Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 1/2019

01-02-2019 | ORIGINAL ARTICLE

Dexmedetomidine Preconditioning Protects Cardiomyocytes Against Hypoxia/Reoxygenation-Induced Necroptosis by Inhibiting HMGB1-Mediated Inflammation

Authors: Jingyi Chen, Zhenzhen Jiang, Xing Zhou, Xingxing Sun, Jianwei Cao, Yongpan Liu, Xianyu Wang

Published in: Cardiovascular Drugs and Therapy | Issue 1/2019

Login to get access

Abstract

Myocardial ischemia/reperfusion (I/R) injury is a serious threat to the health of people around the world. Recent evidence has indicated that high-mobility group box-1 (HMGB1) is involved in I/R-induced inflammation, and inflammation can cause necroptosis of cells. Interestingly, dexmedetomidine (DEX) has anti-inflammatory properties. Therefore, we speculated that DEX preconditioning may suppress H/R-induced necroptosis by inhibiting expression of HMGB1 in cardiomyocytes. We found that hypoxia/reoxygenation (H/R) significantly increased cellular damage, as measured by cell viability (100 ± 3.26% vs. 53.33 ± 3.29, p < 0.01), CK-MB (1 vs. 3.25 ± 0.26, p < 0.01), cTnI (1 vs. 2.69 ± 0.31, p < 0.01), inflammation as indicated by TNF-α (1 ± 0.09 vs. 2.57 ± 0.12, p < 0.01), IL-1β (1 ± 0.33 vs. 3.87 ± 0.41, p < 0.01) and IL-6 (1 ± 0.36 vs. 3.60 ± 0.45, p < 0.01), and necroptosis, which were accompanied by significantly increased protein levels of HMGB1. These changes [cellular damage as measured by cell viability (53.33 ± 3.29% vs. 67.59 ± 2.69%, p < 0.01), CK-MB (3.25 ± 0.26 vs. 2.27 ± 0.22, p < 0.01), cTnI (2.69 ± 0.31 vs. 1.90 ± 0.25, p < 0.01), inflammation as indicated by TNF-α (2.57 ± 0.12 vs. 1.75 ± 0.15, p < 0.01), IL-1β (3.87 ± 0.41 vs. 2.09 ± 0.36, p < 0.01) and IL-6 (3.60 ± 0.45 vs. 2.21 ± 0.39, p < 0.01), and necroptosis proteins] were inhibited by DEX preconditioning. We also found that silencing expression of HMGB1 reinforced the protective effects of DEX preconditioning and overexpression of HMGB1 counteracted the protective effects of DEX preconditioning. Thus, we concluded that DEX preconditioning inhibits H/R-induced necroptosis by inhibiting expression of HMGB1 in cardiomyocytes.
Literature
1.
go back to reference Koeppen M, Lee JW, Seo SW, Brodsky KS, Kreth S, Yang IV, et al. Hypoxia-inducible factor 2-alpha-dependent induction of amphiregulin dampens myocardial ischemia-reperfusion injury. Nat Commun. 2018;9:816.CrossRefPubMedPubMedCentral Koeppen M, Lee JW, Seo SW, Brodsky KS, Kreth S, Yang IV, et al. Hypoxia-inducible factor 2-alpha-dependent induction of amphiregulin dampens myocardial ischemia-reperfusion injury. Nat Commun. 2018;9:816.CrossRefPubMedPubMedCentral
2.
go back to reference Kawai H, Chaudhry F, Shekhar A, Petrov A, Nakahara T, Tanimoto T, Kim D, Chen J, Lebeche D, Blankenberg FG, et al. Molecular imaging of apoptosis in ischemia reperfusion injury with radiolabeled Duramycin targeting phosphatidylethanolamine: Effective Target Uptake and Reduced Nontarget Organ Radiation Burden. JACC Cardiovasc Imaging. 2018. Kawai H, Chaudhry F, Shekhar A, Petrov A, Nakahara T, Tanimoto T, Kim D, Chen J, Lebeche D, Blankenberg FG, et al. Molecular imaging of apoptosis in ischemia reperfusion injury with radiolabeled Duramycin targeting phosphatidylethanolamine: Effective Target Uptake and Reduced Nontarget Organ Radiation Burden. JACC Cardiovasc Imaging. 2018.
3.
go back to reference Ferrari RS, Andrade CF. Oxidative stress and lung ischemia-reperfusion injury. Oxidative Med Cell Longev. 2015;2015:590987.CrossRef Ferrari RS, Andrade CF. Oxidative stress and lung ischemia-reperfusion injury. Oxidative Med Cell Longev. 2015;2015:590987.CrossRef
4.
go back to reference Chorawala MR, Prakash P, Doddapattar P, Jain M, Dhanesha N, Chauhan AK. Deletion of extra domain a of fibronectin reduces acute myocardial ischaemia/reperfusion injury in hyperlipidaemic mice by limiting thrombo-inflammation. Thromb Haemost. 2018;118:1450–60.CrossRefPubMedPubMedCentral Chorawala MR, Prakash P, Doddapattar P, Jain M, Dhanesha N, Chauhan AK. Deletion of extra domain a of fibronectin reduces acute myocardial ischaemia/reperfusion injury in hyperlipidaemic mice by limiting thrombo-inflammation. Thromb Haemost. 2018;118:1450–60.CrossRefPubMedPubMedCentral
5.
go back to reference Roberta A, Vicentino R, Carneiro VC, Carneiro VC, Allonso D, Guilherme R, et al. Emerging role of HMGB1 in the pathogenesis of schistosomiasis liver fibrosis. Front Immunol. 2018;9:1979.CrossRef Roberta A, Vicentino R, Carneiro VC, Carneiro VC, Allonso D, Guilherme R, et al. Emerging role of HMGB1 in the pathogenesis of schistosomiasis liver fibrosis. Front Immunol. 2018;9:1979.CrossRef
6.
go back to reference Sekiguchi F, Domoto R, Nakashima K, Yamasoba D, Yamanishi H, Tsubota M, et al. Paclitaxel-induced HMGB1 release from macrophages and its implication for peripheral neuropathy in mice: evidence for a neuroimmune crosstalk. Neuropharmacology. 2018;141:201–13.CrossRefPubMed Sekiguchi F, Domoto R, Nakashima K, Yamasoba D, Yamanishi H, Tsubota M, et al. Paclitaxel-induced HMGB1 release from macrophages and its implication for peripheral neuropathy in mice: evidence for a neuroimmune crosstalk. Neuropharmacology. 2018;141:201–13.CrossRefPubMed
7.
go back to reference Loukili N, Rosenblatt-Velin N, Li J, Clerc S, Pacher P, Feihl F, et al. Peroxynitrite induces HMGB1 release by cardiac cells in vitro and HMGB1 upregulation in the infarcted myocardium in vivo. Cardiovasc Res. 2011;89:586–94.CrossRefPubMed Loukili N, Rosenblatt-Velin N, Li J, Clerc S, Pacher P, Feihl F, et al. Peroxynitrite induces HMGB1 release by cardiac cells in vitro and HMGB1 upregulation in the infarcted myocardium in vivo. Cardiovasc Res. 2011;89:586–94.CrossRefPubMed
8.
go back to reference Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, et al. High-mobility group Box-1 in ischemia-reperfusion injury of the heart. Circulation. 2008;117:3216–26.CrossRefPubMed Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, et al. High-mobility group Box-1 in ischemia-reperfusion injury of the heart. Circulation. 2008;117:3216–26.CrossRefPubMed
9.
go back to reference In EJ, Lee Y, Koppula S, Kim TY, Han JH, Lee KH, et al. Identification and characterization of NTB451 as a potential inhibitor of necroptosis. Molecules. 2018;23. In EJ, Lee Y, Koppula S, Kim TY, Han JH, Lee KH, et al. Identification and characterization of NTB451 as a potential inhibitor of necroptosis. Molecules. 2018;23.
10.
go back to reference Xu Z, Jin Y, Yan H, Gao Z, Xu B, Yang B, et al. High-mobility group box 1 protein-mediated necroptosis contributes to dasatinib-induced cardiotoxicity. Toxicol Lett. 2018;296:39–47.CrossRefPubMed Xu Z, Jin Y, Yan H, Gao Z, Xu B, Yang B, et al. High-mobility group box 1 protein-mediated necroptosis contributes to dasatinib-induced cardiotoxicity. Toxicol Lett. 2018;296:39–47.CrossRefPubMed
11.
go back to reference Galluzzi L, Kepp O, Chan FK, Kroemer G. Necroptosis: mechanisms and relevance to disease. Annu Rev Pathol. 2017;12:103–30.CrossRefPubMed Galluzzi L, Kepp O, Chan FK, Kroemer G. Necroptosis: mechanisms and relevance to disease. Annu Rev Pathol. 2017;12:103–30.CrossRefPubMed
12.
go back to reference Abdel-Ghaffar HS, Kamal SM, El Sherif FA, Mohamed SA. Comparison of nebulised dexmedetomidine, ketamine, or midazolam for premedication in preschool children undergoing bone marrow biopsy. Br J Anaesth. 2018;121:445–52.CrossRefPubMed Abdel-Ghaffar HS, Kamal SM, El Sherif FA, Mohamed SA. Comparison of nebulised dexmedetomidine, ketamine, or midazolam for premedication in preschool children undergoing bone marrow biopsy. Br J Anaesth. 2018;121:445–52.CrossRefPubMed
13.
go back to reference Peng K, Qiu Y, Li J, Zhang ZC, Ji FH. Dexmedetomidine attenuates hypoxia/reoxygenation injury in primary neonatal rat cardiomyocytes. Exp Ther Med. 2017;14:689–95.CrossRefPubMedPubMedCentral Peng K, Qiu Y, Li J, Zhang ZC, Ji FH. Dexmedetomidine attenuates hypoxia/reoxygenation injury in primary neonatal rat cardiomyocytes. Exp Ther Med. 2017;14:689–95.CrossRefPubMedPubMedCentral
14.
go back to reference Zhang JJ, Peng K, Zhang J, Meng XW, Ji FH. Dexmedetomidine preconditioning may attenuate myocardial ischemia/reperfusion injury by down-regulating the HMGB1-TLR4-MyD88-NF-small ka, CyrillicB signaling pathway. PLoS One. 2017;12:e0172006.CrossRefPubMedPubMedCentral Zhang JJ, Peng K, Zhang J, Meng XW, Ji FH. Dexmedetomidine preconditioning may attenuate myocardial ischemia/reperfusion injury by down-regulating the HMGB1-TLR4-MyD88-NF-small ka, CyrillicB signaling pathway. PLoS One. 2017;12:e0172006.CrossRefPubMedPubMedCentral
15.
go back to reference Meng L, Li L, Lu S, Li K, Su Z, Wang Y, et al. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-kappaB and PI3K/Akt/mTOR pathways. Mol Immunol. 2018;94:7–17.CrossRefPubMed Meng L, Li L, Lu S, Li K, Su Z, Wang Y, et al. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-kappaB and PI3K/Akt/mTOR pathways. Mol Immunol. 2018;94:7–17.CrossRefPubMed
16.
go back to reference Deng F, Wang S, Cai S, Hu Z, Xu R, Wang J, et al. Inhibition of caveolae contributes to propofol preconditioning-suppressed microvesicles release and cell injury by hypoxia-reoxygenation. Oxidative Med Cell Longev. 2017;2017:3542149.CrossRef Deng F, Wang S, Cai S, Hu Z, Xu R, Wang J, et al. Inhibition of caveolae contributes to propofol preconditioning-suppressed microvesicles release and cell injury by hypoxia-reoxygenation. Oxidative Med Cell Longev. 2017;2017:3542149.CrossRef
17.
go back to reference Deng F, Wang S, Zhang L, Xie X, Cai S, Li H, et al. Propofol through upregulating caveolin-3 attenuates post-hypoxic mitochondrial damage and cell death in H9C2 cardiomyocytes during hyperglycemia. Cell Physiol Biochem. 2017;44:279–92.CrossRefPubMed Deng F, Wang S, Zhang L, Xie X, Cai S, Li H, et al. Propofol through upregulating caveolin-3 attenuates post-hypoxic mitochondrial damage and cell death in H9C2 cardiomyocytes during hyperglycemia. Cell Physiol Biochem. 2017;44:279–92.CrossRefPubMed
18.
go back to reference Muller T, Dewitz C, Schmitz J, Schroder AS, Brasen JH, Stockwell BR, et al. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell Mol Life Sci. 2017;74:3631–45.CrossRefPubMedPubMedCentral Muller T, Dewitz C, Schmitz J, Schroder AS, Brasen JH, Stockwell BR, et al. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell Mol Life Sci. 2017;74:3631–45.CrossRefPubMedPubMedCentral
19.
go back to reference McDonald KA, Huang H, Tohme S, Loughran P, Ferrero K, Billiar T, et al. Toll-like receptor 4 (TLR4) antagonist eritoran tetrasodium attenuates liver ischemia and reperfusion injury through inhibition of high-mobility group box protein B1 (HMGB1) signaling. Mol Med. 2015;20:639–48.CrossRefPubMedPubMedCentral McDonald KA, Huang H, Tohme S, Loughran P, Ferrero K, Billiar T, et al. Toll-like receptor 4 (TLR4) antagonist eritoran tetrasodium attenuates liver ischemia and reperfusion injury through inhibition of high-mobility group box protein B1 (HMGB1) signaling. Mol Med. 2015;20:639–48.CrossRefPubMedPubMedCentral
20.
go back to reference Mersmann J, Iskandar F, Latsch K, Habeck K, Sprunck V, Zimmermann R, et al. Attenuation of myocardial injury by HMGB1 blockade during ischemia/reperfusion is toll-like receptor 2-dependent. Mediat Inflamm. 2013;2013:174168.CrossRef Mersmann J, Iskandar F, Latsch K, Habeck K, Sprunck V, Zimmermann R, et al. Attenuation of myocardial injury by HMGB1 blockade during ischemia/reperfusion is toll-like receptor 2-dependent. Mediat Inflamm. 2013;2013:174168.CrossRef
21.
go back to reference Tong S, Zhang L, Joseph J, Jiang X. Celastrol pretreatment attenuates rat myocardial ischemia/ reperfusion injury by inhibiting high mobility group box 1 protein expression via the PI3K/Akt pathway. Biochem Biophys Res Commun. 2018;497:843–9.CrossRefPubMed Tong S, Zhang L, Joseph J, Jiang X. Celastrol pretreatment attenuates rat myocardial ischemia/ reperfusion injury by inhibiting high mobility group box 1 protein expression via the PI3K/Akt pathway. Biochem Biophys Res Commun. 2018;497:843–9.CrossRefPubMed
22.
go back to reference Sun HJ, Lu Y, Wang HW, Zhang H, Wang SR, Xu WY, et al. Activation of endocannabinoid receptor 2 as a mechanism of propofol pretreatment-induced cardioprotection against ischemia-reperfusion injury in rats. Oxidative Med Cell Longev. 2017;2017:2186383. Sun HJ, Lu Y, Wang HW, Zhang H, Wang SR, Xu WY, et al. Activation of endocannabinoid receptor 2 as a mechanism of propofol pretreatment-induced cardioprotection against ischemia-reperfusion injury in rats. Oxidative Med Cell Longev. 2017;2017:2186383.
23.
go back to reference Sun Y, Jiang C, Jiang J, Qiu L. Dexmedetomidine protects mice against myocardium ischaemic/reperfusion injury by activating an AMPK/PI3K/Akt/eNOS pathway. Clin Exp Pharmacol Physiol. 2017;44:946–53.CrossRefPubMed Sun Y, Jiang C, Jiang J, Qiu L. Dexmedetomidine protects mice against myocardium ischaemic/reperfusion injury by activating an AMPK/PI3K/Akt/eNOS pathway. Clin Exp Pharmacol Physiol. 2017;44:946–53.CrossRefPubMed
24.
go back to reference Chen Z, Ding T, Ma CG. Dexmedetomidine (DEX) protects against hepatic ischemia/reperfusion (I/R) injury by suppressing inflammation and oxidative stress in NLRC5 deficient mice. Biochem Biophys Res Commun. 2017;493:1143–50.CrossRefPubMed Chen Z, Ding T, Ma CG. Dexmedetomidine (DEX) protects against hepatic ischemia/reperfusion (I/R) injury by suppressing inflammation and oxidative stress in NLRC5 deficient mice. Biochem Biophys Res Commun. 2017;493:1143–50.CrossRefPubMed
25.
26.
go back to reference Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ. 2018. Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ. 2018.
Metadata
Title
Dexmedetomidine Preconditioning Protects Cardiomyocytes Against Hypoxia/Reoxygenation-Induced Necroptosis by Inhibiting HMGB1-Mediated Inflammation
Authors
Jingyi Chen
Zhenzhen Jiang
Xing Zhou
Xingxing Sun
Jianwei Cao
Yongpan Liu
Xianyu Wang
Publication date
01-02-2019
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 1/2019
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-019-06857-1

Other articles of this Issue 1/2019

Cardiovascular Drugs and Therapy 1/2019 Go to the issue