering TG, Sleight P, Peto R (1971) Effect of age and high blood pressure on baroreflex sensitivity in man. Circ Res 29:424–431PubMed
43.
go back to reference Head GA, McCarty R (1987) Vagal and sympathetic components of the heart rate range and gain of the baroreceptor-heart rate reflex in conscious rats. J Auton Nerv Syst 21:203–213PubMed Head GA, McCarty R (1987) Vagal and sympathetic components of the heart rate range and gain of the baroreceptor-heart rate reflex in conscious rats. J Auton Nerv Syst 21:203–213PubMed
44.
go back to reference Ebert TJ, Cowley AW (1992) Baroreflex modulation of sympathetic outflow during physiological increases of vasopressin in humans. Am J Physiol 262(Heart Circ Physiol 31):H1372–H1378 Ebert TJ, Cowley AW (1992) Baroreflex modulation of sympathetic outflow during physiological increases of vasopressin in humans. Am J Physiol 262(Heart Circ Physiol 31):H1372–H1378
45.
go back to reference Hunt BE, Farquhar WB (2005) Nonlinearities and asymmetries of the human cardiovagal baroreflex. Am J Physiol Regul Integr Comp Physiol 288:R1339–R1346PubMed Hunt BE, Farquhar WB (2005) Nonlinearities and asymmetries of the human cardiovagal baroreflex. Am J Physiol Regul Integr Comp Physiol 288:R1339–R1346PubMed
46.
go back to reference Korner PI, Tonkin AM, Uther JB (1979) Valsalva constrictor and heart rate reflexes in subjects with essential hypertension and with normal blood pressure. Clin Exp Pharmacol Physiol 6:97–110PubMed Korner PI, Tonkin AM, Uther JB (1979) Valsalva constrictor and heart rate reflexes in subjects with essential hypertension and with normal blood pressure. Clin Exp Pharmacol Physiol 6:97–110PubMed
47.
go back to reference Smith ML, Beightol LA, Fritsch-Yelle JM, Ellenbogen KA, Porter TR, Eckberg DL (1996) Valsalva’s maneuver revisited: a quantitative method yielding insights into human autonomic control. Am J Physiol 271(Heart Circ Physiol 40):H1240–H1249PubMed Smith ML, Beightol LA, Fritsch-Yelle JM, Ellenbogen KA, Porter TR, Eckberg DL (1996) Valsalva’s maneuver revisited: a quantitative method yielding insights into human autonomic control. Am J Physiol 271(Heart Circ Physiol 40):H1240–H1249PubMed
48.
go back to reference Eckberg DL, Cavanaugh MS, Mark AL, Abboud FM (1975) A simplified neck suction device for activation of carotid baroreceptors. J Lab Clin Med 85:167–173PubMed Eckberg DL, Cavanaugh MS, Mark AL, Abboud FM (1975) A simplified neck suction device for activation of carotid baroreceptors. J Lab Clin Med 85:167–173PubMed
49.
go back to reference Fadel PJ, Ogoh S, Keller DM, Raven PB (2003) Recent insights into carotid baroreflex function in humans using the variable pressure neck chamber. Exp Physiol 88(6):671–680PubMed Fadel PJ, Ogoh S, Keller DM, Raven PB (2003) Recent insights into carotid baroreflex function in humans using the variable pressure neck chamber. Exp Physiol 88(6):671–680PubMed
50.
go back to reference Cooper VL, Hainsworth R (2009) Carotid baroreflex testing using the neck collar device. Clin Auton Res 19:102–112PubMed Cooper VL, Hainsworth R (2009) Carotid baroreflex testing using the neck collar device. Clin Auton Res 19:102–112PubMed
51.
go back to reference Bertinieri G, Di Rienzo M, Cavallazzi A, Ferrari AU, Pedotti A, Mancia G (1985) A new approach to the analysis of the arterial baroreflex. J Hypertens 3(Suppl 3):579–581 Bertinieri G, Di Rienzo M, Cavallazzi A, Ferrari AU, Pedotti A, Mancia G (1985) A new approach to the analysis of the arterial baroreflex. J Hypertens 3(Suppl 3):579–581
52.
go back to reference Parati G, Frattola A, Di Rienzo M, Castiglioni P, Pedotti A, Mancia G (1995) Effects of aging on 24-h dynamic baroreceptor control of heart rate in ambulant subjects. Am J Physiol 268(Heart Circ Physiol 37):H1606–H1612PubMed Parati G, Frattola A, Di Rienzo M, Castiglioni P, Pedotti A, Mancia G (1995) Effects of aging on 24-h dynamic baroreceptor control of heart rate in ambulant subjects. Am J Physiol 268(Heart Circ Physiol 37):H1606–H1612PubMed
53.
go back to reference Gulli G, Claydon VE, Cooper VL, Hainsworth R (2005) R-R interval-blood pressure interaction in subjects with different tolerances to orthostatic stress. Exp Physiol 90(3):367–375PubMed Gulli G, Claydon VE, Cooper VL, Hainsworth R (2005) R-R interval-blood pressure interaction in subjects with different tolerances to orthostatic stress. Exp Physiol 90(3):367–375PubMed
54.
go back to reference Laude D, Baudrie V, Elghozi J-L (2008) Applicability of recent methods used to estimate spontaneous baroreflex sensitivity to resting mice. Am J Physiol Regul Integr Comp Physiol 294:R142–R150PubMed Laude D, Baudrie V, Elghozi J-L (2008) Applicability of recent methods used to estimate spontaneous baroreflex sensitivity to resting mice. Am J Physiol Regul Integr Comp Physiol 294:R142–R150PubMed
55.
go back to reference Di Rienzo M, Parati G, Castiglioni P, Tordi R, Mancia G, Pedotti A (2001) Baroreflex effectiveness index: an additional measure of baroreflex control of heart rate in daily life. Am J Physiol Regul Integr Comp Physiol 280:R744–R751PubMed Di Rienzo M, Parati G, Castiglioni P, Tordi R, Mancia G, Pedotti A (2001) Baroreflex effectiveness index: an additional measure of baroreflex control of heart rate in daily life. Am J Physiol Regul Integr Comp Physiol 280:R744–R751PubMed
56.
go back to reference Legramante JM, Raimondi G, Massaro M, Cassarino S, Peruzzi G, Iellamo F (1999) Investigating feed-forward neural regulation of circulation from analysis of spontaneous arterial pressure and heart rate fluctuations. Circulation 99:1760–1766PubMed Legramante JM, Raimondi G, Massaro M, Cassarino S, Peruzzi G, Iellamo F (1999) Investigating feed-forward neural regulation of circulation from analysis of spontaneous arterial pressure and heart rate fluctuations. Circulation 99:1760–1766PubMed
57.
go back to reference Wichterle D, Melenovsky V, Malik M (2002) Mechanisms involved in heart rate turbulence. Cardiac Electrophysiol Rev 6:262–266 Wichterle D, Melenovsky V, Malik M (2002) Mechanisms involved in heart rate turbulence. Cardiac Electrophysiol Rev 6:262–266
58.
go back to reference Schmidt G, Malik M, Barthel P, Schneider R, Ulm K, Rolnitzky L, Camm AJ, Bigger JT Jr, Schömig A (1999) Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet 353:1390–1396PubMed Schmidt G, Malik M, Barthel P, Schneider R, Ulm K, Rolnitzky L, Camm AJ, Bigger JT Jr, Schömig A (1999) Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet 353:1390–1396PubMed
59.
go back to reference Watanabe MA, Marine JE, Sheldon R, Josephson ME (2002) Effects of ventricular premature stimulus coupling interval on blood pressure and heart rate turbulence. Circulation 106:325–330PubMed Watanabe MA, Marine JE, Sheldon R, Josephson ME (2002) Effects of ventricular premature stimulus coupling interval on blood pressure and heart rate turbulence. Circulation 106:325–330PubMed
60.
go back to reference Melcher A, Donald DE (1981) Maintained ability of carotid baroreflex to regulate arterial pressure during exercise. Am J Physiol 241(Heart Circ Physiol 10):H838–H849PubMed Melcher A, Donald DE (1981) Maintained ability of carotid baroreflex to regulate arterial pressure during exercise. Am J Physiol 241(Heart Circ Physiol 10):H838–H849PubMed
61.
go back to reference Chapleau MW, Hajduczok G, Abboud FM (1989) Pulsatile activation of baroreceptors causes central facilitation of baroreflex. Am J Physiol 256(Heart Circ Physiol 25):H1735–H1741PubMed Chapleau MW, Hajduczok G, Abboud FM (1989) Pulsatile activation of baroreceptors causes central facilitation of baroreflex. Am J Physiol 256(Heart Circ Physiol 25):H1735–H1741PubMed
62.
go back to reference Richter DW, Keck W, Seller H (1970) The course of inhibition of sympathetic activity during various patterns of carotid sinus nerve stimulation. Pflugers Arch 317:110–123PubMed Richter DW, Keck W, Seller H (1970) The course of inhibition of sympathetic activity during various patterns of carotid sinus nerve stimulation. Pflugers Arch 317:110–123PubMed
63.
go back to reference Oberg B, Kendrick ED, Thoren P, Wennergren G (1981) Reflex cardiovascular responses to graded stimulations of low- and high-threshold afferents in the carotid sinus and aortic nerves in the cat. Acta Physiol Scand 113:129–137PubMed Oberg B, Kendrick ED, Thoren P, Wennergren G (1981) Reflex cardiovascular responses to graded stimulations of low- and high-threshold afferents in the carotid sinus and aortic nerves in the cat. Acta Physiol Scand 113:129–137PubMed
64.
go back to reference Fan W, Schild JH, Andresen MC (1999) Graded and dynamic reflex summation of myelinated and unmyelinated rat aortic baroreceptors. Am J Physiol 277(Regulatory Integrative Comp Physiol 46):R748–R756PubMed Fan W, Schild JH, Andresen MC (1999) Graded and dynamic reflex summation of myelinated and unmyelinated rat aortic baroreceptors. Am J Physiol 277(Regulatory Integrative Comp Physiol 46):R748–R756PubMed
65.
go back to reference Ma X, Abboud FM, Chapleau MW (2002) Analysis of afferent, central, and efferent components of the baroreceptor reflex in mice. Am J Physiol Regul Integr Comp Physiol 283:R1033–R1040PubMed Ma X, Abboud FM, Chapleau MW (2002) Analysis of afferent, central, and efferent components of the baroreceptor reflex in mice. Am J Physiol Regul Integr Comp Physiol 283:R1033–R1040PubMed
66.
go back to reference Salgado HC, Barale AR, Castania JA, Machado BH, Chapleau MW, Fazan R Jr (2007) Baroreflex responses to electrical stimulation of aortic depressor nerve in conscious SHR. Am J Physiol Heart Circ Physiol 292:H593–H600PubMed Salgado HC, Barale AR, Castania JA, Machado BH, Chapleau MW, Fazan R Jr (2007) Baroreflex responses to electrical stimulation of aortic depressor nerve in conscious SHR. Am J Physiol Heart Circ Physiol 292:H593–H600PubMed
67.
go back to reference Lohmeier TE, Dwyer TM, Irwin ED, Rossing MA, Kieval RS (2007) Prolonged activation of the baroreflex abolishes obesity-induced hypertension. Hypertension 49:1307–1314PubMed Lohmeier TE, Dwyer TM, Irwin ED, Rossing MA, Kieval RS (2007) Prolonged activation of the baroreflex abolishes obesity-induced hypertension. Hypertension 49:1307–1314PubMed
68.
go back to reference Braunwald E, Epstein SE, Glick G, Wechsler AS, Braunwald NS (1967) Relief of angina pectoris by electrical stimulation of the carotid-sinus nerves. N Engl J Med 277:1278–1283PubMed Braunwald E, Epstein SE, Glick G, Wechsler AS, Braunwald NS (1967) Relief of angina pectoris by electrical stimulation of the carotid-sinus nerves. N Engl J Med 277:1278–1283PubMed
69.
go back to reference Doumas M, Guo D, Papademetriou V (2009) Carotid baroreceptor stimulation as a therapeutic target in hypertension and other cardiovascular conditions. Expert Opin Ther Targets 13:413–425PubMed Doumas M, Guo D, Papademetriou V (2009) Carotid baroreceptor stimulation as a therapeutic target in hypertension and other cardiovascular conditions. Expert Opin Ther Targets 13:413–425PubMed
70.
go back to reference Sapru HN, Gonzalez E, Krieger AJ (1981) Aortic nerve stimulation in the rat: cardiovascular and respiratory responses. Brain Res Bull 6:393–398PubMed Sapru HN, Gonzalez E, Krieger AJ (1981) Aortic nerve stimulation in the rat: cardiovascular and respiratory responses. Brain Res Bull 6:393–398PubMed
71.
go back to reference de Burgh Daly M (1997) Peripheral arterial chemoreceptors and respiratory-cardiovascular regulation. Monographs of the Physiological Society, vol 46. Oxford Medical Publications, Oxford de Burgh Daly M (1997) Peripheral arterial chemoreceptors and respiratory-cardiovascular regulation. Monographs of the Physiological Society, vol 46. Oxford Medical Publications, Oxford
72.
go back to reference Somers VK, Mark AL, Abboud FM (1988) Potentiation of sympathetic nerve responses to hypoxia in borderline hypertensive subjects. Hypertension 11:608–612PubMed Somers VK, Mark AL, Abboud FM (1988) Potentiation of sympathetic nerve responses to hypoxia in borderline hypertensive subjects. Hypertension 11:608–612PubMed
73.
go back to reference Steinback CD, Salzer D, Medeiros PJ, Kowalchuk J, Shoemaker JK (2009) Hypercapnic vs. hypoxic control of cardiovascular, cardiovagal, and sympathetic function. Am J Physiol Regul Integr Comp Physiol 296:R402–R410PubMed Steinback CD, Salzer D, Medeiros PJ, Kowalchuk J, Shoemaker JK (2009) Hypercapnic vs. hypoxic control of cardiovascular, cardiovagal, and sympathetic function. Am J Physiol Regul Integr Comp Physiol 296:R402–R410PubMed
74.
go back to reference Chua TP, Ponikowski PP, Harrington D, Chambers J, Coats AJS (1996) Contribution of peripheral chemoreceptors to ventilation and the effects of their suppression on exercise tolerance in chronic heart failure. Heart 76:483–489PubMed Chua TP, Ponikowski PP, Harrington D, Chambers J, Coats AJS (1996) Contribution of peripheral chemoreceptors to ventilation and the effects of their suppression on exercise tolerance in chronic heart failure. Heart 76:483–489PubMed
75.
go back to reference Blain GM, Smith CA, Henderson KS, Dempsey JA (2009) Contribution of the carotid body chemoreceptors to eupneic ventilation in the intact, unanesthetized dog. J Appl Physiol 106:1564–1573PubMed Blain GM, Smith CA, Henderson KS, Dempsey JA (2009) Contribution of the carotid body chemoreceptors to eupneic ventilation in the intact, unanesthetized dog. J Appl Physiol 106:1564–1573PubMed
76.
go back to reference Barros RCH, Bonagamba LGH, Okamoto-Canesin R, de Oliveira M, Branco LGS, Machado BH (2002) Cardiovascular responses to chemoreflex activation with potassium cyanide or hypoxic hypoxia in awake rats. Auton Neurosci 97:110–115PubMed Barros RCH, Bonagamba LGH, Okamoto-Canesin R, de Oliveira M, Branco LGS, Machado BH (2002) Cardiovascular responses to chemoreflex activation with potassium cyanide or hypoxic hypoxia in awake rats. Auton Neurosci 97:110–115PubMed
77.
go back to reference Schaller B, Cornelius JF, Prabhakar H, Koerbel A, Gnanalingham K, Sandu N, Ottaviani G, Filis A, Buchfelder M (2009) The trigemino-cardiac reflex: an update of the current knowledge. J Neurosurg Anesthesiol 21:187–195PubMed Schaller B, Cornelius JF, Prabhakar H, Koerbel A, Gnanalingham K, Sandu N, Ottaviani G, Filis A, Buchfelder M (2009) The trigemino-cardiac reflex: an update of the current knowledge. J Neurosurg Anesthesiol 21:187–195PubMed
78.
go back to reference Khurana RK, Wu R (2006) The cold face test: a non-baroreflex mediated test of cardiac vagal function. Clin Auton Res 16:202–207PubMed Khurana RK, Wu R (2006) The cold face test: a non-baroreflex mediated test of cardiac vagal function. Clin Auton Res 16:202–207PubMed
79.
go back to reference Al-Ani M, Powell L, West J, Townend J, Coote JH (1995) Exercise and diving, two conflicting stimuli influencing cardiac vagal tone in man. J Physiol 489(2):603–612PubMed Al-Ani M, Powell L, West J, Townend J, Coote JH (1995) Exercise and diving, two conflicting stimuli influencing cardiac vagal tone in man. J Physiol 489(2):603–612PubMed
80.
go back to reference McCulloch PF, DiNovo KM, Connolly TM (2010) The cardiovascular and endocrine responses to voluntary and forced diving in trained and untrained rats. Am J Physiol Regul Integr Comp Physiol 298:R224–R234PubMed McCulloch PF, DiNovo KM, Connolly TM (2010) The cardiovascular and endocrine responses to voluntary and forced diving in trained and untrained rats. Am J Physiol Regul Integr Comp Physiol 298:R224–R234PubMed
81.
go back to reference Aviado DM, Aviado DG (2001) The Bezold-Jarisch reflex: a historical perspective of cardiopulmonary reflexes. Ann NY Acad Sci 940:48–58PubMed Aviado DM, Aviado DG (2001) The Bezold-Jarisch reflex: a historical perspective of cardiopulmonary reflexes. Ann NY Acad Sci 940:48–58PubMed
82.
go back to reference Ustinova EE, Schultz HD (1994) Activation of cardiac vagal afferents in ischemia and reperfusion: prostaglandins versus oxygen-derived free radicals. Circ Res 74:904–911PubMed Ustinova EE, Schultz HD (1994) Activation of cardiac vagal afferents in ischemia and reperfusion: prostaglandins versus oxygen-derived free radicals. Circ Res 74:904–911PubMed
83.
go back to reference Mark A (1983) The Bezold-Jarisch reflex revisited: clinical implications of inhibitory reflexes originating in the heart. J Am Coll Cardiol 1:90–102PubMed Mark A (1983) The Bezold-Jarisch reflex revisited: clinical implications of inhibitory reflexes originating in the heart. J Am Coll Cardiol 1:90–102PubMed
84.
go back to reference Cooper VL, Hainsworth R (2008) Head-up sleeping improves orthostatic tolerance in patients with syncope. Clin Auton Res 18:318–324PubMed Cooper VL, Hainsworth R (2008) Head-up sleeping improves orthostatic tolerance in patients with syncope. Clin Auton Res 18:318–324PubMed
85.
go back to reference Anrep GV, Pascual W, Rossler R (1936) Respiratory variations of the heart rate. I. The reflex mechanism of the respiratory arrhythmia. Proc R Soc Lond Ser B 119B:191–217 Anrep GV, Pascual W, Rossler R (1936) Respiratory variations of the heart rate. I. The reflex mechanism of the respiratory arrhythmia. Proc R Soc Lond Ser B 119B:191–217
86.
go back to reference Koh J, Brown TE, Beightol LA, Eckberg DL (1998) Contributions of tidal lung inflation to human R-R interval and arterial pressure fluctuations. J Auton Nerv Syst 68:89–95PubMed Koh J, Brown TE, Beightol LA, Eckberg DL (1998) Contributions of tidal lung inflation to human R-R interval and arterial pressure fluctuations. J Auton Nerv Syst 68:89–95PubMed
87.
go back to reference Longhurst JC, Tjen-A-Looi SC, Fu L-W (2001) Cardiac sympathetic afferent activation provoked by myocardial ischemia and reperfusion: mechanisms and reflexes. Ann N Y Acad Sci 940:74–95PubMed Longhurst JC, Tjen-A-Looi SC, Fu L-W (2001) Cardiac sympathetic afferent activation provoked by myocardial ischemia and reperfusion: mechanisms and reflexes. Ann N Y Acad Sci 940:74–95PubMed
88.
go back to reference Malliani A (1982) Cardiovascular sympathetic afferent fibers. Rev Physiol Biochem Pharmacol 94:11–74 Malliani A (1982) Cardiovascular sympathetic afferent fibers. Rev Physiol Biochem Pharmacol 94:11–74
89.
go back to reference Wang W, Zucker IH (1996) Cardiac sympathetic afferent reflex in dogs with congestive heart failure. Am J Physiol 271(Regulatory Integrative Comp Physiol 40):R751–R756PubMed Wang W, Zucker IH (1996) Cardiac sympathetic afferent reflex in dogs with congestive heart failure. Am J Physiol 271(Regulatory Integrative Comp Physiol 40):R751–R756PubMed
90.
go back to reference McWilliam PN, Yang T (1991) Inhibition of cardiac vagal component of baroreflex by group III and IV afferents. Am J Physiol 260(Heart Circ Physiol 29):H730–H734PubMed McWilliam PN, Yang T (1991) Inhibition of cardiac vagal component of baroreflex by group III and IV afferents. Am J Physiol 260(Heart Circ Physiol 29):H730–H734PubMed
91.
go back to reference Al-Ani M, Robins K, Al-Khalidi AH, Vaile J, Townend J, Coote JH (1997) Isometric contraction of arm flexor muscles as a method of evaluating cardiac vagal tone in man. Clin Sci 92:175–180PubMed Al-Ani M, Robins K, Al-Khalidi AH, Vaile J, Townend J, Coote JH (1997) Isometric contraction of arm flexor muscles as a method of evaluating cardiac vagal tone in man. Clin Sci 92:175–180PubMed
92.
go back to reference Gladwell VF, Fletcher J, Patel N, Elvidge LJ, Lloyd D, Chowdhary S, Coote JH (2005) The influence of small fibre muscle mechanoreceptors on the cardiac vagus in humans. J Physiol 567(2):713–721PubMed Gladwell VF, Fletcher J, Patel N, Elvidge LJ, Lloyd D, Chowdhary S, Coote JH (2005) The influence of small fibre muscle mechanoreceptors on the cardiac vagus in humans. J Physiol 567(2):713–721PubMed
93.
go back to reference O’Leary DS (1993) Autonomic mechanisms of muscle metaboreflex control of heart rate. J Appl Physiol 74:1748–1754PubMed O’Leary DS (1993) Autonomic mechanisms of muscle metaboreflex control of heart rate. J Appl Physiol 74:1748–1754PubMed
94.
go back to reference Murata J, Matsukawa K (2001) Cardiac vagal and sympathetic efferent discharges are differentially modified by stretch of skeletal muscle. Am J Physiol Heart Circ Physiol 280:H237–H245PubMed Murata J, Matsukawa K (2001) Cardiac vagal and sympathetic efferent discharges are differentially modified by stretch of skeletal muscle. Am J Physiol Heart Circ Physiol 280:H237–H245PubMed
95.
go back to reference Kim JK, Hayes SG, Kindig AE, Kaufman MP (2007) Thin-fiber mechanoreceptors reflexly increase renal sympathetic nerve activity during static contraction. Am J Physiol Heart Circ Physiol 292:H866–H873PubMed Kim JK, Hayes SG, Kindig AE, Kaufman MP (2007) Thin-fiber mechanoreceptors reflexly increase renal sympathetic nerve activity during static contraction. Am J Physiol Heart Circ Physiol 292:H866–H873PubMed
96.
go back to reference McAllen RM, Spyer KM (1978) Two types of vagal preganglionic motoneurones projecting to the heart and lungs. J Physiol 282:353–364PubMed McAllen RM, Spyer KM (1978) Two types of vagal preganglionic motoneurones projecting to the heart and lungs. J Physiol 282:353–364PubMed
97.
go back to reference McAllen RM, Spyer KM (1978) The baroreceptor input to cardiac vagal motoneurons. J Physiol 282:365–374PubMed McAllen RM, Spyer KM (1978) The baroreceptor input to cardiac vagal motoneurons. J Physiol 282:365–374PubMed
98.
go back to reference Rentero N, Cividjian A, Trevaks D, Pequignot JM, Quintin L, McAllen RM (2002) Activity patterns of cardiac vagal motoneurons in rat nucleus ambiguus. Am J Physiol Regul Integr Comp Physiol 283:R1327–R1334PubMed Rentero N, Cividjian A, Trevaks D, Pequignot JM, Quintin L, McAllen RM (2002) Activity patterns of cardiac vagal motoneurons in rat nucleus ambiguus. Am J Physiol Regul Integr Comp Physiol 283:R1327–R1334PubMed
99.
go back to reference Nosaka S, Yasunaga K, Tamai S (1982) Vagal cardiac preganglionic neurons: distribution, cell types, and reflex discharges. Am J Physiol 243(Regulatory Integrative and Comp Physiol 12):R92–R98 Nosaka S, Yasunaga K, Tamai S (1982) Vagal cardiac preganglionic neurons: distribution, cell types, and reflex discharges. Am J Physiol 243(Regulatory Integrative and Comp Physiol 12):R92–R98
100.
go back to reference Jones JFX, Wang Y, Jordan D (1998) Activity of C fibre cardiac vagal efferents in anaesthetized cats and rats. J Physiol 507(3):869–880PubMed Jones JFX, Wang Y, Jordan D (1998) Activity of C fibre cardiac vagal efferents in anaesthetized cats and rats. J Physiol 507(3):869–880PubMed
101.
go back to reference Iriuchijima J, Kumada M (1964) Activity of single vagal fibers efferent to the heart. Jpn J Physiol 14:479–487PubMed Iriuchijima J, Kumada M (1964) Activity of single vagal fibers efferent to the heart. Jpn J Physiol 14:479–487PubMed
102.
go back to reference Katona PG, Poitras JW, Barnett GO, Terry BS (1970) Cardiac vagal efferent activity and heart period in the carotid sinus reflex. Am J Physiol 218:1030–1037PubMed Katona PG, Poitras JW, Barnett GO, Terry BS (1970) Cardiac vagal efferent activity and heart period in the carotid sinus reflex. Am J Physiol 218:1030–1037PubMed
103.
go back to reference Kunze DL (1972) Reflex discharge patterns of cardiac vagal efferent fibres. J Physiol 222:1–15PubMed Kunze DL (1972) Reflex discharge patterns of cardiac vagal efferent fibres. J Physiol 222:1–15PubMed
104.
go back to reference Davidson NS, Goldner S, McCloskey DI (1976) Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart rate and cardiac vagal efferent nerve activity. J Physiol 259:523–530PubMed Davidson NS, Goldner S, McCloskey DI (1976) Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart rate and cardiac vagal efferent nerve activity. J Physiol 259:523–530PubMed
105.
go back to reference Ramadan MRM, Drinkhill MJ, Mary DASG (1989) The effect of distension of the urinary bladder on activity in efferent vagal fibres in anesthetized dogs. Q J Exp Physiol 74:493–501PubMed Ramadan MRM, Drinkhill MJ, Mary DASG (1989) The effect of distension of the urinary bladder on activity in efferent vagal fibres in anesthetized dogs. Q J Exp Physiol 74:493–501PubMed
106.
go back to reference Cerati D, Schwartz PJ (1991) Single cardiac vagal fiber activity, acute myocardial ischemia, and risk for sudden death. Circ Res 69:1389–1401PubMed Cerati D, Schwartz PJ (1991) Single cardiac vagal fiber activity, acute myocardial ischemia, and risk for sudden death. Circ Res 69:1389–1401PubMed
107.
go back to reference O’Leary DM, Jones JFX (2003) Discharge patterns of preganglionic neurons with axons in a cardiac vagal branch in the rat. Exp Physiol 88(6):711–723PubMed O’Leary DM, Jones JFX (2003) Discharge patterns of preganglionic neurons with axons in a cardiac vagal branch in the rat. Exp Physiol 88(6):711–723PubMed
108.
go back to reference Geis GS, Kozelka JW, Wurster RD (1981) Organization and reflex control of vagal cardiomotor neurons. J Auton Nerv Syst 3:437–450PubMed Geis GS, Kozelka JW, Wurster RD (1981) Organization and reflex control of vagal cardiomotor neurons. J Auton Nerv Syst 3:437–450PubMed
109.
go back to reference Jones JFX, Wang Y, Jordan D (1995) Heart rate responses to selective stimulation of cardiac vagal C fibres in anaesthetized cats, rats, and rabbits. J Physiol 489(1):203–214PubMed Jones JFX, Wang Y, Jordan D (1995) Heart rate responses to selective stimulation of cardiac vagal C fibres in anaesthetized cats, rats, and rabbits. J Physiol 489(1):203–214PubMed
110.
go back to reference Cheng Z, Zhang H, Guo SZ, Wurster R, Gozal D (2004) Differential control over postganglionic neurons in rat cardiac ganglia by NA and DmnX neurons: anatomical evidence. Am J Physiol Regul Integr Comp Physiol 286:625–633 Cheng Z, Zhang H, Guo SZ, Wurster R, Gozal D (2004) Differential control over postganglionic neurons in rat cardiac ganglia by NA and DmnX neurons: anatomical evidence. Am J Physiol Regul Integr Comp Physiol 286:625–633
111.
go back to reference Bonyhay I, Jokkel G, Karlocai K, Reneman R, Kollai M (1997) Effect of vasoactive drugs on carotid diameter in humans. Am J Physiol 273(Heart Circ Physiol 42):H1629–H1636PubMed Bonyhay I, Jokkel G, Karlocai K, Reneman R, Kollai M (1997) Effect of vasoactive drugs on carotid diameter in humans. Am J Physiol 273(Heart Circ Physiol 42):H1629–H1636PubMed
112.
go back to reference Hunt BE, Fahy L, Farquhar WB, Taylor JA (2001) Quantification of mechanical and neural components of vagal baroreflex in humans. Hypertension 37:1362–1368PubMed Hunt BE, Fahy L, Farquhar WB, Taylor JA (2001) Quantification of mechanical and neural components of vagal baroreflex in humans. Hypertension 37:1362–1368PubMed
113.
go back to reference Hunt BE, Farquhar WB, Taylor JA (2001) Does reduced vascular stiffening fully explain preserved cardiovagal baroreflex function in older, physically active men? Circulation 103:2424–2427PubMed Hunt BE, Farquhar WB, Taylor JA (2001) Does reduced vascular stiffening fully explain preserved cardiovagal baroreflex function in older, physically active men? Circulation 103:2424–2427PubMed
114.
go back to reference Kornet L, Hoeks AP, Janssen BJ, Willigers JM, Reneman RS (2002) Carotid diameter variations as a non-invasive tool to examine carotid baroreceptor sensitivity. J Hypertens 20:1165–1173PubMed Kornet L, Hoeks AP, Janssen BJ, Willigers JM, Reneman RS (2002) Carotid diameter variations as a non-invasive tool to examine carotid baroreceptor sensitivity. J Hypertens 20:1165–1173PubMed
115.
go back to reference Lenard Z, Studinger P, Mersich B, Kocsis L, Kollai M (2004) Maturation of cardiovagal autonomic function from childhood to young adult age. Circulation 110:2307–2312PubMed Lenard Z, Studinger P, Mersich B, Kocsis L, Kollai M (2004) Maturation of cardiovagal autonomic function from childhood to young adult age. Circulation 110:2307–2312PubMed
116.
go back to reference Studinger P, Goldstein R, Taylor JA (2007) Mechanical and neural contributions to hysteresis in the cardiac vagal limb of the arterial baroreflex. J Physiol 583(3):1041–1048PubMed Studinger P, Goldstein R, Taylor JA (2007) Mechanical and neural contributions to hysteresis in the cardiac vagal limb of the arterial baroreflex. J Physiol 583(3):1041–1048PubMed
117.
go back to reference Ma X, Abboud FM, Chapleau MW (2003) Neurocardiovascular regulation in mice: experimental approaches and novel findings. Clin Exp Pharmacol Physiol 30:885–893PubMed Ma X, Abboud FM, Chapleau MW (2003) Neurocardiovascular regulation in mice: experimental approaches and novel findings. Clin Exp Pharmacol Physiol 30:885–893PubMed
118.
go back to reference Lin M, Liu R, Gozal D, Wead WB, Chapleau MW, Wurster R, Cheng Z (2007) Chronic intermittent hypoxia impairs baroreflex control of heart rate but enhances heart rate responses to vagal efferent stimulation in anesthetized mice. Am J Physiol Heart Circ Physiol 293:H997–H1006PubMed Lin M, Liu R, Gozal D, Wead WB, Chapleau MW, Wurster R, Cheng Z (2007) Chronic intermittent hypoxia impairs baroreflex control of heart rate but enhances heart rate responses to vagal efferent stimulation in anesthetized mice. Am J Physiol Heart Circ Physiol 293:H997–H1006PubMed
119.
go back to reference Abramochkin DV, Nurullin LF, Borodinova AA, Tarasova NV, Sukhova GS, Nikolsky EE, Rosenshtraukh LV (2009) Non-quantal release of acetylcholine from parasympathetic nerve terminals in the right atrium of rats. Exp Physiol 95(2):265–273PubMed Abramochkin DV, Nurullin LF, Borodinova AA, Tarasova NV, Sukhova GS, Nikolsky EE, Rosenshtraukh LV (2009) Non-quantal release of acetylcholine from parasympathetic nerve terminals in the right atrium of rats. Exp Physiol 95(2):265–273PubMed
120.
go back to reference Shimizu S, Akiyama T, Kawada T, Shishido T, Yamazaki T, Kamiya A, Mizuno M, Sano S, Sugimachi M (2009) In vivo direct monitoring of vagal acetylcholine release to the sinoatrial node. Auton Neurosci 148:44–49PubMed Shimizu S, Akiyama T, Kawada T, Shishido T, Yamazaki T, Kamiya A, Mizuno M, Sano S, Sugimachi M (2009) In vivo direct monitoring of vagal acetylcholine release to the sinoatrial node. Auton Neurosci 148:44–49PubMed
121.
go back to reference Paton JFR, Butcher JW (1998) Cardiorespiratory reflexes in mice. J Auton Nerv Syst 68:115–124PubMed Paton JFR, Butcher JW (1998) Cardiorespiratory reflexes in mice. J Auton Nerv Syst 68:115–124PubMed
122.
go back to reference Paton JFR (1998) Pattern of cardiorespiratory afferent convergence to solitary tract neurons driven by pulmonary vagal C-fiber stimulation in the mouse. J Neurophysiol 79:2365–2373PubMed Paton JFR (1998) Pattern of cardiorespiratory afferent convergence to solitary tract neurons driven by pulmonary vagal C-fiber stimulation in the mouse. J Neurophysiol 79:2365–2373PubMed
123.
go back to reference Potts JT, Spyer KM, Paton JFR (2000) Somatosympathetic reflex in a working heart-brainstem preparation of the rat. Brain Res Bull 53:59–67PubMed Potts JT, Spyer KM, Paton JFR (2000) Somatosympathetic reflex in a working heart-brainstem preparation of the rat. Brain Res Bull 53:59–67PubMed
124.
go back to reference Nalivaiko E, Antunes VR, Paton JFR (2009) Control of cardiac contractility in the rat working heart-brainstem preparation. Exp Physiol 95(1):107–119PubMed Nalivaiko E, Antunes VR, Paton JFR (2009) Control of cardiac contractility in the rat working heart-brainstem preparation. Exp Physiol 95(1):107–119PubMed
125.
go back to reference Mohan RM, Heaton DA, Danson EJF, Krishnan SPR, Cai S, Channon KM, Paterson DJ (2002) Neuronal nitric oxide synthase gene transfer promotes cardiac vagal gain of function. Circ Res 91:1089–1091PubMed Mohan RM, Heaton DA, Danson EJF, Krishnan SPR, Cai S, Channon KM, Paterson DJ (2002) Neuronal nitric oxide synthase gene transfer promotes cardiac vagal gain of function. Circ Res 91:1089–1091PubMed
126.
go back to reference Brack KE, Coote JH, Ng GA (2009) Vagus nerve stimulation inhibits the increase in Ca2+ transient and left ventricular force caused by sympathetic nerve stimulation but has no direct effects alone—epicardial Ca2+ fluorescence studies using fura-2 AM in the isolated innervated beating rabbit heart. Exp Physiol 95(1):80–92PubMed Brack KE, Coote JH, Ng GA (2009) Vagus nerve stimulation inhibits the increase in Ca2+ transient and left ventricular force caused by sympathetic nerve stimulation but has no direct effects alone—epicardial Ca2+ fluorescence studies using fura-2 AM in the isolated innervated beating rabbit heart. Exp Physiol 95(1):80–92PubMed
127.
go back to reference Wang J, Irnaten M, Neff RA, Venkatesan P, Evans C, Loewy AD, Mettenleiter TC, Mendelowitz D (2001) Synaptic and neurotransmitter activation of cardiac vagal neurons in the nucleus ambiguus. Ann NY Acad Sci 940:237–246PubMed Wang J, Irnaten M, Neff RA, Venkatesan P, Evans C, Loewy AD, Mettenleiter TC, Mendelowitz D (2001) Synaptic and neurotransmitter activation of cardiac vagal neurons in the nucleus ambiguus. Ann NY Acad Sci 940:237–246PubMed
128.
go back to reference Neff RA, Wang J, Baxi S, Evans C, Mendelowitz D (2003) Respiratory sinus arrhythmia: endogenous activation of nicotinic receptors mediates respiratory modulation of brainstem cardioinhibitory parasympathetic neurons. Circ Res 93:565–572PubMed Neff RA, Wang J, Baxi S, Evans C, Mendelowitz D (2003) Respiratory sinus arrhythmia: endogenous activation of nicotinic receptors mediates respiratory modulation of brainstem cardioinhibitory parasympathetic neurons. Circ Res 93:565–572PubMed
129.
go back to reference Adams DJ, Harper AA (1995) Electrophysiological properties of autonomic ganglion neurons. In: McLachlan EM (ed) Autonomic ganglia. Harwood Academic Publishers, Reading, pp 153–212 Adams DJ, Harper AA (1995) Electrophysiological properties of autonomic ganglion neurons. In: McLachlan EM (ed) Autonomic ganglia. Harwood Academic Publishers, Reading, pp 153–212
130.
go back to reference Ardell JL, Randall WC (1986) Selective vagal innervation of sinoatrial and atrioventricular nodes in canine heart. Am J Physiol 251(Heart Circ Physiol 20):H764–H773PubMed Ardell JL, Randall WC (1986) Selective vagal innervation of sinoatrial and atrioventricular nodes in canine heart. Am J Physiol 251(Heart Circ Physiol 20):H764–H773PubMed
131.
go back to reference Sampaio KN, Mauad H, Spyer KM, Ford TW (2003) Differential chronotropic and dromotropic response to focal stimulation of cardiac vagal ganglia in the rat. Exp Physiol 88(3):315–327PubMed Sampaio KN, Mauad H, Spyer KM, Ford TW (2003) Differential chronotropic and dromotropic response to focal stimulation of cardiac vagal ganglia in the rat. Exp Physiol 88(3):315–327PubMed
132.
go back to reference Quan KJ, Lee JH, Van Hare GF, Biblo LA, Mackall JA, Carlson MD (2002) Identification and characterization of atrioventricular parasympathetic innervation in humans. J Cardiovasc Electrophysiol 13:735–739PubMed Quan KJ, Lee JH, Van Hare GF, Biblo LA, Mackall JA, Carlson MD (2002) Identification and characterization of atrioventricular parasympathetic innervation in humans. J Cardiovasc Electrophysiol 13:735–739PubMed
133.
go back to reference Gray AL, Johnson TA, Ardell JL, Massari VJ (2004) Parasympathetic control of the heart. II. A novel interganglionic intrinsic cardiac circuit mediates neural control of heart rate. J Appl Physiol 96:2273–2278PubMed Gray AL, Johnson TA, Ardell JL, Massari VJ (2004) Parasympathetic control of the heart. II. A novel interganglionic intrinsic cardiac circuit mediates neural control of heart rate. J Appl Physiol 96:2273–2278PubMed
134.
go back to reference Johnson TA, Gray AL, Lauenstein J-M, Newton SS, Massari VJ (2004) Parasympathetic control of the heart. I. An interventriculo-septal ganglion is the major source of the vagal intracardiac innervation of the ventricles. J Appl Physiol 96:2265–2272PubMed Johnson TA, Gray AL, Lauenstein J-M, Newton SS, Massari VJ (2004) Parasympathetic control of the heart. I. An interventriculo-septal ganglion is the major source of the vagal intracardiac innervation of the ventricles. J Appl Physiol 96:2265–2272PubMed
135.
go back to reference Casadei B (2001) Vagal control of myocardial contractility in humans. Exp Physiol 86(6):817–823PubMed Casadei B (2001) Vagal control of myocardial contractility in humans. Exp Physiol 86(6):817–823PubMed
136.
go back to reference Chiou C-W, Zipes DP (1998) Selective vagal denervation of the atria eliminates heart rate variability and baroreflex sensitivity while preserving ventricular innervation. Circulation 98:360–368PubMed Chiou C-W, Zipes DP (1998) Selective vagal denervation of the atria eliminates heart rate variability and baroreflex sensitivity while preserving ventricular innervation. Circulation 98:360–368PubMed
137.
go back to reference Inoue H, Zipes DP (1987) Changes in atrial and ventricular refractoriness and in atrioventricular nodal conduction produced by combinations of vagal and sympathetic stimulation that result in a constant spontaneous sinus cycle length. Circ Res 60:942–951PubMed Inoue H, Zipes DP (1987) Changes in atrial and ventricular refractoriness and in atrioventricular nodal conduction produced by combinations of vagal and sympathetic stimulation that result in a constant spontaneous sinus cycle length. Circ Res 60:942–951PubMed
138.
go back to reference Scanavacca M, Hachul D, Pisani C, Sosa E (2009) Selective vagal denervation of the sinus and atrioventricular nodes, guided by vagal reflexes induced by high frequency stimulation, to treat refractory neurally mediated syncope. J Cardiovasc Electrophysiol 20:558–563PubMed Scanavacca M, Hachul D, Pisani C, Sosa E (2009) Selective vagal denervation of the sinus and atrioventricular nodes, guided by vagal reflexes induced by high frequency stimulation, to treat refractory neurally mediated syncope. J Cardiovasc Electrophysiol 20:558–563PubMed
139.
go back to reference Tsutsumi T, Ide T, Yamato M, Kudou W, Andou M, Hirooka Y, Utsumi H, Tsutsui H, Sunagawa K (2008) Modulation of the myocardial redox state by vagal nerve stimulation after experimental myocardial infarction. Cardiovasc Res 77:713–721PubMed Tsutsumi T, Ide T, Yamato M, Kudou W, Andou M, Hirooka Y, Utsumi H, Tsutsui H, Sunagawa K (2008) Modulation of the myocardial redox state by vagal nerve stimulation after experimental myocardial infarction. Cardiovasc Res 77:713–721PubMed
140.
go back to reference Freeling J, Wattier K, LaCroix C, Li Y-F (2007) Neostigmine and pilocarpine attenuated tumour necrosis factor α expression and cardiac hypertrophy in the heart with pressure overload. Exp Physiol 93(1):75–82PubMed Freeling J, Wattier K, LaCroix C, Li Y-F (2007) Neostigmine and pilocarpine attenuated tumour necrosis factor α expression and cardiac hypertrophy in the heart with pressure overload. Exp Physiol 93(1):75–82PubMed
141.
go back to reference Handa T, Katare RG, Kakinuma Y, Arikawa M, Ando M, Sasaguri S, Yamasaki Y, Sato T (2009) Anti-Alzheimer’s drug, donepezil, markedly improves long-term survival after chronic heart failure in mice. J Cardiac Fail 15:805–811 Handa T, Katare RG, Kakinuma Y, Arikawa M, Ando M, Sasaguri S, Yamasaki Y, Sato T (2009) Anti-Alzheimer’s drug, donepezil, markedly improves long-term survival after chronic heart failure in mice. J Cardiac Fail 15:805–811
142.
go back to reference Okazaki Y, Zheng C, Li M, Sugimachi M (2010) Effect of the cholinesterase inhibitor donepezil on cardiac remodeling and autonomic balance in rats with heart failure. J Physiol Sci 60:67–74PubMed Okazaki Y, Zheng C, Li M, Sugimachi M (2010) Effect of the cholinesterase inhibitor donepezil on cardiac remodeling and autonomic balance in rats with heart failure. J Physiol Sci 60:67–74PubMed
143.
go back to reference Kakinuma Y, Akiyama T, Sato T (2009) Cholinoceptive and cholinergic properties of cardiomyocytes involving an amplification mechanism for vagal efferent effects in sparsely innervated ventricular myocardium. FEBS J 276:5111–5125PubMed Kakinuma Y, Akiyama T, Sato T (2009) Cholinoceptive and cholinergic properties of cardiomyocytes involving an amplification mechanism for vagal efferent effects in sparsely innervated ventricular myocardium. FEBS J 276:5111–5125PubMed
144.
go back to reference Hoover DB, Isaacs ER, Jacques F, Hoard JL, Page P, Armour JA (2009) Localization of multiple neurotransmitters in surgically derived specimens of human atrial ganglia. Neuroscience 164:1170–1179PubMed Hoover DB, Isaacs ER, Jacques F, Hoard JL, Page P, Armour JA (2009) Localization of multiple neurotransmitters in surgically derived specimens of human atrial ganglia. Neuroscience 164:1170–1179PubMed
145.
go back to reference Herring N, Paterson DJ (2008) Neuromodulators of peripheral cardiac sympatho-vagal balance. Exp Physiol 94(1):46–53PubMed Herring N, Paterson DJ (2008) Neuromodulators of peripheral cardiac sympatho-vagal balance. Exp Physiol 94(1):46–53PubMed
146.
go back to reference Caffrey JL (1999) Enkephalin inhibits vagal control of heart rate, contractile force and coronary blood flow in the canine heart in vivo. J Auton Nerv Syst 76:75–82PubMed Caffrey JL (1999) Enkephalin inhibits vagal control of heart rate, contractile force and coronary blood flow in the canine heart in vivo. J Auton Nerv Syst 76:75–82PubMed
147.
go back to reference Farias M III, Jackson K, Johnson M, Caffrey JL (2003) Cardiac enkephalins attenuate vagal bradycardia: Interactions with NOS-1-cGMP systems in canine sinoatrial node. Am J Physiol Heart Circ Physiol 285:H2001–H2012PubMed Farias M III, Jackson K, Johnson M, Caffrey JL (2003) Cardiac enkephalins attenuate vagal bradycardia: Interactions with NOS-1-cGMP systems in canine sinoatrial node. Am J Physiol Heart Circ Physiol 285:H2001–H2012PubMed
148.
go back to reference Danson EJ, Li D, Wang L, Dawson TA, Paterson DJ (2009) Targeting cardiac sympatho-vagal imbalance using gene transfer of nitric oxide synthase. J Mol Cell Cardiol 46:482–489PubMed Danson EJ, Li D, Wang L, Dawson TA, Paterson DJ (2009) Targeting cardiac sympatho-vagal imbalance using gene transfer of nitric oxide synthase. J Mol Cell Cardiol 46:482–489PubMed
149.
go back to reference Parmer RJ, Cervenka JH, Stone RA (1992) Baroreflex sensitivity and heredity in essential hypertension. Circulation 85:497–503PubMed Parmer RJ, Cervenka JH, Stone RA (1992) Baroreflex sensitivity and heredity in essential hypertension. Circulation 85:497–503PubMed
150.
go back to reference Sinnreich R, Friedlander Y, Sapoznikov D, Kark JD (1998) Familial aggregation of heart rate variability based on short recordings–the kibbutzim family study. Hum Genet 103:34–40PubMed Sinnreich R, Friedlander Y, Sapoznikov D, Kark JD (1998) Familial aggregation of heart rate variability based on short recordings–the kibbutzim family study. Hum Genet 103:34–40PubMed
151.
go back to reference Singh JP, Larson MG, O’Donnell CJ et al (1999) Heritability of heart rate variability: the Framingham Heart Study. Circulation 99:2251–2254PubMed Singh JP, Larson MG, O’Donnell CJ et al (1999) Heritability of heart rate variability: the Framingham Heart Study. Circulation 99:2251–2254PubMed
152.
go back to reference Singh JP, Larson MG, O’Donnell CJ et al (2002) Genome scan linkage results for heart rate variability (the Framingham Heart Study). Am J Cardiol 90:1290–1293PubMed Singh JP, Larson MG, O’Donnell CJ et al (2002) Genome scan linkage results for heart rate variability (the Framingham Heart Study). Am J Cardiol 90:1290–1293PubMed
153.
go back to reference Tank J, Jordan J, Diedrich A, Stoffels M, Franke G, Faulhaber H-D, Luft FC, Busjahn A (2001) Genetic influences on baroreflex function in normal twins. Hypertension 37:907–910PubMed Tank J, Jordan J, Diedrich A, Stoffels M, Franke G, Faulhaber H-D, Luft FC, Busjahn A (2001) Genetic influences on baroreflex function in normal twins. Hypertension 37:907–910PubMed
154.
go back to reference Maver J, Strucl M, Accetto R (2004) Autonomic nervous system activity in normotensive subjects with a family history of hypertension. Clin Auton Res 14:369–375PubMed Maver J, Strucl M, Accetto R (2004) Autonomic nervous system activity in normotensive subjects with a family history of hypertension. Clin Auton Res 14:369–375PubMed
155.
go back to reference Uusitalo ALT, Vanninen E, Levalahti E, Battie MC, Videman T, Kaprio J (2007) Role of genetic and environmental influences on heart rate variability in middle-aged men. Am J Physiol Heart Circ Physiol 293:H1013–H1022PubMed Uusitalo ALT, Vanninen E, Levalahti E, Battie MC, Videman T, Kaprio J (2007) Role of genetic and environmental influences on heart rate variability in middle-aged men. Am J Physiol Heart Circ Physiol 293:H1013–H1022PubMed
156.
go back to reference Ylitalo A, Airaksinen KE, Hautanen A, Kupari M, Carson M, Virolainen J, Savolainen M, Kauma H, Kesaniemi YA, White PC, Huikuri HV (2000) Baroreflex sensitivity and variants of the renin angiotensin system genes. J Am Coll Cardiol 35:194–200PubMed Ylitalo A, Airaksinen KE, Hautanen A, Kupari M, Carson M, Virolainen J, Savolainen M, Kauma H, Kesaniemi YA, White PC, Huikuri HV (2000) Baroreflex sensitivity and variants of the renin angiotensin system genes. J Am Coll Cardiol 35:194–200PubMed
157.
go back to reference Gollasch M, Tank J, Luft FC, Jordan J, Maass P, Krasko C, Sharma AM, Busjahn A, Bahring S (2002) The BK channel β1 subunit gene is associated with human baroreflex and blood pressure regulation. J Hypertens 20:927–933PubMed Gollasch M, Tank J, Luft FC, Jordan J, Maass P, Krasko C, Sharma AM, Busjahn A, Bahring S (2002) The BK channel β1 subunit gene is associated with human baroreflex and blood pressure regulation. J Hypertens 20:927–933PubMed
158.
go back to reference Girard A, Sidi D, Aggoun Y, Laude D, Bonnet D, Elghozi JL (2002) Elastin mutation is associated with a reduced gain of the baroreceptor-heart rate reflex in patients with Williams syndrome. Clin Auton Res 12:72–77PubMed Girard A, Sidi D, Aggoun Y, Laude D, Bonnet D, Elghozi JL (2002) Elastin mutation is associated with a reduced gain of the baroreceptor-heart rate reflex in patients with Williams syndrome. Clin Auton Res 12:72–77PubMed
159.
go back to reference Hautala AJ, Rankinen T, Kiviniemi AM, Makikallio TH, Huikuri HV, Bouchard C, Tulppo MP (2006) Heart rate recovery after maximal exercise is associated with acetylcholine receptor M2 (CHRM2) gene polymorphism. Am J Physiol Heart Circ Physiol 291:H459–H466PubMed Hautala AJ, Rankinen T, Kiviniemi AM, Makikallio TH, Huikuri HV, Bouchard C, Tulppo MP (2006) Heart rate recovery after maximal exercise is associated with acetylcholine receptor M2 (CHRM2) gene polymorphism. Am J Physiol Heart Circ Physiol 291:H459–H466PubMed
160.
go back to reference Hautala AJ, Tulppo MP, Kiviniemi AM, Rankinen T, Bouchard C, Makikallio TH, Huikuri HV (2009) Acetylcholine receptor M2 gene variants, heart rate recovery, and risk of cardiac death after an acute myocardial infarction. Ann Med 41:197–207PubMed Hautala AJ, Tulppo MP, Kiviniemi AM, Rankinen T, Bouchard C, Makikallio TH, Huikuri HV (2009) Acetylcholine receptor M2 gene variants, heart rate recovery, and risk of cardiac death after an acute myocardial infarction. Ann Med 41:197–207PubMed
161.
go back to reference Probst-Hensch NM, Imboden M, Dietrich DF, Barthelemy J-C, Ackermann-Liebrich U, Berger W, Gaspoz J-M, Schwartz J (2008) Glutathione S-transferase polymorphisms, passive smoking, obesity, and heart rate variability in nonsmokers. Environ Health Perspect 116:1494–1499PubMed Probst-Hensch NM, Imboden M, Dietrich DF, Barthelemy J-C, Ackermann-Liebrich U, Berger W, Gaspoz J-M, Schwartz J (2008) Glutathione S-transferase polymorphisms, passive smoking, obesity, and heart rate variability in nonsmokers. Environ Health Perspect 116:1494–1499PubMed
162.
go back to reference Matsunaga T, Gu N, Yamazaki H, Tsuda M, Adachi T, Yasuda K, Moritani T, Tsuda K, Nonaka M, Nishiyama T (2009) Association of UCP2 and UCP3 polymorphisms with heart rate variability in Japanese men. J Hypertens 27:305–313PubMed Matsunaga T, Gu N, Yamazaki H, Tsuda M, Adachi T, Yasuda K, Moritani T, Tsuda K, Nonaka M, Nishiyama T (2009) Association of UCP2 and UCP3 polymorphisms with heart rate variability in Japanese men. J Hypertens 27:305–313PubMed
163.
go back to reference Wickman K, Nemec J, Gendler SJ, Clapham DE (1998) Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 20:103–114PubMed Wickman K, Nemec J, Gendler SJ, Clapham DE (1998) Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 20:103–114PubMed
164.
go back to reference Choate JK, Danson EJF, Morris JF, Paterson DJ (2001) Peripheral vagal control of heart rate is impaired in neuronal NOS knockout mice. Am J Physiol Heart Circ Physiol 281:H2310–H2317PubMed Choate JK, Danson EJF, Morris JF, Paterson DJ (2001) Peripheral vagal control of heart rate is impaired in neuronal NOS knockout mice. Am J Physiol Heart Circ Physiol 281:H2310–H2317PubMed
165.
go back to reference Cogliati T, Good DJ, Haigney M, Delgado-Romero P, Eckhaus MA, Koch WJ, Kirsch IR (2002) Predisposition to arrhythmia and autonomic dysfunction in Nhlh1-deficient mice. Mol Cell Biol 22:4977–4983PubMed Cogliati T, Good DJ, Haigney M, Delgado-Romero P, Eckhaus MA, Koch WJ, Kirsch IR (2002) Predisposition to arrhythmia and autonomic dysfunction in Nhlh1-deficient mice. Mol Cell Biol 22:4977–4983PubMed
166.
go back to reference Lu Y, Ma X, Sabharwal R, Snitsarev V, Morgan D, Rahmouni K, Drummond HA, Whiteis CA, Costa V, Price M, Benson C, Welsh MJ, Chapleau MW, Abboud FM (2009) The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron 64:885–897PubMed Lu Y, Ma X, Sabharwal R, Snitsarev V, Morgan D, Rahmouni K, Drummond HA, Whiteis CA, Costa V, Price M, Benson C, Welsh MJ, Chapleau MW, Abboud FM (2009) The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron 64:885–897PubMed
167.
go back to reference Sabharwal R, Zhang Z, Lu Y, Abboud FM, Russo AF, Chapleau MW (2010) Receptor activity-modifying protein 1 increases baroreflex sensitivity and attenuates angiotensin-induced hypertension. Hypertension 55:627–635PubMed Sabharwal R, Zhang Z, Lu Y, Abboud FM, Russo AF, Chapleau MW (2010) Receptor activity-modifying protein 1 increases baroreflex sensitivity and attenuates angiotensin-induced hypertension. Hypertension 55:627–635PubMed
168.
go back to reference Glasscock E, Yoo JW, Chen TT, Klassen TL, Noebels JL (2010) Kv1.1 potassium channel deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for sudden death in epilepsy. J Neurosci 30:5167–5175PubMed Glasscock E, Yoo JW, Chen TT, Klassen TL, Noebels JL (2010) Kv1.1 potassium channel deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for sudden death in epilepsy. J Neurosci 30:5167–5175PubMed
Metadata
Title
Methods of assessing vagus nerve activity and reflexes
Authors
Mark W. Chapleau
Rasna Sabharwal
Publication date
01-03-2011
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 2/2011
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-010-9174-6

Other articles of this Issue 2/2011

Heart Failure Reviews 2/2011 Go to the issue