Skip to main content
Top
Published in: Clinical & Experimental Metastasis 8/2007

01-11-2007 | Review

New concepts in breast cancer metastasis: tumor initiating cells and the microenvironment

Authors: Jonathan P. Sleeman, Natascha Cremers

Published in: Clinical & Experimental Metastasis | Issue 8/2007

Login to get access

Abstract

The currently prevailing ideas that set out to explain the process of metastasis are largely based on observations made on the total tumor cell population, and often focus on tumor-intrinsic properties. The clinical observation that particular tumor types show a predilection to metastasize to particular organs has been understood in terms of Paget’s “Seed and Soil” hypothesis, but a definition of the molecular basis for the “Seed and Soil” hypothesis is at best only partial. Recent ideas about the cellular basis of tumor growth (cancer stem cells) and the remote establishment by primary tumors of special permissive microenvironments in target organs prior to metastasis (pre-metastatic niches) have the potential to radically change our view of the metastatic process. In this review we examine these new concepts with a particular emphasis on findings made in the context of breast cancer, and compare these concepts with ideas based on studies using the total tumor cell population.
Literature
1.
go back to reference Sleeman JP (2000) The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res 157:55–81PubMed Sleeman JP (2000) The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res 157:55–81PubMed
3.
go back to reference Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458PubMedCrossRef Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458PubMedCrossRef
5.
go back to reference van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536CrossRef van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536CrossRef
6.
go back to reference van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009PubMedCrossRef van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009PubMedCrossRef
7.
go back to reference Weigelt B, Glas AM, Wessels LF et al (2003) Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci USA 100:15901–15905PubMedCrossRef Weigelt B, Glas AM, Wessels LF et al (2003) Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci USA 100:15901–15905PubMedCrossRef
8.
go back to reference Weigelt B, Hu Z, He X et al (2005) Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res 65:9155–9158PubMedCrossRef Weigelt B, Hu Z, He X et al (2005) Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res 65:9155–9158PubMedCrossRef
9.
go back to reference Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549PubMedCrossRef Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549PubMedCrossRef
10.
go back to reference Minn AJ, Kang Y, Serganova I et al (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115:44–55PubMed Minn AJ, Kang Y, Serganova I et al (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115:44–55PubMed
11.
go back to reference Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524PubMedCrossRef Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524PubMedCrossRef
12.
go back to reference Kang Y, He W, Tulley S et al (2005) Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA 102:13909–13914PubMedCrossRef Kang Y, He W, Tulley S et al (2005) Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA 102:13909–13914PubMedCrossRef
13.
go back to reference Deckers M, van Dinther M, Buijs J et al (2006) The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 66:2202–2209PubMedCrossRef Deckers M, van Dinther M, Buijs J et al (2006) The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 66:2202–2209PubMedCrossRef
14.
go back to reference Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142PubMedCrossRef Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142PubMedCrossRef
15.
go back to reference Berx GER, Christofori G et al (2007) Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clin Exp Metastasis Berx GER, Christofori G et al (2007) Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clin Exp Metastasis
16.
go back to reference Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284PubMedCrossRef Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284PubMedCrossRef
17.
go back to reference Kelly PN, Dakic A, Adams JM et al (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317:337PubMedCrossRef Kelly PN, Dakic A, Adams JM et al (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317:337PubMedCrossRef
18.
go back to reference Kruger JA, Kaplan CD, Luo Y et al (2006) Characterization of stem cell-like cancer cells in immune-competent mice. Blood 108:3906–3912PubMedCrossRef Kruger JA, Kaplan CD, Luo Y et al (2006) Characterization of stem cell-like cancer cells in immune-competent mice. Blood 108:3906–3912PubMedCrossRef
19.
go back to reference Ghods AJ, Irvin D, Liu G et al (2007) Spheres isolated from 9L gliosarcoma rat cell line possess chemoresistant and aggressive cancer stem-like cells. Stem Cells 25:1645–1653PubMedCrossRef Ghods AJ, Irvin D, Liu G et al (2007) Spheres isolated from 9L gliosarcoma rat cell line possess chemoresistant and aggressive cancer stem-like cells. Stem Cells 25:1645–1653PubMedCrossRef
20.
go back to reference Li Y, Welm B, Podsypanina K et al (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA 100:15853–15858PubMedCrossRef Li Y, Welm B, Podsypanina K et al (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA 100:15853–15858PubMedCrossRef
21.
go back to reference Roy M, Pear WS, Aster JC (2007) The multifaceted role of Notch in cancer. Curr Opin Genet Dev 17:52–59PubMedCrossRef Roy M, Pear WS, Aster JC (2007) The multifaceted role of Notch in cancer. Curr Opin Genet Dev 17:52–59PubMedCrossRef
22.
go back to reference Clement V, Sanchez P, de Tribolet N et al (2007) HEDGEHOG-GLI1 Signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165–172PubMedCrossRef Clement V, Sanchez P, de Tribolet N et al (2007) HEDGEHOG-GLI1 Signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165–172PubMedCrossRef
23.
go back to reference Piccirillo SG, Reynolds BA, Zanetti N et al (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765PubMedCrossRef Piccirillo SG, Reynolds BA, Zanetti N et al (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765PubMedCrossRef
24.
go back to reference Burkert J, Wright NA, Alison MR (2006) Stem cells and cancer: an intimate relationship. J Pathol 209:287–297PubMedCrossRef Burkert J, Wright NA, Alison MR (2006) Stem cells and cancer: an intimate relationship. J Pathol 209:287–297PubMedCrossRef
25.
go back to reference Li F, Tiede B, Massague J et al (2007) Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17:3–14PubMedCrossRef Li F, Tiede B, Massague J et al (2007) Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17:3–14PubMedCrossRef
26.
go back to reference Al-Hajj M, Becker MW, Wicha M et al (2004) Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 14:43–47PubMedCrossRef Al-Hajj M, Becker MW, Wicha M et al (2004) Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 14:43–47PubMedCrossRef
27.
go back to reference Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785PubMedCrossRef Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785PubMedCrossRef
28.
go back to reference Abraham BK, Fritz P, McClellan M et al (2005) Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11:1154–1159PubMed Abraham BK, Fritz P, McClellan M et al (2005) Prevalence of CD44+/CD24/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11:1154–1159PubMed
29.
go back to reference Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988PubMedCrossRef Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988PubMedCrossRef
30.
go back to reference Ponti D, Costa A, Zaffaroni N et al (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511PubMedCrossRef Ponti D, Costa A, Zaffaroni N et al (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511PubMedCrossRef
31.
go back to reference Shipitsin M, Campbell LL, Argani P et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273PubMedCrossRef Shipitsin M, Campbell LL, Argani P et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273PubMedCrossRef
32.
go back to reference Brabletz T, Jung A, Spaderna S et al (2005) Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749PubMedCrossRef Brabletz T, Jung A, Spaderna S et al (2005) Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749PubMedCrossRef
33.
go back to reference Lugo TG, Braun S, Cote RJ et al (2003) Detection and measurement of occult disease for the prognosis of solid tumors. J Clin Oncol 21:2609–2615PubMedCrossRef Lugo TG, Braun S, Cote RJ et al (2003) Detection and measurement of occult disease for the prognosis of solid tumors. J Clin Oncol 21:2609–2615PubMedCrossRef
34.
go back to reference Balic M, Lin H, Young L et al (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621PubMedCrossRef Balic M, Lin H, Young L et al (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621PubMedCrossRef
35.
go back to reference Sheridan C, Kishimoto H, Fuchs RK et al (2006) CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8:R59PubMedCrossRef Sheridan C, Kishimoto H, Fuchs RK et al (2006) CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8:R59PubMedCrossRef
36.
go back to reference Liu R, Wang X, Chen GY et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356:217–226PubMedCrossRef Liu R, Wang X, Chen GY et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356:217–226PubMedCrossRef
37.
go back to reference Gotte M, Yip GW (2006) Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res 66:10233–10237PubMedCrossRef Gotte M, Yip GW (2006) Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res 66:10233–10237PubMedCrossRef
38.
go back to reference Lopez JI, Camenisch TD, Stevens MV et al (2005) CD44 attenuates metastatic invasion during breast cancer progression. Cancer Res 65:6755–6763PubMedCrossRef Lopez JI, Camenisch TD, Stevens MV et al (2005) CD44 attenuates metastatic invasion during breast cancer progression. Cancer Res 65:6755–6763PubMedCrossRef
39.
go back to reference Kaufmann M, Heider KH, Sinn HP et al (1995) CD44 variant exon epitopes in primary breast cancer and length of survival. Lancet 345:615–619PubMedCrossRef Kaufmann M, Heider KH, Sinn HP et al (1995) CD44 variant exon epitopes in primary breast cancer and length of survival. Lancet 345:615–619PubMedCrossRef
40.
go back to reference Sinn HP, Heider KH, Skroch-Angel P et al (1995) Human mammary carcinomas express homologues of rat metastasis-associated variants of CD44. Breast Cancer Res Treat 36:307–313PubMedCrossRef Sinn HP, Heider KH, Skroch-Angel P et al (1995) Human mammary carcinomas express homologues of rat metastasis-associated variants of CD44. Breast Cancer Res Treat 36:307–313PubMedCrossRef
41.
go back to reference Tempfer C, Losch A, Heinzl H et al (1996) Prognostic value of immunohistochemically detected CD44 isoforms CD44v5, CD44v6 and CD44v7–8 in human breast cancer. Eur J Cancer 32A:2023–2025PubMedCrossRef Tempfer C, Losch A, Heinzl H et al (1996) Prognostic value of immunohistochemically detected CD44 isoforms CD44v5, CD44v6 and CD44v7–8 in human breast cancer. Eur J Cancer 32A:2023–2025PubMedCrossRef
42.
go back to reference Jansen RH, Joosten-Achjanie SR, Arends JW et al (1998) CD44v6 is not a prognostic factor in primary breast cancer. Ann Oncol 9:109–111PubMedCrossRef Jansen RH, Joosten-Achjanie SR, Arends JW et al (1998) CD44v6 is not a prognostic factor in primary breast cancer. Ann Oncol 9:109–111PubMedCrossRef
43.
go back to reference Tokue Y, Matsumura Y, Katsumata N et al (1998) CD44 variant isoform expression and breast cancer prognosis. Jpn J Cancer Res 89:283–290PubMed Tokue Y, Matsumura Y, Katsumata N et al (1998) CD44 variant isoform expression and breast cancer prognosis. Jpn J Cancer Res 89:283–290PubMed
44.
go back to reference Friedrichs K, Franke F, Lisboa BW et al (1995) CD44 isoforms correlate with cellular differentiation but not with prognosis in human breast cancer. Cancer Res 55:5424–5433PubMed Friedrichs K, Franke F, Lisboa BW et al (1995) CD44 isoforms correlate with cellular differentiation but not with prognosis in human breast cancer. Cancer Res 55:5424–5433PubMed
45.
go back to reference Foekens JA, Dall P, Klijn JG et al (1999) Prognostic value of CD44 variant expression in primary breast cancer. Int J Cancer 84:209–215PubMedCrossRef Foekens JA, Dall P, Klijn JG et al (1999) Prognostic value of CD44 variant expression in primary breast cancer. Int J Cancer 84:209–215PubMedCrossRef
46.
go back to reference Watanabe O, Kinoshita J, Shimizu T et al (2005) Expression of a CD44 variant and VEGF-C and the implications for lymphatic metastasis and long-term prognosis of human breast cancer. J Exp Clin Cancer Res 24:75–82PubMed Watanabe O, Kinoshita J, Shimizu T et al (2005) Expression of a CD44 variant and VEGF-C and the implications for lymphatic metastasis and long-term prognosis of human breast cancer. J Exp Clin Cancer Res 24:75–82PubMed
47.
go back to reference Kristiansen G, Winzer KJ, Mayordomo E et al (2003) CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res 9:4906–4913PubMed Kristiansen G, Winzer KJ, Mayordomo E et al (2003) CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res 9:4906–4913PubMed
48.
go back to reference Kristiansen G, Schluns K, Yongwei Y et al (2003) CD24 is an independent prognostic marker of survival in nonsmall cell lung cancer patients. Br J Cancer 88:231–236PubMedCrossRef Kristiansen G, Schluns K, Yongwei Y et al (2003) CD24 is an independent prognostic marker of survival in nonsmall cell lung cancer patients. Br J Cancer 88:231–236PubMedCrossRef
49.
go back to reference Kristiansen G, Denkert C, Schluns K et al (2002) CD24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival. Am J Pathol 161:1215–1221PubMed Kristiansen G, Denkert C, Schluns K et al (2002) CD24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival. Am J Pathol 161:1215–1221PubMed
50.
go back to reference Kristiansen G, Pilarsky C, Pervan J et al (2004) CD24 expression is a significant predictor of PSA relapse and poor prognosis in low grade or organ confined prostate cancer. Prostate 58:183–192PubMedCrossRef Kristiansen G, Pilarsky C, Pervan J et al (2004) CD24 expression is a significant predictor of PSA relapse and poor prognosis in low grade or organ confined prostate cancer. Prostate 58:183–192PubMedCrossRef
51.
go back to reference Yang GP, Ross DT, Kuang WW et al (1999) Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes. Nucleic Acids Res 27:1517–1523PubMedCrossRef Yang GP, Ross DT, Kuang WW et al (1999) Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes. Nucleic Acids Res 27:1517–1523PubMedCrossRef
52.
go back to reference Nestl A, Von Stein OD, Zatloukal K et al (2001) Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Cancer Res 61:1569–1577PubMed Nestl A, Von Stein OD, Zatloukal K et al (2001) Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Cancer Res 61:1569–1577PubMed
53.
go back to reference Dupont VN, Gentien D, Oberkampf M et al (2007) A gene expression signature associated with metastatic cells in effusions of breast carcinoma patients. Int J Cancer 121:1036–1046PubMedCrossRef Dupont VN, Gentien D, Oberkampf M et al (2007) A gene expression signature associated with metastatic cells in effusions of breast carcinoma patients. Int J Cancer 121:1036–1046PubMedCrossRef
54.
go back to reference Aigner S, Ramos CL, Hafezi-Moghadam A et al (1998) CD24 mediates rolling of breast carcinoma cells on P-selectin. Faseb J 12:1241–1251PubMed Aigner S, Ramos CL, Hafezi-Moghadam A et al (1998) CD24 mediates rolling of breast carcinoma cells on P-selectin. Faseb J 12:1241–1251PubMed
55.
go back to reference Schabath H, Runz S, Joumaa S et al (2006) CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 119:314–325PubMedCrossRef Schabath H, Runz S, Joumaa S et al (2006) CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 119:314–325PubMedCrossRef
56.
go back to reference Baumann P, Cremers N, Kroese F et al (2005) CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 65:10783–10793PubMedCrossRef Baumann P, Cremers N, Kroese F et al (2005) CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 65:10783–10793PubMedCrossRef
57.
go back to reference Brawley C, Matunis E (2004) Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science 304:1331–1334PubMedCrossRef Brawley C, Matunis E (2004) Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science 304:1331–1334PubMedCrossRef
58.
go back to reference Nakagawa T, Nabeshima Y, Yoshida S (2007) Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 12:195–206PubMedCrossRef Nakagawa T, Nabeshima Y, Yoshida S (2007) Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 12:195–206PubMedCrossRef
59.
go back to reference Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317PubMedCrossRef Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317PubMedCrossRef
60.
go back to reference Wernig M, Meissner A, Foreman R et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324PubMedCrossRef Wernig M, Meissner A, Foreman R et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324PubMedCrossRef
61.
go back to reference Maherali N, Sridharan R, Xie W et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodelling and widespread tissue contribution. Cell Stem Cell 1:55–70CrossRefPubMed Maherali N, Sridharan R, Xie W et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodelling and widespread tissue contribution. Cell Stem Cell 1:55–70CrossRefPubMed
62.
go back to reference Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1: 571–573CrossRef Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1: 571–573CrossRef
63.
go back to reference Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66:11089–11093PubMedCrossRef Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66:11089–11093PubMedCrossRef
64.
go back to reference Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827PubMedCrossRef Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827PubMedCrossRef
65.
go back to reference Hiratsuka S, Watanabe A, Aburatani H et al (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8:1369–1375PubMedCrossRef Hiratsuka S, Watanabe A, Aburatani H et al (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8:1369–1375PubMedCrossRef
66.
go back to reference Hiratsuka S, Nakamura K, Iwai S et al (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2:289–300PubMedCrossRef Hiratsuka S, Nakamura K, Iwai S et al (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2:289–300PubMedCrossRef
67.
go back to reference Hirakawa S, Kodama S, Kunstfeld R et al (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201:1089–1099PubMedCrossRef Hirakawa S, Kodama S, Kunstfeld R et al (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201:1089–1099PubMedCrossRef
68.
go back to reference Qian CN, Berghuis B, Tsarfaty G et al (2006) Preparing the “soil”: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res 66:10365–10376PubMedCrossRef Qian CN, Berghuis B, Tsarfaty G et al (2006) Preparing the “soil”: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res 66:10365–10376PubMedCrossRef
69.
go back to reference Hirakawa S, Brown LF, Kodama S et al (2006) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109:1010–1017PubMedCrossRef Hirakawa S, Brown LF, Kodama S et al (2006) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109:1010–1017PubMedCrossRef
70.
go back to reference Eccles S, Paon L, Sleeman JP (2007) Lymphatic metastasis: importance and new insights into cellular and molecular mechanisms. Clin Exp Metastasis Eccles S, Paon L, Sleeman JP (2007) Lymphatic metastasis: importance and new insights into cellular and molecular mechanisms. Clin Exp Metastasis
71.
go back to reference Calabrese C, Poppleton H, Kocak M et al (2007) A perivascular niche for brain tumor stem cells Cancer Cell 11:69–82PubMedCrossRef Calabrese C, Poppleton H, Kocak M et al (2007) A perivascular niche for brain tumor stem cells Cancer Cell 11:69–82PubMedCrossRef
72.
go back to reference Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl): 245–254PubMedCrossRef Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl): 245–254PubMedCrossRef
74.
go back to reference Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116PubMedCrossRef Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116PubMedCrossRef
75.
go back to reference Eden A, Gaudet F, Waghmare A et al (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455PubMedCrossRef Eden A, Gaudet F, Waghmare A et al (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455PubMedCrossRef
76.
go back to reference Fraga MF, Ballestar E, Villar-Garea A et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400PubMedCrossRef Fraga MF, Ballestar E, Villar-Garea A et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400PubMedCrossRef
77.
go back to reference Hendrix MJ, Seftor EA, Seftor RE et al (2007) Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 7:246–255PubMedCrossRef Hendrix MJ, Seftor EA, Seftor RE et al (2007) Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 7:246–255PubMedCrossRef
78.
go back to reference Widschwendter M, Fiegl H, Egle D et al (2007) Epigenetic stem cell signature in cancer. Nat Genet 39:157–158PubMedCrossRef Widschwendter M, Fiegl H, Egle D et al (2007) Epigenetic stem cell signature in cancer. Nat Genet 39:157–158PubMedCrossRef
79.
go back to reference Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6:846–856PubMedCrossRef Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6:846–856PubMedCrossRef
80.
go back to reference Liu S, Dontu G, Mantle ID et al (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071PubMedCrossRef Liu S, Dontu G, Mantle ID et al (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071PubMedCrossRef
81.
go back to reference Prince ME, Sivanandan R, Kaczorowski A et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104:973–978PubMedCrossRef Prince ME, Sivanandan R, Kaczorowski A et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104:973–978PubMedCrossRef
82.
go back to reference Lessard J, Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423:255–260PubMedCrossRef Lessard J, Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423:255–260PubMedCrossRef
83.
go back to reference Cui H, Ma J, Ding J et al (2006) Bmi-1 regulates the differentiation and clonogenic self-renewal of I-type neuroblastoma cells in a concentration-dependent manner. J Biol Chem 281:34696–34704PubMedCrossRef Cui H, Ma J, Ding J et al (2006) Bmi-1 regulates the differentiation and clonogenic self-renewal of I-type neuroblastoma cells in a concentration-dependent manner. J Biol Chem 281:34696–34704PubMedCrossRef
84.
go back to reference Mishra L, Shetty K, Tang Y et al (2005) The role of TGF-beta and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene 24:5775–5789PubMedCrossRef Mishra L, Shetty K, Tang Y et al (2005) The role of TGF-beta and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene 24:5775–5789PubMedCrossRef
85.
go back to reference Polyak K, Hu M (2005) Do myoepithelial cells hold the key for breast tumor progression? J Mammary Gland Biol Neoplasia 10:231–247PubMedCrossRef Polyak K, Hu M (2005) Do myoepithelial cells hold the key for breast tumor progression? J Mammary Gland Biol Neoplasia 10:231–247PubMedCrossRef
86.
go back to reference Prindull G (2005) Hypothesis: cell plasticity, linking embryonal stem cells to adult stem cell reservoirs and metastatic cancer cells? Exp Hematol 33:738–746PubMedCrossRef Prindull G (2005) Hypothesis: cell plasticity, linking embryonal stem cells to adult stem cell reservoirs and metastatic cancer cells? Exp Hematol 33:738–746PubMedCrossRef
87.
go back to reference Ein-Dor L, Kela I, Getz G et al (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21:171–178PubMedCrossRef Ein-Dor L, Kela I, Getz G et al (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21:171–178PubMedCrossRef
88.
go back to reference Fan C, Oh DS, Wessels L et al (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355:560–569PubMedCrossRef Fan C, Oh DS, Wessels L et al (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355:560–569PubMedCrossRef
Metadata
Title
New concepts in breast cancer metastasis: tumor initiating cells and the microenvironment
Authors
Jonathan P. Sleeman
Natascha Cremers
Publication date
01-11-2007
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 8/2007
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-007-9122-6

Other articles of this Issue 8/2007

Clinical & Experimental Metastasis 8/2007 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine