Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3/2019

01-09-2019 | Breast Cancer

Spatio-temporal modeling and live-cell imaging of proteolysis in the 4D microenvironment of breast cancer

Authors: Kyungmin Ji, Mansoureh Sameni, Kingsley Osuala, Kamiar Moin, Raymond R. Mattingly, Bonnie F. Sloane

Published in: Cancer and Metastasis Reviews | Issue 3/2019

Login to get access

Abstract

Cells grown in three dimensions (3D) within natural extracellular matrices or synthetic scaffolds more closely recapitulate the phenotype of those cells within tissues in regard to normal developmental and pathobiological processes. This includes degradation of the surrounding stroma as the cells migrate and invade through the matrices. As 3D cultures of tumor cells predict efficacy of, and resistance to, a wide variety of cancer therapies, we employed tissue-engineering approaches to establish 3D pathomimetic avatars of human breast cancer cells alone and in the context of both their cellular and pathochemical microenvironments. We have shown that we can localize and quantify key parameters of malignant progression by live-cell imaging of the 3D avatars over time (4D). One surrogate for changes in malignant progression is matrix degradation, which can be localized and quantified by our live-cell proteolysis assay. This assay is predictive of changes in spatio-temporal and dynamic interactions among the co-cultured cells and changes in viability, proliferation, and malignant phenotype. Furthermore, our live-cell proteolysis assay measures the effect of small-molecule inhibitors of proteases and kinases, neutralizing or blocking antibodies to cytokines and photodynamic therapy on malignant progression. We suggest that 3D/4D pathomimetic avatars in combination with our live-cell proteolysis assays will be a useful preclinical screening platform for cancer therapies. Our ultimate goal is to develop 3D/4D avatars from an individual patient’s cancer in which we can screen “personalized medicine” therapies using changes in proteolytic activity to quantify therapeutic efficacy.
Literature
5.
go back to reference Li, Q., Mullins, S. R., Sloane, B. F., & Mattingly, R. R. (2008). p21-activated kinase 1 coordinates aberrant cell survival and pericellular proteolysis in a three-dimensional culture model for premalignant progression of human breast cancer. Neoplasia, 10(4), 314–329.CrossRefPubMedPubMedCentral Li, Q., Mullins, S. R., Sloane, B. F., & Mattingly, R. R. (2008). p21-activated kinase 1 coordinates aberrant cell survival and pericellular proteolysis in a three-dimensional culture model for premalignant progression of human breast cancer. Neoplasia, 10(4), 314–329.CrossRefPubMedPubMedCentral
8.
go back to reference Maguire, S. L., Peck, B., Wai, P. T., Campbell, J., Barker, H., Gulati, A., Daley, F., Vyse, S., Huang, P., Lord, C. J., Farnie, G., Brennan, K., & Natrajan, R. (2016). Three-dimensional modelling identifies novel genetic dependencies associated with breast cancer progression in the isogenic MCF10 model. The Journal of Pathology, 240(3), 315–328. https://doi.org/10.1002/path.4778.CrossRefPubMed Maguire, S. L., Peck, B., Wai, P. T., Campbell, J., Barker, H., Gulati, A., Daley, F., Vyse, S., Huang, P., Lord, C. J., Farnie, G., Brennan, K., & Natrajan, R. (2016). Three-dimensional modelling identifies novel genetic dependencies associated with breast cancer progression in the isogenic MCF10 model. The Journal of Pathology, 240(3), 315–328. https://​doi.​org/​10.​1002/​path.​4778.CrossRefPubMed
11.
go back to reference Edwards, D., Hoyer-Hansen, G., Blasi, F., & Sloane, B. F. (2008). The cancer degradome: protease and cancer biology. New York: Springer.CrossRef Edwards, D., Hoyer-Hansen, G., Blasi, F., & Sloane, B. F. (2008). The cancer degradome: protease and cancer biology. New York: Springer.CrossRef
12.
go back to reference Sloane, B. F., List, K., Fingleton, B., & Matrisian, L. (2013). Proteases: structure and function. New York: Springer. Sloane, B. F., List, K., Fingleton, B., & Matrisian, L. (2013). Proteases: structure and function. New York: Springer.
13.
go back to reference Darvishian, F., Ozerdem, U., Adams, S., Chun, J., Pirraglia, E., Kaplowitz, E., Guth, A., Axelrod, D., Shapiro, R., Price, A., Troxel, A., Schnabel, F., & Roses, D. (2019). Tumor-infiltrating lymphocytes in a contemporary cohort of women with ductal carcinoma in situ (DCIS). Annals of Surgical Oncology, 26(10), 3337–3343. https://doi.org/10.1245/s10434-019-07562-x.CrossRefPubMed Darvishian, F., Ozerdem, U., Adams, S., Chun, J., Pirraglia, E., Kaplowitz, E., Guth, A., Axelrod, D., Shapiro, R., Price, A., Troxel, A., Schnabel, F., & Roses, D. (2019). Tumor-infiltrating lymphocytes in a contemporary cohort of women with ductal carcinoma in situ (DCIS). Annals of Surgical Oncology, 26(10), 3337–3343. https://​doi.​org/​10.​1245/​s10434-019-07562-x.CrossRefPubMed
14.
go back to reference Grugan, K. D., McCabe, F. L., Kinder, M., Greenplate, A. R., Harman, B. C., Ekert, J. E., van Rooijen, N., Anderson, G. M., Nemeth, J. A., Strohl, W. R., Jordan, R. E., & Brezski, R. J. (2012). Tumor-associated macrophages promote invasion while retaining Fc-dependent anti-tumor function. Journal of Immunology, 189(11), 5457–5466. https://doi.org/10.4049/jimmunol.1201889.CrossRef Grugan, K. D., McCabe, F. L., Kinder, M., Greenplate, A. R., Harman, B. C., Ekert, J. E., van Rooijen, N., Anderson, G. M., Nemeth, J. A., Strohl, W. R., Jordan, R. E., & Brezski, R. J. (2012). Tumor-associated macrophages promote invasion while retaining Fc-dependent anti-tumor function. Journal of Immunology, 189(11), 5457–5466. https://​doi.​org/​10.​4049/​jimmunol.​1201889.CrossRef
15.
go back to reference Shree, T., Olson, O. C., Elie, B. T., Kester, J. C., Garfall, A. L., Simpson, K., Bell-McGuinn, K. M., Zabor, E. C., Brogi, E., & Joyce, J. A. (2011). Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes & Development, 25(23), 2465–2479. https://doi.org/10.1101/gad.180331.111.CrossRef Shree, T., Olson, O. C., Elie, B. T., Kester, J. C., Garfall, A. L., Simpson, K., Bell-McGuinn, K. M., Zabor, E. C., Brogi, E., & Joyce, J. A. (2011). Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes & Development, 25(23), 2465–2479. https://​doi.​org/​10.​1101/​gad.​180331.​111.CrossRef
18.
go back to reference Dawson, P. J., Wolman, S. R., Tait, L., Heppner, G. H., & Miller, F. R. (1996). MCF10AT: a model for the evolution of cancer from proliferative breast disease. The American Journal of Pathology, 148(1), 313–319.PubMedPubMedCentral Dawson, P. J., Wolman, S. R., Tait, L., Heppner, G. H., & Miller, F. R. (1996). MCF10AT: a model for the evolution of cancer from proliferative breast disease. The American Journal of Pathology, 148(1), 313–319.PubMedPubMedCentral
19.
go back to reference Santner, S. J., Dawson, P. J., Tait, L., Soule, H. D., Eliason, J., Mohamed, A. N., Wolman, S. R., Heppner, G. H., & Miller, F. R. (2001). Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Research and Treatment, 65(2), 101–110.CrossRefPubMed Santner, S. J., Dawson, P. J., Tait, L., Soule, H. D., Eliason, J., Mohamed, A. N., Wolman, S. R., Heppner, G. H., & Miller, F. R. (2001). Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Research and Treatment, 65(2), 101–110.CrossRefPubMed
31.
37.
go back to reference Duivenvoorden, H. M., Rautela, J., Edgington-Mitchell, L. E., Spurling, A., Greening, D. W., Nowell, C. J., Molloy, T. J., Robbins, E., Brockwell, N. K., Lee, C. S., Chen, M., Holliday, A., Selinger, C. I., Hu, M., Britt, K. L., Stroud, D. A., Bogyo, M., Möller, A., Polyak, K., Sloane, B. F., O'Toole, S. A., & Parker, B. S. (2017). Myoepithelial cell-specific expression of stefin A as a suppressor of early breast cancer invasion. The Journal of Pathology, 243(4), 496–509. https://doi.org/10.1002/path.4990.CrossRefPubMed Duivenvoorden, H. M., Rautela, J., Edgington-Mitchell, L. E., Spurling, A., Greening, D. W., Nowell, C. J., Molloy, T. J., Robbins, E., Brockwell, N. K., Lee, C. S., Chen, M., Holliday, A., Selinger, C. I., Hu, M., Britt, K. L., Stroud, D. A., Bogyo, M., Möller, A., Polyak, K., Sloane, B. F., O'Toole, S. A., & Parker, B. S. (2017). Myoepithelial cell-specific expression of stefin A as a suppressor of early breast cancer invasion. The Journal of Pathology, 243(4), 496–509. https://​doi.​org/​10.​1002/​path.​4990.CrossRefPubMed
40.
go back to reference Rozhin, J., Sameni, M., Ziegler, G., & Sloane, B. F. (1994). Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Research, 54(24), 6517–6525.PubMed Rozhin, J., Sameni, M., Ziegler, G., & Sloane, B. F. (1994). Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Research, 54(24), 6517–6525.PubMed
Metadata
Title
Spatio-temporal modeling and live-cell imaging of proteolysis in the 4D microenvironment of breast cancer
Authors
Kyungmin Ji
Mansoureh Sameni
Kingsley Osuala
Kamiar Moin
Raymond R. Mattingly
Bonnie F. Sloane
Publication date
01-09-2019
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3/2019
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-019-09810-8

Other articles of this Issue 3/2019

Cancer and Metastasis Reviews 3/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine