Skip to main content
Top
Published in: Documenta Ophthalmologica 2/2017

01-10-2017 | Original Research Article

Accuracy of isolated-check visual evoked potential technique for diagnosing primary open-angle glaucoma

Authors: Li Juan Xu, Liang Zhang, Sha Ling Li, Vance Zemon, Gianni Virgili, Yuan Bo Liang

Published in: Documenta Ophthalmologica | Issue 2/2017

Login to get access

Abstract

Purpose

The aim of this study was to determine the diagnostic accuracy, sensitivity and specificity of isolated-check visual evoked potentials (icVEP) in primary open-angle glaucoma (POAG).

Methods

Ninety POAG patients and sixty-six healthy controls were recruited consecutively. All subjects underwent icVEP and visual field testing. Swept icVEP response functions were obtained by increasing contrast in six stimulus steps, recording the electroencephalogram synchronized to the stimulus display’s frame rate and calculating the corresponding signal-to-noise ratio (SNR) of the response at the fundamental frequency to evaluate visual function. Depth of modulation of the check luminance was increased as follows: 2, 4, 8, 14, 22 and 32%, about an equal level of standing contrast, so that the pattern appeared and disappeared at a frequency of 10.0 Hz. SNR above 0.85 was deemed to be significant at the 0.1 level and SNR above 1 significant at the 0.05 level.

Results

The results show that SNR is contrast dependent. It significantly rose as contrast increased. The areas under receiver-operating-characteristic curves (AUCs) indicating classification accuracy for all POAG cases in comparison with normal subjects were 0.790 (sensitivity 91.1%, specificity 69.7%) with the cutoff SNR of 0.85, and 0.706 (sensitivity 95.6%, specificity 51.5%) with the cutoff SNR of 1. The AUC of early glaucoma cases (EG) in comparison with normal subjects was 0.801 (sensitivity 93.3%, specificity 69.7%) with the cutoff SNR of 0.85, and 0.717 (sensitivity 97.8%, specificity 51.5%) with the cutoff SNR of 1.

Conclusion

icVEP has good diagnostic accuracy (high sensitivity and moderate specificity) in distinguishing early POAG patients from healthy subjects. It might be a promising device to use in conjunction with complementary functional and structural measures for early POAG detection.
Literature
1.
go back to reference Leske MC et al (2003) Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 121(1):48–56CrossRefPubMed Leske MC et al (2003) Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 121(1):48–56CrossRefPubMed
2.
go back to reference Kerrigan-Baumrind LA et al (2000) Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Investig Ophthalmol Vis Sci 41(3):741–748 Kerrigan-Baumrind LA et al (2000) Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Investig Ophthalmol Vis Sci 41(3):741–748
3.
go back to reference Quigley HA, Dunkelberger GR, Green WR (1989) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107(5):453–464CrossRefPubMed Quigley HA, Dunkelberger GR, Green WR (1989) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107(5):453–464CrossRefPubMed
4.
go back to reference Glovinsky Y, Quigley HA, Dunkelberger GR (1991) Retinal ganglion cell loss is size dependent in experimental glaucoma. Investig Ophthalmol Vis Sci 32(3):484–491 Glovinsky Y, Quigley HA, Dunkelberger GR (1991) Retinal ganglion cell loss is size dependent in experimental glaucoma. Investig Ophthalmol Vis Sci 32(3):484–491
5.
go back to reference Glovinsky Y, Quigley HA, Pease ME (1993) Foveal ganglion cell loss is size dependent in experimental glaucoma. Investig Ophthalmol Vis Sci 34(2):395–400 Glovinsky Y, Quigley HA, Pease ME (1993) Foveal ganglion cell loss is size dependent in experimental glaucoma. Investig Ophthalmol Vis Sci 34(2):395–400
6.
go back to reference Wen W et al (2015) A novel motion-on-color paradigm for isolating magnocellular pathway function in preperimetric glaucoma. Investig Ophthalmol Vis Sci 56(8):4439–4446CrossRef Wen W et al (2015) A novel motion-on-color paradigm for isolating magnocellular pathway function in preperimetric glaucoma. Investig Ophthalmol Vis Sci 56(8):4439–4446CrossRef
7.
go back to reference Quigley HA (1998) Identification of glaucoma-related visual field abnormality with the screening protocol of frequency doubling technology. Am J Ophthalmol 125(6):819–829CrossRefPubMed Quigley HA (1998) Identification of glaucoma-related visual field abnormality with the screening protocol of frequency doubling technology. Am J Ophthalmol 125(6):819–829CrossRefPubMed
8.
9.
go back to reference Sample PA, Bosworth CF, Weinreb RN (1997) Short-wavelength automated perimetry and motion automated perimetry in patients with glaucoma. Arch Ophthalmol 115(9):1129–1133CrossRefPubMed Sample PA, Bosworth CF, Weinreb RN (1997) Short-wavelength automated perimetry and motion automated perimetry in patients with glaucoma. Arch Ophthalmol 115(9):1129–1133CrossRefPubMed
10.
go back to reference Anderson AJ et al (2005) Characteristics of the normative database for the Humphrey matrix perimeter. Investig Ophthalmol Vis Sci 46(4):1540–1548CrossRef Anderson AJ et al (2005) Characteristics of the normative database for the Humphrey matrix perimeter. Investig Ophthalmol Vis Sci 46(4):1540–1548CrossRef
11.
go back to reference Colotto A et al (2000) Photopic negative response of the human ERG: losses associated with glaucomatous damage. Investig Ophthalmol Vis Sci 41(8):2205–2211 Colotto A et al (2000) Photopic negative response of the human ERG: losses associated with glaucomatous damage. Investig Ophthalmol Vis Sci 41(8):2205–2211
12.
go back to reference Towle VL et al (1983) The visual evoked potential in glaucoma and ocular hypertension: effects of check size, field size, and stimulation rate. Investig Ophthalmol Vis Sci 24(2):175–183 Towle VL et al (1983) The visual evoked potential in glaucoma and ocular hypertension: effects of check size, field size, and stimulation rate. Investig Ophthalmol Vis Sci 24(2):175–183
13.
go back to reference Baseler HA et al (1994) The topography of visual evoked response properties across the visual field. Electroencephalogr Clin Neurophysiol 90(1):65–81CrossRefPubMed Baseler HA et al (1994) The topography of visual evoked response properties across the visual field. Electroencephalogr Clin Neurophysiol 90(1):65–81CrossRefPubMed
14.
go back to reference Hood DC et al (2000) An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve. Investig Ophthalmol Vis Sci 41(6):1580–1587 Hood DC et al (2000) An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve. Investig Ophthalmol Vis Sci 41(6):1580–1587
15.
go back to reference Mousa MF et al (2013) The role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects. Clin Ophthalmol 7:843–858PubMedPubMedCentral Mousa MF et al (2013) The role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects. Clin Ophthalmol 7:843–858PubMedPubMedCentral
16.
17.
go back to reference Derrington AM, Lennie P (1984) Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J Physiol 357:219–240CrossRefPubMedPubMedCentral Derrington AM, Lennie P (1984) Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J Physiol 357:219–240CrossRefPubMedPubMedCentral
18.
go back to reference Zemon V et al (2008) Novel electrophysiological instrument for rapid and objective assessment of magnocellular deficits associated with glaucoma. Doc Ophthalmol 117(3):233–243CrossRefPubMed Zemon V et al (2008) Novel electrophysiological instrument for rapid and objective assessment of magnocellular deficits associated with glaucoma. Doc Ophthalmol 117(3):233–243CrossRefPubMed
19.
go back to reference Zemon V, Gordon J (2006) Luminance-contrast mechanisms in humans: visual evoked potentials and a nonlinear model. Vis Res 46(24):4163–4180CrossRefPubMed Zemon V, Gordon J (2006) Luminance-contrast mechanisms in humans: visual evoked potentials and a nonlinear model. Vis Res 46(24):4163–4180CrossRefPubMed
20.
go back to reference Budenz DL et al (2002) Comparison of glaucomatous visual field defects using standard full threshold and Swedish interactive threshold algorithms. Arch Ophthalmol 120(9):1136–1141CrossRefPubMed Budenz DL et al (2002) Comparison of glaucomatous visual field defects using standard full threshold and Swedish interactive threshold algorithms. Arch Ophthalmol 120(9):1136–1141CrossRefPubMed
21.
go back to reference Anderson DR, Parrish RK, Hodapp E (1993) Clinical decisions in glaucoma. St. Louis, Mosby, p 204 Anderson DR, Parrish RK, Hodapp E (1993) Clinical decisions in glaucoma. St. Louis, Mosby, p 204
22.
go back to reference Zemon V, Gordon J, Welch J (1988) Asymmetries in ON and OFF visual pathways of humans revealed using contrast-evoked cortical potentials. Vis Neurosci 1(1):145–150CrossRefPubMed Zemon V, Gordon J, Welch J (1988) Asymmetries in ON and OFF visual pathways of humans revealed using contrast-evoked cortical potentials. Vis Neurosci 1(1):145–150CrossRefPubMed
23.
go back to reference Greenstein VC et al (1998) Visual evoked potential assessment of the effects of glaucoma on visual subsystems. Vis Res 38(12):1901–1911CrossRefPubMed Greenstein VC et al (1998) Visual evoked potential assessment of the effects of glaucoma on visual subsystems. Vis Res 38(12):1901–1911CrossRefPubMed
24.
go back to reference Victor JD, Mast J (1991) A new statistic for steady-state evoked potentials. Electroencephalogr Clin Neurophysiol 78(5):378–388CrossRefPubMed Victor JD, Mast J (1991) A new statistic for steady-state evoked potentials. Electroencephalogr Clin Neurophysiol 78(5):378–388CrossRefPubMed
25.
go back to reference Homan RW, Herman J, Purdy P (1987) Cerebral location of international 10–20 system electrode placement. Electroencephalogr Clin Neurophysiol 66(4):376–382CrossRefPubMed Homan RW, Herman J, Purdy P (1987) Cerebral location of international 10–20 system electrode placement. Electroencephalogr Clin Neurophysiol 66(4):376–382CrossRefPubMed
27.
go back to reference Sackett DL (1991) Clinical epidemiology: a basic science for clinical medicine, 2nd edn. Little Brown, Boston, p 441 Sackett DL (1991) Clinical epidemiology: a basic science for clinical medicine, 2nd edn. Little Brown, Boston, p 441
28.
go back to reference Fortune B et al (2007) Comparing multifocal VEP and standard automated perimetry in high-risk ocular hypertension and early glaucoma. Investig Ophthalmol Vis Sci 48(3):1173–1180CrossRef Fortune B et al (2007) Comparing multifocal VEP and standard automated perimetry in high-risk ocular hypertension and early glaucoma. Investig Ophthalmol Vis Sci 48(3):1173–1180CrossRef
29.
go back to reference Balachandran C et al (2006) Comparison of objective diagnostic tests in glaucoma: Heidelberg retinal tomography and multifocal visual evoked potentials. J Glaucoma 15(2):110–116CrossRefPubMed Balachandran C et al (2006) Comparison of objective diagnostic tests in glaucoma: Heidelberg retinal tomography and multifocal visual evoked potentials. J Glaucoma 15(2):110–116CrossRefPubMed
30.
go back to reference Ito Y et al (2009) Morphological changes in the visual pathway induced by experimental glaucoma in Japanese monkeys. Exp Eye Res 89(2):246–255CrossRefPubMed Ito Y et al (2009) Morphological changes in the visual pathway induced by experimental glaucoma in Japanese monkeys. Exp Eye Res 89(2):246–255CrossRefPubMed
31.
go back to reference Zhang P et al (2016) Selective reduction of fMRI responses to transient achromatic stimuli in the magnocellular layers of the LGN and the superficial layer of the SC of early glaucoma patients. Hum Brain Mapp 37(2):558–569CrossRefPubMed Zhang P et al (2016) Selective reduction of fMRI responses to transient achromatic stimuli in the magnocellular layers of the LGN and the superficial layer of the SC of early glaucoma patients. Hum Brain Mapp 37(2):558–569CrossRefPubMed
32.
go back to reference Dacey DM, Petersen MR (1992) Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proc Natl Acad Sci USA 89(20):9666–9670CrossRefPubMedPubMedCentral Dacey DM, Petersen MR (1992) Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proc Natl Acad Sci USA 89(20):9666–9670CrossRefPubMedPubMedCentral
33.
go back to reference Sun H et al (2008) Assessment of contrast gain signature in inferred magnocellular and parvocellular pathways in patients with glaucoma. Vis Res 48(26):2633–2641CrossRefPubMedPubMedCentral Sun H et al (2008) Assessment of contrast gain signature in inferred magnocellular and parvocellular pathways in patients with glaucoma. Vis Res 48(26):2633–2641CrossRefPubMedPubMedCentral
34.
go back to reference Johnson CA (1994) Selective versus nonselective losses in glaucoma. J Glaucoma 3(Suppl 1):S32–S44PubMed Johnson CA (1994) Selective versus nonselective losses in glaucoma. J Glaucoma 3(Suppl 1):S32–S44PubMed
35.
go back to reference Kaplan E, Shapley RM (1986) The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci USA 83(8):2755–2757CrossRefPubMedPubMedCentral Kaplan E, Shapley RM (1986) The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci USA 83(8):2755–2757CrossRefPubMedPubMedCentral
36.
go back to reference Soodak RE, Shapley RM, Kaplan E (1991) Fine structure of receptive-field centers of X and Y cells of the cat. Vis Neurosci 6(6):621–628CrossRefPubMed Soodak RE, Shapley RM, Kaplan E (1991) Fine structure of receptive-field centers of X and Y cells of the cat. Vis Neurosci 6(6):621–628CrossRefPubMed
37.
go back to reference Sclar G, Maunsell JH, Lennie P (1990) Coding of image contrast in central visual pathways of the macaque monkey. Vis Res 30(1):1–10CrossRefPubMed Sclar G, Maunsell JH, Lennie P (1990) Coding of image contrast in central visual pathways of the macaque monkey. Vis Res 30(1):1–10CrossRefPubMed
38.
go back to reference Zemon V et al (1995) Contrast-dependent responses in the human visual system: childhood through adulthood. Int J Neurosci 80(1–4):181–201CrossRefPubMed Zemon V et al (1995) Contrast-dependent responses in the human visual system: childhood through adulthood. Int J Neurosci 80(1–4):181–201CrossRefPubMed
39.
go back to reference Colon EJ, Visser SL (1990) Evoked Potential Manual Colon EJ, Visser SL (1990) Evoked Potential Manual
40.
go back to reference Tabachnick BG, Fidell LS (2013) Using multivariate statistics, 6th edn. Pearson Education, Boston, pp 74–76 Tabachnick BG, Fidell LS (2013) Using multivariate statistics, 6th edn. Pearson Education, Boston, pp 74–76
41.
go back to reference Mozaffarieh M, Grieshaber MC, Flammer J (2008) Oxygen and blood flow: players in the pathogenesis of glaucoma. Mol Vis 14:224–233PubMedPubMedCentral Mozaffarieh M, Grieshaber MC, Flammer J (2008) Oxygen and blood flow: players in the pathogenesis of glaucoma. Mol Vis 14:224–233PubMedPubMedCentral
42.
go back to reference Delaney Y, Walshe TE, O’Brien C (2006) Vasospasm in glaucoma: clinical and laboratory aspects. Optom Vis Sci 83(7):406–414 Delaney Y, Walshe TE, O’Brien C (2006) Vasospasm in glaucoma: clinical and laboratory aspects. Optom Vis Sci 83(7):406–414
43.
go back to reference Mackenzie PJ, Cioffi GA (2008) Vascular anatomy of the optic nerve head. Can J Ophthalmol 43(3):308–312CrossRefPubMed Mackenzie PJ, Cioffi GA (2008) Vascular anatomy of the optic nerve head. Can J Ophthalmol 43(3):308–312CrossRefPubMed
45.
go back to reference Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300(1):5–25CrossRefPubMed Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300(1):5–25CrossRefPubMed
46.
go back to reference Wassle H et al (1990) Retinal ganglion cell density and cortical magnification factor in the primate. Vis Res 30(11):1897–1911CrossRefPubMed Wassle H et al (1990) Retinal ganglion cell density and cortical magnification factor in the primate. Vis Res 30(11):1897–1911CrossRefPubMed
47.
go back to reference Leung CK et al (2005) Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology 112(3):391–400CrossRefPubMed Leung CK et al (2005) Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology 112(3):391–400CrossRefPubMed
48.
go back to reference Sharma R et al (2015) Visual evoked potentials: normative values and gender differences. J Clin Diagn Res 9(7):CC12–5PubMed Sharma R et al (2015) Visual evoked potentials: normative values and gender differences. J Clin Diagn Res 9(7):CC12–5PubMed
49.
go back to reference Rutjes AW et al (2005) Case–control and two-gate designs in diagnostic accuracy studies. Clin Chem 51(8):1335–1341CrossRefPubMed Rutjes AW et al (2005) Case–control and two-gate designs in diagnostic accuracy studies. Clin Chem 51(8):1335–1341CrossRefPubMed
Metadata
Title
Accuracy of isolated-check visual evoked potential technique for diagnosing primary open-angle glaucoma
Authors
Li Juan Xu
Liang Zhang
Sha Ling Li
Vance Zemon
Gianni Virgili
Yuan Bo Liang
Publication date
01-10-2017
Publisher
Springer Berlin Heidelberg
Published in
Documenta Ophthalmologica / Issue 2/2017
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-017-9598-6

Other articles of this Issue 2/2017

Documenta Ophthalmologica 2/2017 Go to the issue